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Abstract

   This memo describes challenges associated with securing smart object
   devices in constrained implementations and environments.  The memo
   describes a possible deployment model suitable for these
   environments, discusses the availability of cryptographic libraries
   for small devices, presents some preliminary experiences in
   implementing small devices using those libraries, and discusses
   trade-offs involving different types of approaches.
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   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   This memo describes challenges associated with securing smart object
   devices in constrained implementations and environments.  In

Section 3) we specifically discuss three challenges: the
   implementation difficulties encountered on resource-constrained
   platforms, the problem of provisioning keys and making the choice of
   implementing security at the appropriate layer.

   Secondly, Section 4 discusses a deployment model that the authors are
   considering for constrained environments.  The model requires minimal
   amount of configuration, and we believe it is a natural fit with the
   typical communication practices in smart object networking
   environments.

   Thirdly, Section 7 discusses the availability of cryptographic
   libraries.  Section 8 presents some experiences in implementing
   cryptography on small devices using those libraries, including
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   information about achievable code sizes and speeds on typical
   hardware.

   Finally, Section 10 discusses trade-offs involving different types of
   security approaches.

2.  Related Work

   Constrained Application Protocol (CoAP) [RFC7252] is a light-weight
   protocol designed to be used in machine-to-machine applications such
   as smart energy and building automation.  Our discussion uses this
   protocol as an example, but the conclusions may apply to other
   similar protocols.  CoAP base specification [RFC7252] outlines how to
   use DTLS [RFC6347] and IPsec [RFC4303] for securing the protocol.
   DTLS can be applied with pairwise shared keys, raw public keys or
   with certificates.  The security model in all cases is mutual
   authentication, so while there is some commonality to HTTP in
   verifying the server identity, in practice the models are quite
   different.  The CoAP specification says little about how DTLS keys
   are managed.  The use of IPsec with CoAP is described with regards to
   the protocol requirements, noting that small implementations of IKEv2
   exist [RFC7815].  However, the CoAP specification is silent on policy
   and other aspects that are normally necessary in order to implement
   interoperable use of IPsec in any environment [RFC5406].

   [RFC6574] gives an overview of the security discussions at the March
   2011 IAB workshop on smart objects.  The workshop recommended that
   additional work is needed in developing suitable credential
   management mechanisms (perhaps something similar to the Bluetooth
   pairing mechanism), understanding the implementability of standard
   security mechanisms in small devices and additional research in the
   area of lightweight cryptographic primitives.

   [I-D.moskowitz-hip-dex] defines a light-weight version of the HIP
   protocol for low-power nodes.  This version uses a fixed set of
   algorithms, Elliptic Curve Cryptography (ECC), and eliminates hash
   functions.  The protocol still operates based on host identities, and
   runs end-to-end between hosts, protecting IP layer communications.
   [RFC6078] describes an extension of HIP that can be used to send
   upper layer protocol messages without running the usual HIP base
   exchange at all.

   [I-D.daniel-6lowpan-security-analysis] makes a comprehensive analysis
   of security issues related to 6LoWPAN networks, but its findings also
   apply more generally for all low-powered networks.  Some of the
   issues this document discusses include the need to minimize the
   number of transmitted bits and simplify implementations, threats in
   the smart object networking environments, and the suitability of

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc7815
https://datatracker.ietf.org/doc/html/rfc5406
https://datatracker.ietf.org/doc/html/rfc6078


Sethi, et al.              Expires May 4, 2017                  [Page 3]



Internet-Draft      Smart Object Security Experiences       October 2016

   6LoWPAN security mechanisms, IPsec, and key management protocols for
   implementation in these environments.

   [I-D.irtf-t2trg-iot-seccons] discusses the overall security problem
   for Internet of Things devices.  It also discusses various solutions,
   including IKEv2/IPsec [RFC7296], TLS/SSL [RFC5246], DTLS [RFC6347],
   HIP [RFC7401] [I-D.moskowitz-hip-dex], PANA [RFC5191], and EAP
   [RFC3748].  The draft also discusses various operational scenarios,
   bootstrapping mechanisms, and challenges associated with implementing
   security mechanisms in these environments.

3.  Challenges

   This section discusses three challenges: implementation difficulties,
   practical provisioning problems, and layering and communication
   models.

   The most often discussed issues in the security for the Internet of
   Things relate to implementation difficulties.  The desire to build
   small, battery-operated, and inexpensive devices drives the creation
   of devices with a limited protocol and application suite.  Some of
   the typical limitations include running CoAP instead of HTTP, limited
   support for security mechanisms, limited processing power for long
   key lengths, sleep schedule that does not allow communication at all
   times, and so on.  In addition, the devices typically have very
   limited support for configuration, making it hard to set up secrets
   and trust anchors.

   The implementation difficulties are important, but they should not be
   overemphasized.  It is important to select the right security
   mechanisms and avoid duplicated or unnecessary functionality.  But at
   the end of the day, if strong cryptographic security is needed, the
   implementations have to support that.  Also, the use of the most
   lightweight algorithms and cryptographic primitives is useful, but
   should not be the only consideration in the design.  Interoperability
   is also important, and often other parts of the system, such as key
   management protocols or certificate formats are heavier to implement
   than the algorithms themselves.

   The second challenge relates to practical provisioning problems.
   These are perhaps the most fundamental and difficult issue, and
   unfortunately often neglected in the design.  There are several
   problems in the provisioning and management of smart object networks:

   o  Small devices have no natural user interface for configuration
      that would be required for the installation of shared secrets and
      other security-related parameters.  Typically, there is no
      keyboard, no display, and there may not even be buttons to press.

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc5191
https://datatracker.ietf.org/doc/html/rfc3748
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      Some devices may only have one interface, the interface to the
      network.

   o  Manual configuration is rarely, if at all, possible, as the
      necessary skills are missing in typical installation environments
      (such as in family homes).

   o  There may be a large number of devices.  Configuration tasks that
      may be acceptable when performed for one device may become
      unacceptable with dozens or hundreds of devices.

   o  Network configurations evolve over the lifetime of the devices, as
      additional devices are introduced or addresses change.  Various
      central nodes may also receive more frequent updates than
      individual devices such as sensors embedded in building materials.

   Finally, layering and communication models present difficulties for
   straightforward use of the most obvious security mechanisms.  Smart
   object networks typically pass information through multiple
   participating nodes [I-D.arkko-core-sleepy-sensors] and end-to-end
   security for IP or transport layers may not fit such communication
   models very well.  The primary reasons for needing middleboxes
   relates to the need to accommodate for sleeping nodes as well to
   enable the implementation of nodes that store or aggregate
   information.

4.  Proposed Deployment Model

   [I-D.arkko-core-security-arch] recognizes the provisioning model as
   the driver of what kind of security architecture is useful.  This
   section re-introduces this model briefly here in order to facilitate
   the discussion of the various design alternatives later.

   The basis of the proposed architecture are self-generated secure
   identities, similar to Cryptographically Generated Addresses (CGAs)
   [RFC3972] or Host Identity Tags (HITs) [RFC7401].  That is, we assume
   the following holds:

      I = h(P|O)

   where I is the secure identity of the device, h is a hash function, P
   is the public key from a key pair generated by the device, and O is
   optional other information. | here denotes the concatenation
   operator.

https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc7401
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5.  Provisioning

   As it is difficult to provision security credentials, shared secrets,
   and policy information, the provisioning model is based only on the
   secure identities.  A typical network installation involves physical
   placement of a number of devices while noting the identities of these
   devices.  This list of short identifiers can then be fed to a central
   server as a list of authorized devices.  Secure communications can
   then commence with the devices, at least as far as information from
   from the devices to the server is concerned, which is what is needed
   for sensor networks.

   The above architecture is a perfect fit for sensor networks where
   information flows from large number of devices to small number of
   servers.  But it is not sufficient alone for other types of
   applications.  For instance, in actuator applications a large number
   of devices need to take commands from somewhere else.  In such
   applications it is necessary to secure that the commands come from an
   authorized source.  This can be supported, with some additional
   provisioning effort and optional pairing protocols.  The basic
   provisioning approach is as described earlier, but in addition there
   must be something that informs the devices of the identity of the
   trusted server(s).  There are multiple ways to provide this
   information.  One simple approach is to feed the identities of the
   trusted server(s) to devices at installation time.  This requires
   either a separate user interface, local connection (such as USB), or
   using the network interface of the device for configuration.  In any
   case, as with sensor networks the amount of configuration information
   is minimized: just one short identity value needs to be fed in.  Not
   both an identity and a certificate.  Not shared secrets that must be
   kept confidential.  An even simpler provisioning approach is that the
   devices in the device group trust each other.  Then no configuration
   is needed at installation time.  When both peers know the expected
   cryptographic identity of the other peer off-line, secure
   communications can commence.  Alternatively, various pairing schemes
   can be employed.  Note that these schemes can benefit from the
   already secure identifiers on the device side.  For instance, the
   server can send a pairing message to each device after their initial
   power-on and before they have been paired with anyone, encrypted with
   the public key of the device.  As with all pairing schemes that do
   not employ a shared secret or the secure dentity of both parties,
   there are some remaining vulnerabilities that may or may not be
   acceptable for the application in question.  In any case, the secure
   identities help again in ensuring that the operations are as simple
   as possible.  Only identities need to be communicated to the devices,
   not certificates, not shared secrets or IPsec policy rules.
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   Where necessary, the information collected at installation time may
   also include other parameters relevant to the application, such as
   the location or purpose of the devices.  This would enable the server
   to know, for instance, that a particular device is the temperature
   sensor for the kitchen.

   Collecting the identity information at installation time can be
   arranged in a number of ways.  The authors have employed a simple but
   not completely secure method where the last few digits of the
   identity are printed on a tiny device just a few millimeters across.
   Alternatively, the packaging for the device may include the full
   identity (typically 32 hex digits), retrieved from the device at
   manufacturing time.  This identity can be read, for instance, by a
   bar code reader carried by the installation personnel.  (Note that
   the identities are not secret, the security of the system is not
   dependent on the identity information leaking to others.  The real
   owner of an identity can always prove its ownership with the private
   key which never leaves the device.)  Finally, the device may use its
   wired network interface or proximity-based communications, such as
   Near-Field Communications (NFC) or Radio-Frequency Identity tags
   (RFIDs).  Such interfaces allow secure communication of the device
   identity to an information gathering device at installation time.

   No matter what the method of information collection is, this
   provisioning model minimizes the effort required to set up the
   security.  Each device generates its own identity in a random, secure
   key generation process.  The identities are self-securing in the
   sense that if you know the identity of the peer you want to
   communicate with, messages from the peer can be signed by the peer's
   private key and it is trivial to verify that the message came from
   the expected peer.  There is no need to configure an identity and
   certificate of that identity separately.  There is no need to
   configure a group secret or a shared secret.  There is no need to
   configure a trust anchor.  In addition, the identities are typically
   collected anyway for application purposes (such as identifying which
   sensor is in which room).  Under most circumstances there is actually
   no additional configuration effort from provisioning security.

   Groups of devices can be managed through single identifiers as well.
   In these deployment cases it is also possible to configure the
   identity of an entire group of devices, rather than registering the
   individual devices.  For instance, many installations employ a kit of
   devices bought from the same manufacturer in one package.  It is easy
   to provide an identity for such a set of devices as follows:

      Idev = h(Pdev|Potherdev1|Potherdev2|...|Potherdevn)

      Igrp = h(Pdev1|Pdev2|...|Pdevm)
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   where Idev is the identity of an individual device, Pdev is the
   public key of that device, and Potherdevi are the public keys of
   other devices in the group.  Now, we can define the secure identity
   of the group (Igrp) as a hash of all the public keys of the devices
   in the group (Pdevi).

   The installation personnel can scan the identity of the group from
   the box that the kit came in, and this identity can be stored in a
   server that is expected to receive information from the nodes.  Later
   when the individual devices contact this server, they will be able to
   show that they are part of the group, as they can reveal their own
   public key and the public keys of the other devices.  Devices that do
   not belong to the kit can not claim to be in the group, because the
   group identity would change if any new keys were added to Igrp.

6.  Protocol Architecture

   As noted above, the starting point of the architecture is that nodes
   self-generate secure identities which are then communicated out-of-
   band to the peers that need to know what devices to trust.  To
   support this model in a protocol architecture, we also need to use
   these secure identities to implement secure messaging between the
   peers, explain how the system can respond to different types of
   attacks such as replay attempts, and decide at what protocol layer
   and endpoints the architecture should use.

   The deployment itself is suitable for a variety of design choices
   regarding layering and protocol mechanisms.
   [I-D.arkko-core-security-arch] was mostly focused on employing end-
   to-end data object security as opposed to hop-by-hop security.  But
   other approaches are possible.  For instance, HIP in its
   opportunistic mode could be used to implement largely the same
   functionality at the IP layer.  However, it is our belief that the
   right layer for this solution is at the application layer.  More
   specifically, in the data formats transported in the payload part of
   CoAP.  This approach provides the following benefits:

   o  Ability for intermediaries to act as caches to support different
      sleep schedules, without the security model being impacted.

   o  Ability for intermediaries to be built to perform aggregation,
      filtering, storage and other actions, again without impacting the
      security of the data being transmitted or stored.

   o  Ability to operate in the presence of traditional middleboxes,
      such as a protocol translators or even NATs (not that we recommend
      their use in these environments).
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   However, as we will see later there are also some technical
   implications, namely that link, network, and transport layer
   solutions are more likely to be able to benefit from sessions where
   the cost of expensive operations can be amortized over multiple data
   transmissions.  While this is not impossible in data object security
   solutions either, it is not the typical arrangement either.

7.  Code Availability

   For implementing public key cryptography on resource constrained
   environments, we chose Arduino Uno board [arduino-uno] as the test
   platform.  Arduino Uno has an ATmega328 microcontroller, an 8-bit
   processor with a clock speed of 16 MHz, 2 kB of SRAM, and 32 kB of
   flash memory.

   For selecting potential asymmetric cryptographic libraries, we did an
   extensive survey and came up with a set of possible code sources, and
   performed an initial analysis of how well they fit the Arduino
   environment.  Note that the results are preliminary, and could easily
   be affected in any direction by implementation bugs, configuration
   errors, and other mistakes.  Please verify the numbers before relying
   on them for building something.  No significant effort was done to
   optimize ROM memory usage beyond what the libraries provided
   themselves, so those numbers should be taken as upper limits.

   Here is the set of libraries we found:

   o  AvrCryptolib [avr-cryptolib]: This library provides a variety of
      different symmetric key algorithms such as AES and RSA as an
      asymmetric key algorithm.  We stripped down the library to use
      only the required RSA components and used a separate SHA-256
      implementation from the original AvrCrypto-Lib library
      [avr-crypto-lib].  Parts of SHA-256 and RSA algorithm
      implementations were written in AVR-8 bit assembly language to
      reduce the size and optimize the performance.  The library also
      takes advantage of the fact that Arduino boards allow the
      programmer to directly address the flash memory to access constant
      data which can save the amount of SRAM used during execution.

   o  Relic-Toolkit [relic-toolkit]: This library is written entirely in
      C and provides a highly flexible and customizable implementation
      of a large variety of cryptographic algorithms.  This not only
      includes RSA and ECC, but also pairing based asymmetric
      cryptography, Boneh-Lynn-Schacham, Boneh-Boyen short signatures
      and many more.  The toolkit provides an option to build only the
      desired components for the required platform.  While building the
      library, it is possible to select a variety mathematical
      optimizations that can be combined to obtain the desired
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      performance (as a general thumb rule, faster implementations
      require more SRAM and flash).  It includes a multi precision
      integer math module which can be customized to use different bit-
      length words.

   o  TinyECC [tinyecc]: TinyECC was designed for using Elliptic Curve
      based public key cryptography on sensor networks.  It is written
      in nesC programming language and as such is designed for specific
      use on TinyOS.  However, the library can be ported to standard C99
      either with hacked tool-chains or manually rewriting parts of the
      code.  This allows for the library to be used on platforms that do
      not have TinyOS running on them.  The library includes a wide
      variety of mathematical optimizations such as sliding window,
      Barrett reduction for verification, precomputation, etc.  It also
      has one of the smallest memory footprints among the set of
      Elliptic Curve libraries surveyed so far.  However, an advantage
      of Relic over TinyECC is that it can do curves over binary fields
      in addition to prime fields.

   o  Wiselib [wiselib]: Wiselib is a generic library written for sensor
      networks containing a wide variety of algorithms.  While the
      stable version contains algorithms for routing only, the test
      version includes many more algorithms including algorithms for
      cryptography, localization , topology management and many more.
      The library was designed with the idea of making it easy to
      interface the library with operating systems like iSense and
      Contiki.  However, since the library is written entirely in C++
      with a template based model similar to Boost/CGAL, it can be used
      on any platform directly without using any of the operating system
      interfaces provided.  This approach was taken by the authors to
      test the code on Arduino Uno. The structure of the code is similar
      to TinyECC and like TinyECC it implements elliptic curves over
      prime fields only.  In order to make the code platform
      independent, no assembly level optimizations were incorporated.
      Since efficiency was not an important goal for the authors of the
      library while designing, many well known theoretical performance
      enhancement features were also not incorporated.  Like the relic-
      toolkit, Wiselib is also Lesser GPL licensed.

   o  MatrixSSL [matrix-ssl]: This library provides a low footprint
      implementation of several cryptographic algorithms including RSA
      and ECC (with a commercial license).  However, the library in the
      original form takes about 50 kB of ROM which is not suitable for
      our hardware requirements.  Moreover, it is intended for 32-bit
      systems and the API includes functions for SSL communication
      rather than just signing data with private keys.
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   This is by no ways an exhaustive list and there exist other
   cryptographic libraries targeting resource-constrained devices.

8.  Implementation Experiences

   While evaluating the implementation experiences, we were particularly
   interested in the signature generation operation.  This was because
   our example application discussed in Section 9 required only the
   signature generation operation on the resource-constrained platforms.
   We have summarized the initial results of RSA private key performance
   using AvrCryptolib in Table 1.  All results are from a single run
   since repeating the test did not change (or had only minimal impact
   on) the results.  The keys were generated separately and were hard
   coded into the program.  All keys were generated with the value of
   the public exponent as 3.  The performance of signing with private
   key was faster for smaller key lengths as was expected.  However the
   increase in the execution time was considerable when the key size was
   2048 bits.  It is important to note that two different sets of
   experiments were performed for each key length.  In the first case,
   the keys were loaded into the SRAM from the ROM (flash) before they
   were used by any of the functions.  However, in the second case, the
   keys were addressed directly in the ROM.  As was expected, the second
   case used less SRAM but lead to longer execution time.

   More importantly, any RSA key size less than 2,048-bit should be
   considered legacy and insecure.  The performance measurements for
   these keys are provided here for reference only.

   +--------+--------------+--------------+-------------+--------------+
   | Key    |    Execution |       Memory |   Execution |       Memory |
   | length |   time (ms); |    footprint |  time (ms); |    footprint |
   | (bits) |  key in SRAM | (bytes); key |  key in ROM | (bytes); key |
   |        |              |      in SRAM |             |       in ROM |
   +--------+--------------+--------------+-------------+--------------+
   | 64     |           64 |           40 |          69 |           32 |
   | 128    |          434 |           80 |         460 |           64 |
   | 512    |       25,076 |          320 |       27348 |          256 |
   | 1,024  |       199688 |          640 |      218367 |          512 |
   | 2,048  |      1587567 |        1,280 |     1740258 |        1,024 |
   +--------+--------------+--------------+-------------+--------------+

                   RSA private key operation performance

                                  Table 1

   The code size was less than 3.6 kB for all the test cases with scope
   for further reduction.  It is also worth noting that the
   implementation performs basic exponentiation and multiplication
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   operations without using any mathematical optimizations such as
   Montgomery multiplication, optimized squaring, etc. as described in
   [rsa-high-speed].  With more SRAM, we believe that 1024/2048-bit
   operations can be performed in much less time as has been shown in
   [rsa-8bit]. 2048-bit RSA is nonetheless possible with about 1 kB of
   SRAM as is seen in Table 1.

   In Table 2 we present the results obtained by manually porting
   TinyECC into C99 standard and running ECDSA signature algorithm on
   the Arduino Uno board.  TinyECC supports a variety of SEC 2
   recommended Elliptic Curve domain parameters.  The execution time and
   memory footprint are shown next to each of the curve parameters.
   SHA-1 hashing algorithm included in the library was used in each of
   the cases.  The measurements reflect the performance of elliptic
   curve signing only and not the SHA-1 hashing algorithm.  SHA-1 is now
   known to be insecure and should not be used in real deployments.  It
   is clearly observable that for similar security levels, Elliptic
   Curve public key cryptography outperforms RSA.  These results were
   obtained by turning on all the optimizations.  These optimizations
   include - Curve Specific Optimizations for modular reduction (NIST
   and SEC 2 field primes were chosen as pseudo-Mersenne primes),
   Sliding Window for faster scalar multiplication, Hybrid squaring
   procedure written in assembly and Weighted projective Coordinate
   system for efficient scalar point addition, doubling and
   multiplication.  We did not use optimizations like Shamir Trick and
   Sliding Window as they are only useful for signature verification and
   tend to slow down the signature generation by precomputing values (we
   were only interested in fast signature generation).  There is still
   some scope for optimization as not all the assembly code provided
   with the library could be ported to Arduino directly.  Re-writing
   these procedures in compatible assembly would further enhance the
   performance.
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   +-------------+---------------+-----------------+-------------------+
   | Curve       |     Execution | Memory          |    Comparable RSA |
   | parameters  |     time (ms) | Footprint       |        key length |
   |             |               | (bytes)         |                   |
   +-------------+---------------+-----------------+-------------------+
   | 128r1       |          1858 | 776             |               704 |
   | 128r2       |          2002 | 776             |               704 |
   | 160k1       |          2228 | 892             |              1024 |
   | 160r1       |          2250 | 892             |              1024 |
   | 160r2       |          2467 | 892             |              1024 |
   | 192k1       |          3425 | 1008            |              1536 |
   | 192r1       |          3578 | 1008            |              1536 |
   +-------------+---------------+-----------------+-------------------+

                 ECDSA signature performance with TinyECC

                                  Table 2

   We also performed experiments by removing the assembly code for
   hybrid multiplication and squaring thus using a C only form of the
   library.  This gives us an idea of the performance that can be
   achieved with TinyECC on any platform regardless of what kind of OS
   and assembly instruction set available.  The memory footprint remains
   the same with our without assembly code.  The tables contain the
   maximum RAM that is used when all the possible optimizations are on.
   If however, the amount of RAM available is smaller in size, some of
   the optimizations can be turned off to reduce the memory consumption
   accordingly.

   +-------------+---------------+-----------------+-------------------+
   | Curve       |     Execution | Memory          |    Comparable RSA |
   | parameters  |     time (ms) | Footprint       |        key length |
   |             |               | (bytes)         |                   |
   +-------------+---------------+-----------------+-------------------+
   | 128r1       |          2741 | 776             |               704 |
   | 128r2       |          3086 | 776             |               704 |
   | 160k1       |          3795 | 892             |              1024 |
   | 160r1       |          3841 | 892             |              1024 |
   | 160r2       |          4118 | 892             |              1024 |
   | 192k1       |          6091 | 1008            |              1536 |
   | 192r1       |          6217 | 1008            |              1536 |
   +-------------+---------------+-----------------+-------------------+

   ECDSA signature performance with TinyECC (No assembly optimizations)

                                  Table 3
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   Table 4 documents the performance of Wiselib.  Since there were no
   optimizations that could be turned on or off, we have only one set of
   results.  By default Wiselib only supports some of the standard SEC 2
   Elliptic curves.  But it is easy to change the domain parameters and
   obtain results for for all the 128, 160 and 192-bit SEC 2 Elliptic
   curves.  SHA-1 algorithm provided in the library was used.  The
   measurements reflect the performance of elliptic curve signing only
   and not the SHA-1 hashing algorithm.  SHA-1 is now known to be
   insecure and should not be used in real deployments.  The ROM size
   for all the experiments was less than 16 kB.

   +-------------+---------------+-----------------+-------------------+
   | Curve       |     Execution | Memory          |    Comparable RSA |
   | parameters  |     time (ms) | Footprint       |        key length |
   |             |               | (bytes)         |                   |
   +-------------+---------------+-----------------+-------------------+
   | 128r1       |          5615 | 732             |               704 |
   | 128r2       |          5615 | 732             |               704 |
   | 160k1       |         10957 | 842             |              1024 |
   | 160r1       |         10972 | 842             |              1024 |
   | 160r2       |         10971 | 842             |              1024 |
   | 192k1       |         18814 | 952             |              1536 |
   | 192r1       |         18825 | 952             |              1536 |
   +-------------+---------------+-----------------+-------------------+

                 ECDSA signature performance with Wiselib

                                  Table 4

   For testing the relic-toolkit we used a different board because it
   required more RAM/ROM and we were unable to perform experiments with
   it on Arduino Uno. We decided to use the Arduino Mega which has the
   same 8-bit architecture like the Arduino Uno but has a much larger
   RAM/ROM for testing relic-toolkit.  Again, SHA-1 hashing algorithm
   included in the library was used in each of the cases.  The
   measurements reflect the performance of elliptic curve signing only
   and not the SHA-1 hashing algorithm.  SHA-1 is now known to be
   insecure and should not be used in real deployments.  The library
   does provide several alternatives with such as SHA-256.

   The relic-toolkit supports Koblitz curves over prime as well as
   binary fields.  We have experimented with Koblitz curves over binary
   fields only.  We do not run our experiments with all the curves
   available in the library since the aim of this work is not prove
   which curves perform the fastest, and rather show that asymmetric
   crypto is possible on resource-constrained devices.
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   The results from relic-toolkit are documented in two separate tables
   shown in Table 5 and Table 6.  The first set of results were
   performed with the library configured for high speed performance with
   no consideration given to the amount of memory used.  For the second
   set, the library was configured for low memory usage irrespective of
   the execution time required by different curves.  By turning on/off
   optimizations included in the library, a trade-off between memory and
   execution time between these values can be achieved.

   +-----------------+--------------+----------------+-----------------+
   | Curve           |    Execution | Memory         |  Comparable RSA |
   | parameters      |    time (ms) | Footprint      |      key length |
   |                 |              | (bytes)        |                 |
   +-----------------+--------------+----------------+-----------------+
   | NIST K163       |          261 | 2,804          |            1024 |
   | (assembly math) |              |                |                 |
   | NIST K163       |          932 | 2750           |            1024 |
   | NIST B163       |         2243 | 2444           |            1024 |
   | NIST K233       |         1736 | 3675           |            2048 |
   | NIST B233       |         4471 | 3261           |            2048 |
   +-----------------+--------------+----------------+-----------------+

           ECDSA signature performance with relic-toolkit (Fast)

                                  Table 5

   +-----------------+--------------+----------------+-----------------+
   | Curve           |    Execution | Memory         |  Comparable RSA |
   | parameters      |    time (ms) | Footprint      |      key length |
   |                 |              | (bytes)        |                 |
   +-----------------+--------------+----------------+-----------------+
   | NIST K163       |          592 | 2087           |            1024 |
   | (assembly math) |              |                |                 |
   | NIST K163       |         2950 | 2215           |            1024 |
   | NIST B163       |         3213 | 2071           |            1024 |
   | NIST K233       |         6450 | 2935           |            2048 |
   | NIST B233       |         6100 | 2737           |            2048 |
   +-----------------+--------------+----------------+-----------------+

        ECDSA signature performance with relic-toolkit (Low Memory)

                                  Table 6

   It is important to note the following points about the elliptic curve
   measurements:
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   o  As with the RSA measurements, curves giving less that 112-bit
      security are insecure and considered as legacy.  The measurements
      are only provided for reference.

   o  The arduino board only provides pseudo random numbers with the
      random() function call.  In order to create private keys with a
      better quality of random number, we can use a true random number
      generator like the one provided by TrueRandom library
      [truerandom], or create the keys separately on a system with a
      true random number generator and then use them directly in the
      code.

   o  For measuring the memory footprint of all the ECC libraries, we
      used the Avrora simulator [avrora].  Only stack memory was used to
      easily track the RAM consumption.

   At the time of performing these measurements and study, it was
   unclear which exact elliptic curve(s) would be selected by the IETF
   community for use with resource-constrained devices.  However now,
   [RFC7748] defines two elliptic curves over prime fields (Curve25519
   and Curve448) that offer a high level of practical security for
   Diffie-Hellman key exchange.  Correspondingly, there is ongoing work
   to specify elliptic curve signature schemes with Edwards-curve
   Digital Signature Algorithm (EdDSA).  [I-D.irtf-cfrg-eddsa] specifies
   the recommended parameters for the edwards25519 and edwards448
   curves.  From these, curve25519 (for elliptic curve Diffie-Hellman
   key exchange) and edwards25519 (for elliptic curve digital
   signatures) are especially suitable for resource-constrained devices.

   We found that the NaCl [nacl] and MicoNaCl [micronacl] libraries
   provide highly efficient implementations of Diffie-Hellman key
   exchange with curve25519.  The results have shown that these
   libraries with curve25519 outperform other elliptic curves that
   provide similar levels of security.  Hutter and Schwabe [naclavr]
   also show that signing of data using the curve Ed25519 from the NaCl
   library needs only 23,216,241 cycles on the same microcontroller that
   we used for our evaluations (Arduino Mega ATmega2560).  This
   corresponds to about 1,4510 milliseconds of execution time.  When
   compared to the results for other curves and libraries that offer
   similar level of security (such as NIST B233, NIST K233), this
   implementation far outperforms all others.  As such, it is recommend
   that the IETF community uses these curves for protocol specification
   and implementations.

   A summary library ROM use is shown in Table 7.

https://datatracker.ietf.org/doc/html/rfc7748
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          +-------------------------+---------------------------+
          | Library                 | ROM Footprint (Kilobytes) |
          +-------------------------+---------------------------+
          | AvrCryptolib            |                       3.6 |
          | Wiselib                 |                        16 |
          | TinyECC                 |                        18 |
          | Relic-toolkit           |                        29 |
          | NaCl Ed25519 [naclavr]  |                     17-29 |
          +-------------------------+---------------------------+

                       Summary of library ROM needs

                                  Table 7

   All the measurements here are only provided as an example to show
   that asymmetric-key cryptography (particularly, digital signatures)
   is possible on resource-constrained devices.  These numbers by no way
   are the final source for measurements and some curves presented here
   may not be acceptable for real in-the-wild deployments anymore.  For
   example, Mosdorf et al. [mosdorf] and Liu et al. [tinyecc] also
   document performance of ECDSA on similar resource-constrained
   devices.

9.  Example Application

   We developed an example application on the Arduino platform to use
   public key crypto mechanisms, data object security, and an easy
   provisioning model.  Our application was originally developed to test
   different approaches to supporting communications to "always off"
   sensor nodes.  These battery-operated or energy scavenging nodes do
   not have enough power to be stay on at all times.  They wake up
   periodically and transmit their readings.

   Such sensor nodes can be supported in various ways.
   [I-D.arkko-core-sleepy-sensors] was an early multicast-based
   approach.  In the current application we have switched to using
   resource directories [I-D.ietf-core-resource-directory] and mirror
   proxies [I-D.vial-core-mirror-proxy] instead.  Architecturally, the
   idea is that sensors can delegate a part of their role to a node in
   the network.  Such a network node could be either a local resource or
   something in the Internet.  In the case of CoAP mirror proxies, the
   network node agrees to hold the web resources on behalf of the
   sensor, while the sensor is asleep.  The only role that the sensor
   has is to register itself at the mirror proxy, and periodically
   update the readings.  All queries from the rest of the world go to
   the mirror proxy.

   We constructed a system with four entities:
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   Sensor

      This is an Arduino-based device that runs a CoAP mirror proxy
      client and Relic-toolkit.  Relic takes 29 Kbytes of ROM, and the
      simple CoAP client roughly 3 kilobytes.

   Mirror Proxy

      This is a mirror proxy that holds resources on the sensor's
      behalf.  The sensor registers itself to this node.

   Resource Directory

      While physically in the same node in our implementation, a
      resource directory is a logical function that allows sensors and
      mirror proxies to register resources in the directory.  These
      resources can be queried by applications.

   Application

      This is a simple application that runs on a general purpose
      computer and can retrieve both registrations from the resource
      directory and most recent sensor readings from the mirror proxy.

   The security of this system relies on an SSH-like approach.  In Step
   1, upon first boot, sensors generate keys and register themselves in
   the mirror proxy.  Their public key is submitted along with the
   registration as an attribute in the CORE Link Format data [RFC6690].

   In Step 2, when the sensor makes a sensor reading update to the
   mirror proxy it signs the message contents with a JOSE signature on
   the used JSON/SENML payload [RFC7515] [I-D.jennings-core-senml].

   In Step 3, any other device in the network -- including the mirror
   proxy, resource directory and the application -- can check that the
   public key from the registration corresponds to the private key used
   to make the signature in the data update.

   Note that checks can be done at any time and there is no need for the
   sensor and the checking node to be awake at the same time.  In our
   implementation, the checking is done in the application node.  This
   demonstrates how it is possible to implement end-to-end security even
   with the presence of assisting middleboxes.

   To verify the feasibility of our architecture we developed a proof-
   of-concept prototype.  In our prototype, the sensor was implemented
   using the Arduino Ethernet shield over an Arduino Mega board.  Our
   implementation uses the standard C99 programming language on the

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7515
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   Arduino Mega board.  In this prototype, the Mirror Proxy (MP) and the
   Resource Directory (RD) reside on the same physical host.  A 64-bit
   x86 linux machine serves as the MP and the RD, while a similar but
   physically different 64-bit x86 linux machine serves as the client
   that requests data from the sensor.  We chose the Relic library
   version 0.3.1 for our sample prototype as it can be easily compiled
   for different bit-length processors.  Therefore, we were able to use
   it on the 8-bit processor of the Arduino Mega, as well as on the
   64-bit processor of the x86 client.  We used ECDSA to sign and verify
   data updates with the standard NIST-K163 curve parameters (163-bit
   Koblitz curve over binary field).  While compiling Relic for our
   prototype, we used the fast configuration without any assembly
   optimizations.

   The gateway implements the CoAP base specification in the Java
   programming language and extends it to add support for Mirror Proxy
   and Resource Directory REST interfaces.  We also developed a
   minimalistic CoAP C-library for the Arduino sensor and for the client
   requesting data updates for a resource.  The library has small SRAM
   requirements and uses stack-based allocation only.  It is inter-
   operable with the Java implementation of CoAP running on the gateway.
   The location of the mirror proxy was pre-configured into the smart
   object sensor by hardcoding the IP address.  We used an IPv4 network
   with public IP addresses obtained from a DHCP server.

   Some important statistics of this prototype are listed in table
   Table 8.  Our straw man analysis of the performance of this prototype
   is preliminary.  Our intention was to demonstrate the feasibility of
   the entire architecture with public-key cryptography on an 8-bit
   microcontroller.  The stated values can be improved further by a
   considerable amount.  For example, the flash memory and SRAM
   consumption is relatively high because some of the Arduino libraries
   were used out-of-the- box and there are several functions which can
   be removed.  Similarly we used the fast version of the Relic library
   in the prototype instead of the low memory version.
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   +-----------------------------------------------------------+-------+
   | Flash memory consumption (for the entire prototype        | 51 kB |
   | including Relic crypto + CoAP + Arduino UDP, Ethernet and |       |
   | DHCP Libraries)                                           |       |
   |                                                           |       |
   | SRAM consumption (for the entire prototype including DHCP |  4678 |
   | client + key generation + signing the hash of message +   | bytes |
   | COAP + UDP + Ethernet)                                    |       |
   |                                                           |       |
   | Execution time for creating the key pair + sending        |  2030 |
   | registration message + time spent waiting for acknowl-    |    ms |
   | edgement                                                  |       |
   |                                                           |       |
   | Execution time for signing the hash of message + sending  |   987 |
   | update                                                    |    ms |
   |                                                           |       |
   | Signature overhead                                        |    42 |
   |                                                           | bytes |
   +-----------------------------------------------------------+-------+

                           Prototype Performance

                                  Table 8

   To demonstrate the efficacy of this communication model we compare it
   with a scenario where the smart objects do not transition into the
   energy saving sleep mode and directly serve temperature data to
   clients.  As an example, we assume that in our architecture, the
   smart objects wake up once every minute to report the signed
   temperature data to the caching MP.  If we calculate the energy
   consumption using the formula W = U * I * t (where U is the operating
   voltage, I is the current drawn and t is the execution time), and use
   the voltage and current values from the datasheets of the ATmega2560
   (20mA-active mode and 5.4mA-sleep mode) and W5100 (183mA) chips used
   in the architecture, then in a one minute period, the Arduino board
   would consume 60.9 Joules of energy if it directly serves data and
   does not sleep.  On the other hand, in our architecture it would only
   consume 2.6 Joules if it wakes up once a minute to update the MP with
   signed data.  Therefore, a typical Li-ion battery that provides about
   1800 milliamps per hour (mAh) at 5V would have a lifetime of 9 hours
   in the unsecured always-on scenario, whereas it would have a lifetime
   of about 8.5 days in the secured sleepy architecture presented.
   These lifetimes appear to be low because the Arduino board in the
   prototype uses Ethernet which is not energy efficient.  The values
   presented only provide an estimate (ignoring the energy required to
   transition in and out of the sleep mode) and would vary depending on
   the hardware and MAC protocol used.  Nonetheless, it is evident that
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   our architecture can increase the life of smart objects by allowing
   them to sleep and can ensure security at the same time.

10.  Design Trade-Offs

   This section attempts to make some early conclusions regarding trade-
   offs in the design space, based on deployment considerations for
   various mechanisms and the relative ease or difficulty of
   implementing them.  This analysis looks at layering and the choice of
   symmetric vs. asymmetric cryptography.

11.  Feasibility

   The first question is whether using cryptographic security and
   asymmetric cryptography in particular is feasible at all on small
   devices.  The numbers above give a mixed message.  Clearly, an
   implementation of a significant cryptographic operation such as
   public key signing can be done in surprisingly small amount of code
   space.  It could even be argued that our chosen prototype platform
   was unnecessarily restrictive in the amount of code space it allows:
   we chose this platform on purpose to demonstrate something that is as
   small and difficult as possible.

   In reality, ROM memory size is probably easier to grow than other
   parameters in microcontrollers.  A recent trend in microcontrollers
   is the introduction of 32-bit CPUs that are becoming cheaper and more
   easily available than 8-bit CPUs, in addition to being more easily
   programmable.  In short, the authors do not expect the code size to
   be a significant limiting factor, both because of the small amount of
   code that is needed and because available memory space is growing
   rapidly.

   The situation is less clear with regards to the amount of CPU power
   needed to run the algorithms.  The demonstrated speeds are sufficient
   for many applications.  For instance, a sensor that wakes up every
   now and then can likely spend a fraction of a second for the
   computation of a signature for the message that it is about to send.
   Or even spend multiple seconds in some cases.  Most applications that
   use protocols such as DTLS that use public key cryptography only at
   the beginning of the session would also be fine with any of these
   execution times.

   Yet, with reasonably long key sizes the execution times are in the
   seconds, dozens of seconds, or even longer.  For some applications
   this is too long.  Nevertheless, the authors believe that these
   algorithms can successfully be employed in small devices for the
   following reasons:
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   o  With the right selection of algorithms and libraries, the
      execution times can actually be smaller.  Using the Relic-toolkit
      with the NIST K163 algorithm (roughly equivalent to RSA at 1024
      bits) at 0.3 seconds is a good example of this.

   o  As discussed in [wiman], in general the power requirements
      necessary to send or receive messages are far bigger than those
      needed to execute cryptographic operations.  There is no good
      reason to choose platforms that do not provide sufficient
      computing power to run the necessary operations.

   o  Commercial libraries and the use of full potential for various
      optimizations will provide a better result than what we arrived at
      in this paper.

   o  Using public key cryptography only at the beginning of a session
      will reduce the per-packet processing times significantly.

12.  Freshness

   In our architecture, if implemented as described thus far, messages
   along with their signatures sent from the sensors to the mirror proxy
   can be recorded and replayed by an eavesdropper.  The mirror proxy
   has no mechanism to distinguish previously received packets from
   those that are retransmitted by the sender or replayed by an
   eavesdropper.  Therefore, it is essential for the smart objects to
   ensure that data updates include a freshness indicator.  However,
   ensuring freshness on constrained devices can be non-trivial because
   of several reasons which include:

   o  Communication is mostly unidirectional to save energy.

   o  Internal clocks might not be accurate and may be reset several
      times during the operational phase of the smart object.

   o  Network time synchronization protocols such as Network Time
      Protocol (NTP) [RFC5905] are resource intensive and therefore may
      be undesirable in many smart object networks.

   There are several different methods that can be used in our
   architecture for replay protection.  The selection of the appropriate
   choice depends on the actual deployment scenario.

   Including sequence numbers in signed messages can provide an
   effective method of replay protection.  The mirror proxy should
   verify the sequence number of each incoming message and accept it
   only if it is greater than the highest previously seen sequence
   number.  The mirror proxy drops any packet with a sequence number

https://datatracker.ietf.org/doc/html/rfc5905
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   that has already been received or if the received sequence number is
   greater than the highest previously seen sequence number by an amount
   larger than the preset threshold.

   Sequence numbers can wrap-around at their maximum value and,
   therefore, it is essential to ensure that sequence numbers are
   sufficiently long.  However, including long sequence numbers in
   packets can increase the network traffic originating from the sensor
   and can thus decrease its energy efficiency.  To overcome the problem
   of long sequence numbers, we can use a scheme similar to that of
   Huang [huang], where the sender and receiver maintain and sign long
   sequence numbers of equal bit-lengths but they transmit only the
   least significant bits.

   It is important for the smart object to write the sequence number
   into the permanent flash memory after each increment and before it is
   included in the message to be transmitted.  This ensures that the
   sensor can obtain the last sequence number it had intended to send in
   case of a reset or a power failure.  However, the sensor and the
   mirror proxy can still end up in a discordant state where the
   sequence number received by the mirror proxy exceeds the expected
   sequence number by an amount greater than the preset threshold.  This
   may happen because of a prolonged network outage or if the mirror
   proxy experiences a power failure for some reason.  Therefore it is
   essential for sensors that normally send Non-Confirmable data updates
   to send some Confirmable updates and re-synchronize with the mirror
   proxy if a reset message is received.  The sensors re-synchronize by
   sending a new registration message with the current sequence number.

   Although sequence numbers protect the system from replay attacks, a
   mirror proxy has no mechanism to determine the time at which updates
   were created by the sensor.  Moreover, if sequence numbers are the
   only freshness indicator used, a malicious eavesdropper can induce
   inordinate delays to the communication of signed updates by buffering
   messages.  It may be important in certain smart object networks for
   sensors to send data updates which include timestamps to allow the
   mirror proxy to determine the time when the update was created.  For
   example, when the mirror proxy is collecting temperature data, it may
   be necessary to know when exactly the temperature measurement was
   made by the sensor.  A simple solution to this problem is for the
   mirror proxy to assume that the data object was created when it
   receives the update.  In a relatively reliable network with low RTT,
   it can be acceptable to make such an assumption.  However most
   networks are susceptible to packet loss and hostile attacks making
   this assumption unsustainable.

   Depending on the hardware used by the smart objects, they may have
   access to accurate hardware clocks which can be used to include
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   timestamps in the signed updates.  These timestamps are included in
   addition to sequence numbers.  The clock time in the smart objects
   can be set by the manufacturer or the current time can be
   communicated by the mirror proxy during the registration phase.
   However, these approaches require the smart objects to either rely on
   the long-term accuracy of the clock set by the manufacturer or to
   trust the mirror proxy thereby increasing the potential vulnerability
   of the system.  The smart objects could also obtain the current time
   from NTP, but this may consume additional energy and give rise to
   security issues discussed in [RFC5905].  The smart objects could also
   have access to a GSM network or the Global Positioning System (GPS),
   and they can be used obtain the current time.  Finally, if the
   sensors need to co-ordinate their sleep cycles, or if the mirror
   proxy computes an average or mean of updates collected from multiple
   smart objects, it is important for the network nodes to synchronize
   the time among them.  This can be done by using existing
   synchronization schemes.

13.  Layering

   It would be useful to select just one layer where security is
   provided at.  Otherwise a simple device needs to implement multiple
   security mechanisms.  While some code can probably be shared across
   such implementations (like algorithms), it is likely that most of the
   code involving the actual protocol machinery cannot.  Looking at the
   different layers, here are the choices and their implications:

   link layer

      This is probably the most common solution today.  The biggest
      benefits of this choice of layer are that security services are
      commonly available (WLAN secrets, cellular SIM cards, etc.) and
      that their application protects the entire communications.

      The main drawback is that there is no security beyond the first
      hop.  This can be problematic, e.g., in many devices that
      communicate to a server in the Internet.  A Withings scale
      [Withings], for instance, can support WLAN security but without
      some level of end-to-end security, it would be difficult to
      prevent fraudulent data submissions to the servers.

      Another drawback is that some commonly implemented link layer
      security designs use group secrets.  This allows any device within
      the local network (e.g., an infected laptop) to attack the
      communications.

   network layer

https://datatracker.ietf.org/doc/html/rfc5905
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      There are a number of solutions in this space, and many new ones
      and variations thereof being proposed: IPsec, PANA, and so on.  In
      general, these solutions have similar characteristics to those in
      the transport layer: they work across forwarding hops but only as
      far as to the next middlebox or application entity.  There is
      plenty of existing solutions and designs.

      Experience has shown that it is difficult to control IP layer
      entities from an application process.  While this is theoretically
      easy, in practice the necessary APIs do not exist.  For instance,
      most IPsec software has been built for the VPN use case, and is
      difficult or impossible to tweak to be used on a per-application
      basis.  As a result, the authors are not particularly enthusiastic
      about recommending these solutions.

   transport and application layer

      This is another popular solution along with link layer designs.
      TLS with HTTP (HTTPS) and DTLS with CoAP are examples of solutions
      in this space, and have been proven to work well.  These solutions
      are typically easy to take into use in an application, without
      assuming anything from the underlying OS, and they are easy to
      control as needed by the applications.  The main drawback is that
      generally speaking, these solutions only run as far as the next
      application level entity.  And even for this case, HTTPS can be
      made to work through proxies, so this limit is not unsolvable.
      Another drawback is that attacks on link layer, network layer and
      in some cases, transport layer, can not be protected against.
      However, if the upper layers have been protected, such attacks can
      at most result in a denial-of-service.  Since denial-of-service
      can often be caused anyway, it is not clear if this is a real
      drawback.

   data object layer

      This solution does not protect any of the protocol layers, but
      protects individual data elements being sent.  It works
      particularly well when there are multiple application layer
      entities on the path of the data.  The authors believe smart
      object networks are likely to employ such entities for storage,
      filtering, aggregation and other reasons, and as such, an end-to-
      end solution is the only one that can protect the actual data.

      The downside is that the lower layers are not protected.  But
      again, as long as the data is protected and checked upon every
      time it passes through an application level entity, it is not
      clear that there are attacks beyond denial-of-service.
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      The main question mark is whether this type of a solution provides
      sufficient advantages over the more commonly implemented transport
      and application layer solutions.

14.  Symmetric vs. Asymmetric Crypto

   The second trade-off that is worth discussing is the use of plain
   asymmetric cryptographic mechanisms, plain symmetric cryptographic
   mechanisms, or some mixture thereof.

   Contrary to popular cryptographic community beliefs, a symmetric
   crypto solution can be deployed in large scale.  In fact, one of the
   largest deployment of cryptographic security, the cellular network
   authentication system, uses SIM cards that are based on symmetric
   secrets.  In contrast, public key systems have yet to show ability to
   scale to hundreds of millions of devices, let alone billions.  But
   the authors do not believe scaling is an important differentiator
   when comparing the solutions.

   As can be seen from the Section 8, the time needed to calculate some
   of the asymmetric crypto operations with reasonable key lengths can
   be significant.  There are two contrary observations that can be made
   from this.  First, recent wisdom indicates that computing power on
   small devices is far cheaper than transmission power [wiman], and
   keeps on becoming more efficient very quickly.  From this we can
   conclude that the sufficient CPU is or at least will be easily
   available.

   But the other observation is that when there are very costly
   asymmetric operations, doing a key exchange followed by the use of
   generated symmetric keys would make sense.  This model works very
   well for DTLS and other transport layer solutions, but works less
   well for data object security, particularly when the number of
   communicating entities is not exactly two.

15.  Security Considerations

   This entire memo deals with security issues.

16.  IANA Considerations

   There are no IANA impacts in this memo.

17.  Informative references

   [arduino-uno]
              Arduino, "Arduino Uno", September 2015,
              <http://arduino.cc/en/Main/arduinoBoardUno>.

http://arduino.cc/en/Main/arduinoBoardUno


Sethi, et al.              Expires May 4, 2017                 [Page 26]



Internet-Draft      Smart Object Security Experiences       October 2016

   [avr-crypto-lib]
              AVR-CRYPTO-LIB, "AVR-CRYPTO-LIB", September 2015,
              <http://www.das-labor.org/wiki/AVR-Crypto-Lib/en>.

   [avr-cryptolib]
              Van der Laan, E., "AVR CRYPTOLIB", September 2015,
              <http://www.emsign.nl/>.

   [avrora]   Titzer, Ben., "Avrora", September 2015,
              <http://compilers.cs.ucla.edu/avrora/>.

   [huang]    Huang, C., "Low-overhead freshness transmission in sensor
              networks", 2008.

   [I-D.arkko-core-security-arch]
              Arkko, J. and A. Keranen, "CoAP Security Architecture",

draft-arkko-core-security-arch-00 (work in progress), July
              2011.

   [I-D.arkko-core-sleepy-sensors]
              Arkko, J., Rissanen, H., Loreto, S., Turanyi, Z., and O.
              Novo, "Implementing Tiny COAP Sensors", draft-arkko-core-

sleepy-sensors-01 (work in progress), July 2011.

   [I-D.daniel-6lowpan-security-analysis]
              Park, S., Kim, K., Haddad, W., Chakrabarti, S., and J.
              Laganier, "IPv6 over Low Power WPAN Security Analysis",

draft-daniel-6lowpan-security-analysis-05 (work in
              progress), March 2011.

   [I-D.ietf-core-resource-directory]
              Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
              Resource Directory", draft-ietf-core-resource-directory-08
              (work in progress), July 2016.

   [I-D.irtf-cfrg-eddsa]
              Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
              Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-08
              (work in progress), August 2016.

   [I-D.irtf-t2trg-iot-seccons]
              Garcia-Morchon, O., Kumar, S., and M. Sethi, "Security
              Considerations in the IP-based Internet of Things", draft-

irtf-t2trg-iot-seccons-00 (work in progress), October
              2016.

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.emsign.nl/
http://compilers.cs.ucla.edu/avrora/
https://datatracker.ietf.org/doc/html/draft-arkko-core-security-arch-00
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-daniel-6lowpan-security-analysis-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-eddsa-08
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-iot-seccons-00
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-iot-seccons-00


Sethi, et al.              Expires May 4, 2017                 [Page 27]



Internet-Draft      Smart Object Security Experiences       October 2016

   [I-D.jennings-core-senml]
              Jennings, C., Shelby, Z., Arkko, J., and A. Keranen,
              "Media Types for Sensor Markup Language (SenML)", draft-

jennings-core-senml-06 (work in progress), April 2016.

   [I-D.moskowitz-hip-dex]
              Moskowitz, R. and R. Hummen, "HIP Diet EXchange (DEX)",

draft-moskowitz-hip-dex-05 (work in progress), January
              2016.

   [I-D.vial-core-mirror-proxy]
              Vial, M., "CoRE Mirror Server", draft-vial-core-mirror-

proxy-01 (work in progress), July 2012.

   [matrix-ssl]
              PeerSec Networks, "Matrix SSL", September 2015,
              <http://www.matrixssl.org/>.

   [micronacl]
              MicroNaCl, "The Networking and Cryptography library for
              microcontrollers", <http://munacl.cryptojedi.org/>.

   [mosdorf]  Mosdorf, M. and W. Zabolotny, "Implementation of elliptic
              curve cryptography for 8 bit and 32 bit embedded systems
              time efficiency and power consumption analysis", 2010.

   [nacl]     NaCl, "Networking and Cryptography library",
              <http://nacl.cr.yp.to/>.

   [naclavr]  Hutter, M. and P. Schwabe, "NaCl on 8-Bit AVR
              Microcontrollers", International Conference on Cryptology
              in Africa , Springer Berlin Heidelberg , 2013.

   [relic-toolkit]
              Aranha, D. and C. Gouv, "Relic Toolkit", September 2015,
              <http://code.google.com/p/relic-toolkit/>.

   [RFC3748]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
              Levkowetz, Ed., "Extensible Authentication Protocol
              (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
              <http://www.rfc-editor.org/info/rfc3748>.

   [RFC3972]  Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, DOI 10.17487/RFC3972, March 2005,

              <http://www.rfc-editor.org/info/rfc3972>.

https://datatracker.ietf.org/doc/html/draft-jennings-core-senml-06
https://datatracker.ietf.org/doc/html/draft-jennings-core-senml-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-05
https://datatracker.ietf.org/doc/html/draft-vial-core-mirror-proxy-01
https://datatracker.ietf.org/doc/html/draft-vial-core-mirror-proxy-01
http://www.matrixssl.org/
http://munacl.cryptojedi.org/
http://nacl.cr.yp.to/
http://code.google.com/p/relic-toolkit/
https://datatracker.ietf.org/doc/html/rfc3748
http://www.rfc-editor.org/info/rfc3748
https://datatracker.ietf.org/doc/html/rfc3972
http://www.rfc-editor.org/info/rfc3972


Sethi, et al.              Expires May 4, 2017                 [Page 28]



Internet-Draft      Smart Object Security Experiences       October 2016

   [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

              <http://www.rfc-editor.org/info/rfc4303>.

   [RFC5191]  Forsberg, D., Ohba, Y., Ed., Patil, B., Tschofenig, H.,
              and A. Yegin, "Protocol for Carrying Authentication for
              Network Access (PANA)", RFC 5191, DOI 10.17487/RFC5191,
              May 2008, <http://www.rfc-editor.org/info/rfc5191>.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <http://www.rfc-editor.org/info/rfc5246>.

   [RFC5406]  Bellovin, S., "Guidelines for Specifying the Use of IPsec
              Version 2", BCP 146, RFC 5406, DOI 10.17487/RFC5406,
              February 2009, <http://www.rfc-editor.org/info/rfc5406>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <http://www.rfc-editor.org/info/rfc5905>.

   [RFC6078]  Camarillo, G. and J. Melen, "Host Identity Protocol (HIP)
              Immediate Carriage and Conveyance of Upper-Layer Protocol
              Signaling (HICCUPS)", RFC 6078, DOI 10.17487/RFC6078,
              January 2011, <http://www.rfc-editor.org/info/rfc6078>.

   [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <http://www.rfc-editor.org/info/rfc6347>.

   [RFC6574]  Tschofenig, H. and J. Arkko, "Report from the Smart Object
              Workshop", RFC 6574, DOI 10.17487/RFC6574, April 2012,
              <http://www.rfc-editor.org/info/rfc6574>.

   [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
              Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
              <http://www.rfc-editor.org/info/rfc6690>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <http://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/rfc4303
http://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc5191
http://www.rfc-editor.org/info/rfc5191
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/bcp146
https://datatracker.ietf.org/doc/html/rfc5406
http://www.rfc-editor.org/info/rfc5406
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6078
http://www.rfc-editor.org/info/rfc6078
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6574
http://www.rfc-editor.org/info/rfc6574
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252


Sethi, et al.              Expires May 4, 2017                 [Page 29]



Internet-Draft      Smart Object Security Experiences       October 2016

   [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <http://www.rfc-editor.org/info/rfc7296>.

   [RFC7401]  Moskowitz, R., Ed., Heer, T., Jokela, P., and T.
              Henderson, "Host Identity Protocol Version 2 (HIPv2)",

RFC 7401, DOI 10.17487/RFC7401, April 2015,
              <http://www.rfc-editor.org/info/rfc7401>.

   [RFC7515]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
              2015, <http://www.rfc-editor.org/info/rfc7515>.

   [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <http://www.rfc-editor.org/info/rfc7748>.

   [RFC7815]  Kivinen, T., "Minimal Internet Key Exchange Version 2
              (IKEv2) Initiator Implementation", RFC 7815,
              DOI 10.17487/RFC7815, March 2016,
              <http://www.rfc-editor.org/info/rfc7815>.

   [rsa-8bit]
              Gura, N., Patel, A., Wander, A., Eberle, H., and S.
              Shantz, "Comparing Elliptic Curve Cryptography and RSA on
              8-bit CPUs", 2010.

   [rsa-high-speed]
              Koc, C., "High-Speed RSA Implementation", November 1994,
              <http://cs.ucsb.edu/~koc/docs/r01.pdf>.

   [tinyecc]  North Carolina State University and North Carolina State
              University, "TinyECC", 2008,
              <http://discovery.csc.ncsu.edu/software/TinyECC/>.

   [truerandom]
              Drow, C., "Truerandom", September 2015,
              <http://code.google.com/p/tinkerit/wiki/TrueRandom>.

   [wiman]    Margi, C., Oliveira, B., Sousa, G., Simplicio, M., Paulo,
              S., Carvalho, T., Naslund, M., and R. Gold, "Impact of
              Operating Systems on Wireless Sensor Networks (Security)
              Applications and Testbeds. In International Conference on
              Computer Communication Networks (ICCCN'2010) / IEEE
              International Workshop on Wireless Mesh and Ad Hoc
              Networks (WiMAN 2010), 2010, Zurich. Proceedings of
              ICCCN'2010/WiMAN'2010", 2010.

https://datatracker.ietf.org/doc/html/rfc7296
http://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc7401
http://www.rfc-editor.org/info/rfc7401
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7748
http://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc7815
http://www.rfc-editor.org/info/rfc7815
http://cs.ucsb.edu/~koc/docs/r01.pdf
http://discovery.csc.ncsu.edu/software/TinyECC/
http://code.google.com/p/tinkerit/wiki/TrueRandom


Sethi, et al.              Expires May 4, 2017                 [Page 30]



Internet-Draft      Smart Object Security Experiences       October 2016

   [wiselib]  Baumgartner, T., Chatzigiannakis, I., Fekete, S., Koninis,
              C., Kroller, A., and A. Pyrgelis, "Wiselib", 2010,
              <www.wiselib.org/>.

   [Withings]
              Withings, "The Withings scale", February 2012,
              <http://www.withings.com/en/bodyscale>.

Sethi, et al.              Expires May 4, 2017                 [Page 31]

http://www.withings.com/en/bodyscale


Internet-Draft      Smart Object Security Experiences       October 2016

Appendix A.  Acknowledgments

   The authors would like to thank Mats Naslund, Salvatore Loreto, Bob
   Moskowitz, Oscar Novo, Vlasios Tsiatsis, Daoyuan Li, Muhammad Waqas,
   Eric Rescorla and Tero Kivinen for interesting discussions in this
   problem space.  The authors would also like to thank Diego Aranha for
   helping with the relic-toolkit configurations and Tobias Baumgartner
   for helping with questions regarding wiselib.

Authors' Addresses

   Mohit Sethi
   Ericsson
   Jorvas  02420
   Finland

   EMail: mohit@piuha.net

   Jari Arkko
   Ericsson
   Jorvas  02420
   Finland

   EMail: jari.arkko@piuha.net

   Ari Keranen
   Ericsson
   Jorvas  02420
   Finland

   EMail: ari.keranen@ericsson.com

   Heidi-Maria Back
   Comptel
   Helsinki  00181
   Finland

   EMail: heidi.back@comptel.com

Sethi, et al.              Expires May 4, 2017                 [Page 32]


