
Light-Weight Implementation Guidance M. Sethi
Internet-Draft J. Arkko
Intended status: Informational A. Keranen
Expires: May 4, 2017 Ericsson
 H. Back
 Comptel
 October 31, 2016

Practical Considerations and Implementation Experiences in Securing
Smart Object Networks

draft-ietf-lwig-crypto-sensors-01

Abstract

 This memo describes challenges associated with securing smart object
 devices in constrained implementations and environments. The memo
 describes a possible deployment model suitable for these
 environments, discusses the availability of cryptographic libraries
 for small devices, presents some preliminary experiences in
 implementing small devices using those libraries, and discusses
 trade-offs involving different types of approaches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Sethi, et al. Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Smart Object Security Experiences October 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Related Work . 3
3. Challenges . 4
4. Proposed Deployment Model 5
5. Provisioning . 6
6. Protocol Architecture . 8
7. Code Availability . 9
8. Implementation Experiences 11
9. Example Application . 17
10. Design Trade-Offs . 21
11. Feasibility . 21
12. Freshness . 22
13. Layering . 24
14. Symmetric vs. Asymmetric Crypto 26
15. Security Considerations 26
16. IANA Considerations . 26
17. Informative references 26
Appendix A. Acknowledgments 32

 Authors' Addresses . 32

1. Introduction

 This memo describes challenges associated with securing smart object
 devices in constrained implementations and environments. In

Section 3) we specifically discuss three challenges: the
 implementation difficulties encountered on resource-constrained
 platforms, the problem of provisioning keys and making the choice of
 implementing security at the appropriate layer.

 Secondly, Section 4 discusses a deployment model that the authors are
 considering for constrained environments. The model requires minimal
 amount of configuration, and we believe it is a natural fit with the
 typical communication practices in smart object networking
 environments.

 Thirdly, Section 7 discusses the availability of cryptographic
 libraries. Section 8 presents some experiences in implementing
 cryptography on small devices using those libraries, including

Sethi, et al. Expires May 4, 2017 [Page 2]

Internet-Draft Smart Object Security Experiences October 2016

 information about achievable code sizes and speeds on typical
 hardware.

 Finally, Section 10 discusses trade-offs involving different types of
 security approaches.

2. Related Work

 Constrained Application Protocol (CoAP) [RFC7252] is a light-weight
 protocol designed to be used in machine-to-machine applications such
 as smart energy and building automation. Our discussion uses this
 protocol as an example, but the conclusions may apply to other
 similar protocols. CoAP base specification [RFC7252] outlines how to
 use DTLS [RFC6347] and IPsec [RFC4303] for securing the protocol.
 DTLS can be applied with pairwise shared keys, raw public keys or
 with certificates. The security model in all cases is mutual
 authentication, so while there is some commonality to HTTP in
 verifying the server identity, in practice the models are quite
 different. The CoAP specification says little about how DTLS keys
 are managed. The use of IPsec with CoAP is described with regards to
 the protocol requirements, noting that small implementations of IKEv2
 exist [RFC7815]. However, the CoAP specification is silent on policy
 and other aspects that are normally necessary in order to implement
 interoperable use of IPsec in any environment [RFC5406].

 [RFC6574] gives an overview of the security discussions at the March
 2011 IAB workshop on smart objects. The workshop recommended that
 additional work is needed in developing suitable credential
 management mechanisms (perhaps something similar to the Bluetooth
 pairing mechanism), understanding the implementability of standard
 security mechanisms in small devices and additional research in the
 area of lightweight cryptographic primitives.

 [I-D.moskowitz-hip-dex] defines a light-weight version of the HIP
 protocol for low-power nodes. This version uses a fixed set of
 algorithms, Elliptic Curve Cryptography (ECC), and eliminates hash
 functions. The protocol still operates based on host identities, and
 runs end-to-end between hosts, protecting IP layer communications.
 [RFC6078] describes an extension of HIP that can be used to send
 upper layer protocol messages without running the usual HIP base
 exchange at all.

 [I-D.daniel-6lowpan-security-analysis] makes a comprehensive analysis
 of security issues related to 6LoWPAN networks, but its findings also
 apply more generally for all low-powered networks. Some of the
 issues this document discusses include the need to minimize the
 number of transmitted bits and simplify implementations, threats in
 the smart object networking environments, and the suitability of

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc7815
https://datatracker.ietf.org/doc/html/rfc5406
https://datatracker.ietf.org/doc/html/rfc6078

Sethi, et al. Expires May 4, 2017 [Page 3]

Internet-Draft Smart Object Security Experiences October 2016

 6LoWPAN security mechanisms, IPsec, and key management protocols for
 implementation in these environments.

 [I-D.irtf-t2trg-iot-seccons] discusses the overall security problem
 for Internet of Things devices. It also discusses various solutions,
 including IKEv2/IPsec [RFC7296], TLS/SSL [RFC5246], DTLS [RFC6347],
 HIP [RFC7401] [I-D.moskowitz-hip-dex], PANA [RFC5191], and EAP
 [RFC3748]. The draft also discusses various operational scenarios,
 bootstrapping mechanisms, and challenges associated with implementing
 security mechanisms in these environments.

3. Challenges

 This section discusses three challenges: implementation difficulties,
 practical provisioning problems, and layering and communication
 models.

 The most often discussed issues in the security for the Internet of
 Things relate to implementation difficulties. The desire to build
 small, battery-operated, and inexpensive devices drives the creation
 of devices with a limited protocol and application suite. Some of
 the typical limitations include running CoAP instead of HTTP, limited
 support for security mechanisms, limited processing power for long
 key lengths, sleep schedule that does not allow communication at all
 times, and so on. In addition, the devices typically have very
 limited support for configuration, making it hard to set up secrets
 and trust anchors.

 The implementation difficulties are important, but they should not be
 overemphasized. It is important to select the right security
 mechanisms and avoid duplicated or unnecessary functionality. But at
 the end of the day, if strong cryptographic security is needed, the
 implementations have to support that. Also, the use of the most
 lightweight algorithms and cryptographic primitives is useful, but
 should not be the only consideration in the design. Interoperability
 is also important, and often other parts of the system, such as key
 management protocols or certificate formats are heavier to implement
 than the algorithms themselves.

 The second challenge relates to practical provisioning problems.
 These are perhaps the most fundamental and difficult issue, and
 unfortunately often neglected in the design. There are several
 problems in the provisioning and management of smart object networks:

 o Small devices have no natural user interface for configuration
 that would be required for the installation of shared secrets and
 other security-related parameters. Typically, there is no
 keyboard, no display, and there may not even be buttons to press.

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc5191
https://datatracker.ietf.org/doc/html/rfc3748

Sethi, et al. Expires May 4, 2017 [Page 4]

Internet-Draft Smart Object Security Experiences October 2016

 Some devices may only have one interface, the interface to the
 network.

 o Manual configuration is rarely, if at all, possible, as the
 necessary skills are missing in typical installation environments
 (such as in family homes).

 o There may be a large number of devices. Configuration tasks that
 may be acceptable when performed for one device may become
 unacceptable with dozens or hundreds of devices.

 o Network configurations evolve over the lifetime of the devices, as
 additional devices are introduced or addresses change. Various
 central nodes may also receive more frequent updates than
 individual devices such as sensors embedded in building materials.

 Finally, layering and communication models present difficulties for
 straightforward use of the most obvious security mechanisms. Smart
 object networks typically pass information through multiple
 participating nodes [I-D.arkko-core-sleepy-sensors] and end-to-end
 security for IP or transport layers may not fit such communication
 models very well. The primary reasons for needing middleboxes
 relates to the need to accommodate for sleeping nodes as well to
 enable the implementation of nodes that store or aggregate
 information.

4. Proposed Deployment Model

 [I-D.arkko-core-security-arch] recognizes the provisioning model as
 the driver of what kind of security architecture is useful. This
 section re-introduces this model briefly here in order to facilitate
 the discussion of the various design alternatives later.

 The basis of the proposed architecture are self-generated secure
 identities, similar to Cryptographically Generated Addresses (CGAs)
 [RFC3972] or Host Identity Tags (HITs) [RFC7401]. That is, we assume
 the following holds:

 I = h(P|O)

 where I is the secure identity of the device, h is a hash function, P
 is the public key from a key pair generated by the device, and O is
 optional other information. | here denotes the concatenation
 operator.

https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc7401

Sethi, et al. Expires May 4, 2017 [Page 5]

Internet-Draft Smart Object Security Experiences October 2016

5. Provisioning

 As it is difficult to provision security credentials, shared secrets,
 and policy information, the provisioning model is based only on the
 secure identities. A typical network installation involves physical
 placement of a number of devices while noting the identities of these
 devices. This list of short identifiers can then be fed to a central
 server as a list of authorized devices. Secure communications can
 then commence with the devices, at least as far as information from
 from the devices to the server is concerned, which is what is needed
 for sensor networks.

 The above architecture is a perfect fit for sensor networks where
 information flows from large number of devices to small number of
 servers. But it is not sufficient alone for other types of
 applications. For instance, in actuator applications a large number
 of devices need to take commands from somewhere else. In such
 applications it is necessary to secure that the commands come from an
 authorized source. This can be supported, with some additional
 provisioning effort and optional pairing protocols. The basic
 provisioning approach is as described earlier, but in addition there
 must be something that informs the devices of the identity of the
 trusted server(s). There are multiple ways to provide this
 information. One simple approach is to feed the identities of the
 trusted server(s) to devices at installation time. This requires
 either a separate user interface, local connection (such as USB), or
 using the network interface of the device for configuration. In any
 case, as with sensor networks the amount of configuration information
 is minimized: just one short identity value needs to be fed in. Not
 both an identity and a certificate. Not shared secrets that must be
 kept confidential. An even simpler provisioning approach is that the
 devices in the device group trust each other. Then no configuration
 is needed at installation time. When both peers know the expected
 cryptographic identity of the other peer off-line, secure
 communications can commence. Alternatively, various pairing schemes
 can be employed. Note that these schemes can benefit from the
 already secure identifiers on the device side. For instance, the
 server can send a pairing message to each device after their initial
 power-on and before they have been paired with anyone, encrypted with
 the public key of the device. As with all pairing schemes that do
 not employ a shared secret or the secure dentity of both parties,
 there are some remaining vulnerabilities that may or may not be
 acceptable for the application in question. In any case, the secure
 identities help again in ensuring that the operations are as simple
 as possible. Only identities need to be communicated to the devices,
 not certificates, not shared secrets or IPsec policy rules.

Sethi, et al. Expires May 4, 2017 [Page 6]

Internet-Draft Smart Object Security Experiences October 2016

 Where necessary, the information collected at installation time may
 also include other parameters relevant to the application, such as
 the location or purpose of the devices. This would enable the server
 to know, for instance, that a particular device is the temperature
 sensor for the kitchen.

 Collecting the identity information at installation time can be
 arranged in a number of ways. The authors have employed a simple but
 not completely secure method where the last few digits of the
 identity are printed on a tiny device just a few millimeters across.
 Alternatively, the packaging for the device may include the full
 identity (typically 32 hex digits), retrieved from the device at
 manufacturing time. This identity can be read, for instance, by a
 bar code reader carried by the installation personnel. (Note that
 the identities are not secret, the security of the system is not
 dependent on the identity information leaking to others. The real
 owner of an identity can always prove its ownership with the private
 key which never leaves the device.) Finally, the device may use its
 wired network interface or proximity-based communications, such as
 Near-Field Communications (NFC) or Radio-Frequency Identity tags
 (RFIDs). Such interfaces allow secure communication of the device
 identity to an information gathering device at installation time.

 No matter what the method of information collection is, this
 provisioning model minimizes the effort required to set up the
 security. Each device generates its own identity in a random, secure
 key generation process. The identities are self-securing in the
 sense that if you know the identity of the peer you want to
 communicate with, messages from the peer can be signed by the peer's
 private key and it is trivial to verify that the message came from
 the expected peer. There is no need to configure an identity and
 certificate of that identity separately. There is no need to
 configure a group secret or a shared secret. There is no need to
 configure a trust anchor. In addition, the identities are typically
 collected anyway for application purposes (such as identifying which
 sensor is in which room). Under most circumstances there is actually
 no additional configuration effort from provisioning security.

 Groups of devices can be managed through single identifiers as well.
 In these deployment cases it is also possible to configure the
 identity of an entire group of devices, rather than registering the
 individual devices. For instance, many installations employ a kit of
 devices bought from the same manufacturer in one package. It is easy
 to provide an identity for such a set of devices as follows:

 Idev = h(Pdev|Potherdev1|Potherdev2|...|Potherdevn)

 Igrp = h(Pdev1|Pdev2|...|Pdevm)

Sethi, et al. Expires May 4, 2017 [Page 7]

Internet-Draft Smart Object Security Experiences October 2016

 where Idev is the identity of an individual device, Pdev is the
 public key of that device, and Potherdevi are the public keys of
 other devices in the group. Now, we can define the secure identity
 of the group (Igrp) as a hash of all the public keys of the devices
 in the group (Pdevi).

 The installation personnel can scan the identity of the group from
 the box that the kit came in, and this identity can be stored in a
 server that is expected to receive information from the nodes. Later
 when the individual devices contact this server, they will be able to
 show that they are part of the group, as they can reveal their own
 public key and the public keys of the other devices. Devices that do
 not belong to the kit can not claim to be in the group, because the
 group identity would change if any new keys were added to Igrp.

6. Protocol Architecture

 As noted above, the starting point of the architecture is that nodes
 self-generate secure identities which are then communicated out-of-
 band to the peers that need to know what devices to trust. To
 support this model in a protocol architecture, we also need to use
 these secure identities to implement secure messaging between the
 peers, explain how the system can respond to different types of
 attacks such as replay attempts, and decide at what protocol layer
 and endpoints the architecture should use.

 The deployment itself is suitable for a variety of design choices
 regarding layering and protocol mechanisms.
 [I-D.arkko-core-security-arch] was mostly focused on employing end-
 to-end data object security as opposed to hop-by-hop security. But
 other approaches are possible. For instance, HIP in its
 opportunistic mode could be used to implement largely the same
 functionality at the IP layer. However, it is our belief that the
 right layer for this solution is at the application layer. More
 specifically, in the data formats transported in the payload part of
 CoAP. This approach provides the following benefits:

 o Ability for intermediaries to act as caches to support different
 sleep schedules, without the security model being impacted.

 o Ability for intermediaries to be built to perform aggregation,
 filtering, storage and other actions, again without impacting the
 security of the data being transmitted or stored.

 o Ability to operate in the presence of traditional middleboxes,
 such as a protocol translators or even NATs (not that we recommend
 their use in these environments).

Sethi, et al. Expires May 4, 2017 [Page 8]

Internet-Draft Smart Object Security Experiences October 2016

 However, as we will see later there are also some technical
 implications, namely that link, network, and transport layer
 solutions are more likely to be able to benefit from sessions where
 the cost of expensive operations can be amortized over multiple data
 transmissions. While this is not impossible in data object security
 solutions either, it is not the typical arrangement either.

7. Code Availability

 For implementing public key cryptography on resource constrained
 environments, we chose Arduino Uno board [arduino-uno] as the test
 platform. Arduino Uno has an ATmega328 microcontroller, an 8-bit
 processor with a clock speed of 16 MHz, 2 kB of SRAM, and 32 kB of
 flash memory.

 For selecting potential asymmetric cryptographic libraries, we did an
 extensive survey and came up with a set of possible code sources, and
 performed an initial analysis of how well they fit the Arduino
 environment. Note that the results are preliminary, and could easily
 be affected in any direction by implementation bugs, configuration
 errors, and other mistakes. Please verify the numbers before relying
 on them for building something. No significant effort was done to
 optimize ROM memory usage beyond what the libraries provided
 themselves, so those numbers should be taken as upper limits.

 Here is the set of libraries we found:

 o AvrCryptolib [avr-cryptolib]: This library provides a variety of
 different symmetric key algorithms such as AES and RSA as an
 asymmetric key algorithm. We stripped down the library to use
 only the required RSA components and used a separate SHA-256
 implementation from the original AvrCrypto-Lib library
 [avr-crypto-lib]. Parts of SHA-256 and RSA algorithm
 implementations were written in AVR-8 bit assembly language to
 reduce the size and optimize the performance. The library also
 takes advantage of the fact that Arduino boards allow the
 programmer to directly address the flash memory to access constant
 data which can save the amount of SRAM used during execution.

 o Relic-Toolkit [relic-toolkit]: This library is written entirely in
 C and provides a highly flexible and customizable implementation
 of a large variety of cryptographic algorithms. This not only
 includes RSA and ECC, but also pairing based asymmetric
 cryptography, Boneh-Lynn-Schacham, Boneh-Boyen short signatures
 and many more. The toolkit provides an option to build only the
 desired components for the required platform. While building the
 library, it is possible to select a variety mathematical
 optimizations that can be combined to obtain the desired

Sethi, et al. Expires May 4, 2017 [Page 9]

Internet-Draft Smart Object Security Experiences October 2016

 performance (as a general thumb rule, faster implementations
 require more SRAM and flash). It includes a multi precision
 integer math module which can be customized to use different bit-
 length words.

 o TinyECC [tinyecc]: TinyECC was designed for using Elliptic Curve
 based public key cryptography on sensor networks. It is written
 in nesC programming language and as such is designed for specific
 use on TinyOS. However, the library can be ported to standard C99
 either with hacked tool-chains or manually rewriting parts of the
 code. This allows for the library to be used on platforms that do
 not have TinyOS running on them. The library includes a wide
 variety of mathematical optimizations such as sliding window,
 Barrett reduction for verification, precomputation, etc. It also
 has one of the smallest memory footprints among the set of
 Elliptic Curve libraries surveyed so far. However, an advantage
 of Relic over TinyECC is that it can do curves over binary fields
 in addition to prime fields.

 o Wiselib [wiselib]: Wiselib is a generic library written for sensor
 networks containing a wide variety of algorithms. While the
 stable version contains algorithms for routing only, the test
 version includes many more algorithms including algorithms for
 cryptography, localization , topology management and many more.
 The library was designed with the idea of making it easy to
 interface the library with operating systems like iSense and
 Contiki. However, since the library is written entirely in C++
 with a template based model similar to Boost/CGAL, it can be used
 on any platform directly without using any of the operating system
 interfaces provided. This approach was taken by the authors to
 test the code on Arduino Uno. The structure of the code is similar
 to TinyECC and like TinyECC it implements elliptic curves over
 prime fields only. In order to make the code platform
 independent, no assembly level optimizations were incorporated.
 Since efficiency was not an important goal for the authors of the
 library while designing, many well known theoretical performance
 enhancement features were also not incorporated. Like the relic-
 toolkit, Wiselib is also Lesser GPL licensed.

 o MatrixSSL [matrix-ssl]: This library provides a low footprint
 implementation of several cryptographic algorithms including RSA
 and ECC (with a commercial license). However, the library in the
 original form takes about 50 kB of ROM which is not suitable for
 our hardware requirements. Moreover, it is intended for 32-bit
 systems and the API includes functions for SSL communication
 rather than just signing data with private keys.

Sethi, et al. Expires May 4, 2017 [Page 10]

Internet-Draft Smart Object Security Experiences October 2016

 This is by no ways an exhaustive list and there exist other
 cryptographic libraries targeting resource-constrained devices.

8. Implementation Experiences

 While evaluating the implementation experiences, we were particularly
 interested in the signature generation operation. This was because
 our example application discussed in Section 9 required only the
 signature generation operation on the resource-constrained platforms.
 We have summarized the initial results of RSA private key performance
 using AvrCryptolib in Table 1. All results are from a single run
 since repeating the test did not change (or had only minimal impact
 on) the results. The keys were generated separately and were hard
 coded into the program. All keys were generated with the value of
 the public exponent as 3. The performance of signing with private
 key was faster for smaller key lengths as was expected. However the
 increase in the execution time was considerable when the key size was
 2048 bits. It is important to note that two different sets of
 experiments were performed for each key length. In the first case,
 the keys were loaded into the SRAM from the ROM (flash) before they
 were used by any of the functions. However, in the second case, the
 keys were addressed directly in the ROM. As was expected, the second
 case used less SRAM but lead to longer execution time.

 More importantly, any RSA key size less than 2,048-bit should be
 considered legacy and insecure. The performance measurements for
 these keys are provided here for reference only.

 +--------+--------------+--------------+-------------+--------------+
Key	Execution	Memory	Execution	Memory
length	time (ms);	footprint	time (ms);	footprint
(bits)	key in SRAM	(bytes); key	key in ROM	(bytes); key
		in SRAM		in ROM
+--------+--------------+--------------+-------------+--------------+				
64	64	40	69	32
128	434	80	460	64
512	25,076	320	27348	256
1,024	199688	640	218367	512
2,048	1587567	1,280	1740258	1,024
 +--------+--------------+--------------+-------------+--------------+

 RSA private key operation performance

 Table 1

 The code size was less than 3.6 kB for all the test cases with scope
 for further reduction. It is also worth noting that the
 implementation performs basic exponentiation and multiplication

Sethi, et al. Expires May 4, 2017 [Page 11]

Internet-Draft Smart Object Security Experiences October 2016

 operations without using any mathematical optimizations such as
 Montgomery multiplication, optimized squaring, etc. as described in
 [rsa-high-speed]. With more SRAM, we believe that 1024/2048-bit
 operations can be performed in much less time as has been shown in
 [rsa-8bit]. 2048-bit RSA is nonetheless possible with about 1 kB of
 SRAM as is seen in Table 1.

 In Table 2 we present the results obtained by manually porting
 TinyECC into C99 standard and running ECDSA signature algorithm on
 the Arduino Uno board. TinyECC supports a variety of SEC 2
 recommended Elliptic Curve domain parameters. The execution time and
 memory footprint are shown next to each of the curve parameters.
 SHA-1 hashing algorithm included in the library was used in each of
 the cases. The measurements reflect the performance of elliptic
 curve signing only and not the SHA-1 hashing algorithm. SHA-1 is now
 known to be insecure and should not be used in real deployments. It
 is clearly observable that for similar security levels, Elliptic
 Curve public key cryptography outperforms RSA. These results were
 obtained by turning on all the optimizations. These optimizations
 include - Curve Specific Optimizations for modular reduction (NIST
 and SEC 2 field primes were chosen as pseudo-Mersenne primes),
 Sliding Window for faster scalar multiplication, Hybrid squaring
 procedure written in assembly and Weighted projective Coordinate
 system for efficient scalar point addition, doubling and
 multiplication. We did not use optimizations like Shamir Trick and
 Sliding Window as they are only useful for signature verification and
 tend to slow down the signature generation by precomputing values (we
 were only interested in fast signature generation). There is still
 some scope for optimization as not all the assembly code provided
 with the library could be ported to Arduino directly. Re-writing
 these procedures in compatible assembly would further enhance the
 performance.

Sethi, et al. Expires May 4, 2017 [Page 12]

Internet-Draft Smart Object Security Experiences October 2016

 +-------------+---------------+-----------------+-------------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	Footprint	key length
		(bytes)	
+-------------+---------------+-----------------+-------------------+			
128r1	1858	776	704
128r2	2002	776	704
160k1	2228	892	1024
160r1	2250	892	1024
160r2	2467	892	1024
192k1	3425	1008	1536
192r1	3578	1008	1536
 +-------------+---------------+-----------------+-------------------+

 ECDSA signature performance with TinyECC

 Table 2

 We also performed experiments by removing the assembly code for
 hybrid multiplication and squaring thus using a C only form of the
 library. This gives us an idea of the performance that can be
 achieved with TinyECC on any platform regardless of what kind of OS
 and assembly instruction set available. The memory footprint remains
 the same with our without assembly code. The tables contain the
 maximum RAM that is used when all the possible optimizations are on.
 If however, the amount of RAM available is smaller in size, some of
 the optimizations can be turned off to reduce the memory consumption
 accordingly.

 +-------------+---------------+-----------------+-------------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	Footprint	key length
		(bytes)	
+-------------+---------------+-----------------+-------------------+			
128r1	2741	776	704
128r2	3086	776	704
160k1	3795	892	1024
160r1	3841	892	1024
160r2	4118	892	1024
192k1	6091	1008	1536
192r1	6217	1008	1536
 +-------------+---------------+-----------------+-------------------+

 ECDSA signature performance with TinyECC (No assembly optimizations)

 Table 3

Sethi, et al. Expires May 4, 2017 [Page 13]

Internet-Draft Smart Object Security Experiences October 2016

 Table 4 documents the performance of Wiselib. Since there were no
 optimizations that could be turned on or off, we have only one set of
 results. By default Wiselib only supports some of the standard SEC 2
 Elliptic curves. But it is easy to change the domain parameters and
 obtain results for for all the 128, 160 and 192-bit SEC 2 Elliptic
 curves. SHA-1 algorithm provided in the library was used. The
 measurements reflect the performance of elliptic curve signing only
 and not the SHA-1 hashing algorithm. SHA-1 is now known to be
 insecure and should not be used in real deployments. The ROM size
 for all the experiments was less than 16 kB.

 +-------------+---------------+-----------------+-------------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	Footprint	key length
		(bytes)	
+-------------+---------------+-----------------+-------------------+			
128r1	5615	732	704
128r2	5615	732	704
160k1	10957	842	1024
160r1	10972	842	1024
160r2	10971	842	1024
192k1	18814	952	1536
192r1	18825	952	1536
 +-------------+---------------+-----------------+-------------------+

 ECDSA signature performance with Wiselib

 Table 4

 For testing the relic-toolkit we used a different board because it
 required more RAM/ROM and we were unable to perform experiments with
 it on Arduino Uno. We decided to use the Arduino Mega which has the
 same 8-bit architecture like the Arduino Uno but has a much larger
 RAM/ROM for testing relic-toolkit. Again, SHA-1 hashing algorithm
 included in the library was used in each of the cases. The
 measurements reflect the performance of elliptic curve signing only
 and not the SHA-1 hashing algorithm. SHA-1 is now known to be
 insecure and should not be used in real deployments. The library
 does provide several alternatives with such as SHA-256.

 The relic-toolkit supports Koblitz curves over prime as well as
 binary fields. We have experimented with Koblitz curves over binary
 fields only. We do not run our experiments with all the curves
 available in the library since the aim of this work is not prove
 which curves perform the fastest, and rather show that asymmetric
 crypto is possible on resource-constrained devices.

Sethi, et al. Expires May 4, 2017 [Page 14]

Internet-Draft Smart Object Security Experiences October 2016

 The results from relic-toolkit are documented in two separate tables
 shown in Table 5 and Table 6. The first set of results were
 performed with the library configured for high speed performance with
 no consideration given to the amount of memory used. For the second
 set, the library was configured for low memory usage irrespective of
 the execution time required by different curves. By turning on/off
 optimizations included in the library, a trade-off between memory and
 execution time between these values can be achieved.

 +-----------------+--------------+----------------+-----------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	Footprint	key length
		(bytes)	
+-----------------+--------------+----------------+-----------------+			
NIST K163	261	2,804	1024
(assembly math)			
NIST K163	932	2750	1024
NIST B163	2243	2444	1024
NIST K233	1736	3675	2048
NIST B233	4471	3261	2048
 +-----------------+--------------+----------------+-----------------+

 ECDSA signature performance with relic-toolkit (Fast)

 Table 5

 +-----------------+--------------+----------------+-----------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	Footprint	key length
		(bytes)	
+-----------------+--------------+----------------+-----------------+			
NIST K163	592	2087	1024
(assembly math)			
NIST K163	2950	2215	1024
NIST B163	3213	2071	1024
NIST K233	6450	2935	2048
NIST B233	6100	2737	2048
 +-----------------+--------------+----------------+-----------------+

 ECDSA signature performance with relic-toolkit (Low Memory)

 Table 6

 It is important to note the following points about the elliptic curve
 measurements:

Sethi, et al. Expires May 4, 2017 [Page 15]

Internet-Draft Smart Object Security Experiences October 2016

 o As with the RSA measurements, curves giving less that 112-bit
 security are insecure and considered as legacy. The measurements
 are only provided for reference.

 o The arduino board only provides pseudo random numbers with the
 random() function call. In order to create private keys with a
 better quality of random number, we can use a true random number
 generator like the one provided by TrueRandom library
 [truerandom], or create the keys separately on a system with a
 true random number generator and then use them directly in the
 code.

 o For measuring the memory footprint of all the ECC libraries, we
 used the Avrora simulator [avrora]. Only stack memory was used to
 easily track the RAM consumption.

 At the time of performing these measurements and study, it was
 unclear which exact elliptic curve(s) would be selected by the IETF
 community for use with resource-constrained devices. However now,
 [RFC7748] defines two elliptic curves over prime fields (Curve25519
 and Curve448) that offer a high level of practical security for
 Diffie-Hellman key exchange. Correspondingly, there is ongoing work
 to specify elliptic curve signature schemes with Edwards-curve
 Digital Signature Algorithm (EdDSA). [I-D.irtf-cfrg-eddsa] specifies
 the recommended parameters for the edwards25519 and edwards448
 curves. From these, curve25519 (for elliptic curve Diffie-Hellman
 key exchange) and edwards25519 (for elliptic curve digital
 signatures) are especially suitable for resource-constrained devices.

 We found that the NaCl [nacl] and MicoNaCl [micronacl] libraries
 provide highly efficient implementations of Diffie-Hellman key
 exchange with curve25519. The results have shown that these
 libraries with curve25519 outperform other elliptic curves that
 provide similar levels of security. Hutter and Schwabe [naclavr]
 also show that signing of data using the curve Ed25519 from the NaCl
 library needs only 23,216,241 cycles on the same microcontroller that
 we used for our evaluations (Arduino Mega ATmega2560). This
 corresponds to about 1,4510 milliseconds of execution time. When
 compared to the results for other curves and libraries that offer
 similar level of security (such as NIST B233, NIST K233), this
 implementation far outperforms all others. As such, it is recommend
 that the IETF community uses these curves for protocol specification
 and implementations.

 A summary library ROM use is shown in Table 7.

https://datatracker.ietf.org/doc/html/rfc7748

Sethi, et al. Expires May 4, 2017 [Page 16]

Internet-Draft Smart Object Security Experiences October 2016

 +-------------------------+---------------------------+
 | Library | ROM Footprint (Kilobytes) |
 +-------------------------+---------------------------+
 | AvrCryptolib | 3.6 |
 | Wiselib | 16 |
 | TinyECC | 18 |
 | Relic-toolkit | 29 |
 | NaCl Ed25519 [naclavr] | 17-29 |
 +-------------------------+---------------------------+

 Summary of library ROM needs

 Table 7

 All the measurements here are only provided as an example to show
 that asymmetric-key cryptography (particularly, digital signatures)
 is possible on resource-constrained devices. These numbers by no way
 are the final source for measurements and some curves presented here
 may not be acceptable for real in-the-wild deployments anymore. For
 example, Mosdorf et al. [mosdorf] and Liu et al. [tinyecc] also
 document performance of ECDSA on similar resource-constrained
 devices.

9. Example Application

 We developed an example application on the Arduino platform to use
 public key crypto mechanisms, data object security, and an easy
 provisioning model. Our application was originally developed to test
 different approaches to supporting communications to "always off"
 sensor nodes. These battery-operated or energy scavenging nodes do
 not have enough power to be stay on at all times. They wake up
 periodically and transmit their readings.

 Such sensor nodes can be supported in various ways.
 [I-D.arkko-core-sleepy-sensors] was an early multicast-based
 approach. In the current application we have switched to using
 resource directories [I-D.ietf-core-resource-directory] and mirror
 proxies [I-D.vial-core-mirror-proxy] instead. Architecturally, the
 idea is that sensors can delegate a part of their role to a node in
 the network. Such a network node could be either a local resource or
 something in the Internet. In the case of CoAP mirror proxies, the
 network node agrees to hold the web resources on behalf of the
 sensor, while the sensor is asleep. The only role that the sensor
 has is to register itself at the mirror proxy, and periodically
 update the readings. All queries from the rest of the world go to
 the mirror proxy.

 We constructed a system with four entities:

Sethi, et al. Expires May 4, 2017 [Page 17]

Internet-Draft Smart Object Security Experiences October 2016

 Sensor

 This is an Arduino-based device that runs a CoAP mirror proxy
 client and Relic-toolkit. Relic takes 29 Kbytes of ROM, and the
 simple CoAP client roughly 3 kilobytes.

 Mirror Proxy

 This is a mirror proxy that holds resources on the sensor's
 behalf. The sensor registers itself to this node.

 Resource Directory

 While physically in the same node in our implementation, a
 resource directory is a logical function that allows sensors and
 mirror proxies to register resources in the directory. These
 resources can be queried by applications.

 Application

 This is a simple application that runs on a general purpose
 computer and can retrieve both registrations from the resource
 directory and most recent sensor readings from the mirror proxy.

 The security of this system relies on an SSH-like approach. In Step
 1, upon first boot, sensors generate keys and register themselves in
 the mirror proxy. Their public key is submitted along with the
 registration as an attribute in the CORE Link Format data [RFC6690].

 In Step 2, when the sensor makes a sensor reading update to the
 mirror proxy it signs the message contents with a JOSE signature on
 the used JSON/SENML payload [RFC7515] [I-D.jennings-core-senml].

 In Step 3, any other device in the network -- including the mirror
 proxy, resource directory and the application -- can check that the
 public key from the registration corresponds to the private key used
 to make the signature in the data update.

 Note that checks can be done at any time and there is no need for the
 sensor and the checking node to be awake at the same time. In our
 implementation, the checking is done in the application node. This
 demonstrates how it is possible to implement end-to-end security even
 with the presence of assisting middleboxes.

 To verify the feasibility of our architecture we developed a proof-
 of-concept prototype. In our prototype, the sensor was implemented
 using the Arduino Ethernet shield over an Arduino Mega board. Our
 implementation uses the standard C99 programming language on the

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7515

Sethi, et al. Expires May 4, 2017 [Page 18]

Internet-Draft Smart Object Security Experiences October 2016

 Arduino Mega board. In this prototype, the Mirror Proxy (MP) and the
 Resource Directory (RD) reside on the same physical host. A 64-bit
 x86 linux machine serves as the MP and the RD, while a similar but
 physically different 64-bit x86 linux machine serves as the client
 that requests data from the sensor. We chose the Relic library
 version 0.3.1 for our sample prototype as it can be easily compiled
 for different bit-length processors. Therefore, we were able to use
 it on the 8-bit processor of the Arduino Mega, as well as on the
 64-bit processor of the x86 client. We used ECDSA to sign and verify
 data updates with the standard NIST-K163 curve parameters (163-bit
 Koblitz curve over binary field). While compiling Relic for our
 prototype, we used the fast configuration without any assembly
 optimizations.

 The gateway implements the CoAP base specification in the Java
 programming language and extends it to add support for Mirror Proxy
 and Resource Directory REST interfaces. We also developed a
 minimalistic CoAP C-library for the Arduino sensor and for the client
 requesting data updates for a resource. The library has small SRAM
 requirements and uses stack-based allocation only. It is inter-
 operable with the Java implementation of CoAP running on the gateway.
 The location of the mirror proxy was pre-configured into the smart
 object sensor by hardcoding the IP address. We used an IPv4 network
 with public IP addresses obtained from a DHCP server.

 Some important statistics of this prototype are listed in table
 Table 8. Our straw man analysis of the performance of this prototype
 is preliminary. Our intention was to demonstrate the feasibility of
 the entire architecture with public-key cryptography on an 8-bit
 microcontroller. The stated values can be improved further by a
 considerable amount. For example, the flash memory and SRAM
 consumption is relatively high because some of the Arduino libraries
 were used out-of-the- box and there are several functions which can
 be removed. Similarly we used the fast version of the Relic library
 in the prototype instead of the low memory version.

Sethi, et al. Expires May 4, 2017 [Page 19]

Internet-Draft Smart Object Security Experiences October 2016

 +---+-------+
Flash memory consumption (for the entire prototype	51 kB
including Relic crypto + CoAP + Arduino UDP, Ethernet and	
DHCP Libraries)	
SRAM consumption (for the entire prototype including DHCP	4678
client + key generation + signing the hash of message +	bytes
COAP + UDP + Ethernet)	
Execution time for creating the key pair + sending	2030
registration message + time spent waiting for acknowl-	ms
edgement	
Execution time for signing the hash of message + sending	987
update	ms
Signature overhead	42
	bytes
 +---+-------+

 Prototype Performance

 Table 8

 To demonstrate the efficacy of this communication model we compare it
 with a scenario where the smart objects do not transition into the
 energy saving sleep mode and directly serve temperature data to
 clients. As an example, we assume that in our architecture, the
 smart objects wake up once every minute to report the signed
 temperature data to the caching MP. If we calculate the energy
 consumption using the formula W = U * I * t (where U is the operating
 voltage, I is the current drawn and t is the execution time), and use
 the voltage and current values from the datasheets of the ATmega2560
 (20mA-active mode and 5.4mA-sleep mode) and W5100 (183mA) chips used
 in the architecture, then in a one minute period, the Arduino board
 would consume 60.9 Joules of energy if it directly serves data and
 does not sleep. On the other hand, in our architecture it would only
 consume 2.6 Joules if it wakes up once a minute to update the MP with
 signed data. Therefore, a typical Li-ion battery that provides about
 1800 milliamps per hour (mAh) at 5V would have a lifetime of 9 hours
 in the unsecured always-on scenario, whereas it would have a lifetime
 of about 8.5 days in the secured sleepy architecture presented.
 These lifetimes appear to be low because the Arduino board in the
 prototype uses Ethernet which is not energy efficient. The values
 presented only provide an estimate (ignoring the energy required to
 transition in and out of the sleep mode) and would vary depending on
 the hardware and MAC protocol used. Nonetheless, it is evident that

Sethi, et al. Expires May 4, 2017 [Page 20]

Internet-Draft Smart Object Security Experiences October 2016

 our architecture can increase the life of smart objects by allowing
 them to sleep and can ensure security at the same time.

10. Design Trade-Offs

 This section attempts to make some early conclusions regarding trade-
 offs in the design space, based on deployment considerations for
 various mechanisms and the relative ease or difficulty of
 implementing them. This analysis looks at layering and the choice of
 symmetric vs. asymmetric cryptography.

11. Feasibility

 The first question is whether using cryptographic security and
 asymmetric cryptography in particular is feasible at all on small
 devices. The numbers above give a mixed message. Clearly, an
 implementation of a significant cryptographic operation such as
 public key signing can be done in surprisingly small amount of code
 space. It could even be argued that our chosen prototype platform
 was unnecessarily restrictive in the amount of code space it allows:
 we chose this platform on purpose to demonstrate something that is as
 small and difficult as possible.

 In reality, ROM memory size is probably easier to grow than other
 parameters in microcontrollers. A recent trend in microcontrollers
 is the introduction of 32-bit CPUs that are becoming cheaper and more
 easily available than 8-bit CPUs, in addition to being more easily
 programmable. In short, the authors do not expect the code size to
 be a significant limiting factor, both because of the small amount of
 code that is needed and because available memory space is growing
 rapidly.

 The situation is less clear with regards to the amount of CPU power
 needed to run the algorithms. The demonstrated speeds are sufficient
 for many applications. For instance, a sensor that wakes up every
 now and then can likely spend a fraction of a second for the
 computation of a signature for the message that it is about to send.
 Or even spend multiple seconds in some cases. Most applications that
 use protocols such as DTLS that use public key cryptography only at
 the beginning of the session would also be fine with any of these
 execution times.

 Yet, with reasonably long key sizes the execution times are in the
 seconds, dozens of seconds, or even longer. For some applications
 this is too long. Nevertheless, the authors believe that these
 algorithms can successfully be employed in small devices for the
 following reasons:

Sethi, et al. Expires May 4, 2017 [Page 21]

Internet-Draft Smart Object Security Experiences October 2016

 o With the right selection of algorithms and libraries, the
 execution times can actually be smaller. Using the Relic-toolkit
 with the NIST K163 algorithm (roughly equivalent to RSA at 1024
 bits) at 0.3 seconds is a good example of this.

 o As discussed in [wiman], in general the power requirements
 necessary to send or receive messages are far bigger than those
 needed to execute cryptographic operations. There is no good
 reason to choose platforms that do not provide sufficient
 computing power to run the necessary operations.

 o Commercial libraries and the use of full potential for various
 optimizations will provide a better result than what we arrived at
 in this paper.

 o Using public key cryptography only at the beginning of a session
 will reduce the per-packet processing times significantly.

12. Freshness

 In our architecture, if implemented as described thus far, messages
 along with their signatures sent from the sensors to the mirror proxy
 can be recorded and replayed by an eavesdropper. The mirror proxy
 has no mechanism to distinguish previously received packets from
 those that are retransmitted by the sender or replayed by an
 eavesdropper. Therefore, it is essential for the smart objects to
 ensure that data updates include a freshness indicator. However,
 ensuring freshness on constrained devices can be non-trivial because
 of several reasons which include:

 o Communication is mostly unidirectional to save energy.

 o Internal clocks might not be accurate and may be reset several
 times during the operational phase of the smart object.

 o Network time synchronization protocols such as Network Time
 Protocol (NTP) [RFC5905] are resource intensive and therefore may
 be undesirable in many smart object networks.

 There are several different methods that can be used in our
 architecture for replay protection. The selection of the appropriate
 choice depends on the actual deployment scenario.

 Including sequence numbers in signed messages can provide an
 effective method of replay protection. The mirror proxy should
 verify the sequence number of each incoming message and accept it
 only if it is greater than the highest previously seen sequence
 number. The mirror proxy drops any packet with a sequence number

https://datatracker.ietf.org/doc/html/rfc5905

Sethi, et al. Expires May 4, 2017 [Page 22]

Internet-Draft Smart Object Security Experiences October 2016

 that has already been received or if the received sequence number is
 greater than the highest previously seen sequence number by an amount
 larger than the preset threshold.

 Sequence numbers can wrap-around at their maximum value and,
 therefore, it is essential to ensure that sequence numbers are
 sufficiently long. However, including long sequence numbers in
 packets can increase the network traffic originating from the sensor
 and can thus decrease its energy efficiency. To overcome the problem
 of long sequence numbers, we can use a scheme similar to that of
 Huang [huang], where the sender and receiver maintain and sign long
 sequence numbers of equal bit-lengths but they transmit only the
 least significant bits.

 It is important for the smart object to write the sequence number
 into the permanent flash memory after each increment and before it is
 included in the message to be transmitted. This ensures that the
 sensor can obtain the last sequence number it had intended to send in
 case of a reset or a power failure. However, the sensor and the
 mirror proxy can still end up in a discordant state where the
 sequence number received by the mirror proxy exceeds the expected
 sequence number by an amount greater than the preset threshold. This
 may happen because of a prolonged network outage or if the mirror
 proxy experiences a power failure for some reason. Therefore it is
 essential for sensors that normally send Non-Confirmable data updates
 to send some Confirmable updates and re-synchronize with the mirror
 proxy if a reset message is received. The sensors re-synchronize by
 sending a new registration message with the current sequence number.

 Although sequence numbers protect the system from replay attacks, a
 mirror proxy has no mechanism to determine the time at which updates
 were created by the sensor. Moreover, if sequence numbers are the
 only freshness indicator used, a malicious eavesdropper can induce
 inordinate delays to the communication of signed updates by buffering
 messages. It may be important in certain smart object networks for
 sensors to send data updates which include timestamps to allow the
 mirror proxy to determine the time when the update was created. For
 example, when the mirror proxy is collecting temperature data, it may
 be necessary to know when exactly the temperature measurement was
 made by the sensor. A simple solution to this problem is for the
 mirror proxy to assume that the data object was created when it
 receives the update. In a relatively reliable network with low RTT,
 it can be acceptable to make such an assumption. However most
 networks are susceptible to packet loss and hostile attacks making
 this assumption unsustainable.

 Depending on the hardware used by the smart objects, they may have
 access to accurate hardware clocks which can be used to include

Sethi, et al. Expires May 4, 2017 [Page 23]

Internet-Draft Smart Object Security Experiences October 2016

 timestamps in the signed updates. These timestamps are included in
 addition to sequence numbers. The clock time in the smart objects
 can be set by the manufacturer or the current time can be
 communicated by the mirror proxy during the registration phase.
 However, these approaches require the smart objects to either rely on
 the long-term accuracy of the clock set by the manufacturer or to
 trust the mirror proxy thereby increasing the potential vulnerability
 of the system. The smart objects could also obtain the current time
 from NTP, but this may consume additional energy and give rise to
 security issues discussed in [RFC5905]. The smart objects could also
 have access to a GSM network or the Global Positioning System (GPS),
 and they can be used obtain the current time. Finally, if the
 sensors need to co-ordinate their sleep cycles, or if the mirror
 proxy computes an average or mean of updates collected from multiple
 smart objects, it is important for the network nodes to synchronize
 the time among them. This can be done by using existing
 synchronization schemes.

13. Layering

 It would be useful to select just one layer where security is
 provided at. Otherwise a simple device needs to implement multiple
 security mechanisms. While some code can probably be shared across
 such implementations (like algorithms), it is likely that most of the
 code involving the actual protocol machinery cannot. Looking at the
 different layers, here are the choices and their implications:

 link layer

 This is probably the most common solution today. The biggest
 benefits of this choice of layer are that security services are
 commonly available (WLAN secrets, cellular SIM cards, etc.) and
 that their application protects the entire communications.

 The main drawback is that there is no security beyond the first
 hop. This can be problematic, e.g., in many devices that
 communicate to a server in the Internet. A Withings scale
 [Withings], for instance, can support WLAN security but without
 some level of end-to-end security, it would be difficult to
 prevent fraudulent data submissions to the servers.

 Another drawback is that some commonly implemented link layer
 security designs use group secrets. This allows any device within
 the local network (e.g., an infected laptop) to attack the
 communications.

 network layer

https://datatracker.ietf.org/doc/html/rfc5905

Sethi, et al. Expires May 4, 2017 [Page 24]

Internet-Draft Smart Object Security Experiences October 2016

 There are a number of solutions in this space, and many new ones
 and variations thereof being proposed: IPsec, PANA, and so on. In
 general, these solutions have similar characteristics to those in
 the transport layer: they work across forwarding hops but only as
 far as to the next middlebox or application entity. There is
 plenty of existing solutions and designs.

 Experience has shown that it is difficult to control IP layer
 entities from an application process. While this is theoretically
 easy, in practice the necessary APIs do not exist. For instance,
 most IPsec software has been built for the VPN use case, and is
 difficult or impossible to tweak to be used on a per-application
 basis. As a result, the authors are not particularly enthusiastic
 about recommending these solutions.

 transport and application layer

 This is another popular solution along with link layer designs.
 TLS with HTTP (HTTPS) and DTLS with CoAP are examples of solutions
 in this space, and have been proven to work well. These solutions
 are typically easy to take into use in an application, without
 assuming anything from the underlying OS, and they are easy to
 control as needed by the applications. The main drawback is that
 generally speaking, these solutions only run as far as the next
 application level entity. And even for this case, HTTPS can be
 made to work through proxies, so this limit is not unsolvable.
 Another drawback is that attacks on link layer, network layer and
 in some cases, transport layer, can not be protected against.
 However, if the upper layers have been protected, such attacks can
 at most result in a denial-of-service. Since denial-of-service
 can often be caused anyway, it is not clear if this is a real
 drawback.

 data object layer

 This solution does not protect any of the protocol layers, but
 protects individual data elements being sent. It works
 particularly well when there are multiple application layer
 entities on the path of the data. The authors believe smart
 object networks are likely to employ such entities for storage,
 filtering, aggregation and other reasons, and as such, an end-to-
 end solution is the only one that can protect the actual data.

 The downside is that the lower layers are not protected. But
 again, as long as the data is protected and checked upon every
 time it passes through an application level entity, it is not
 clear that there are attacks beyond denial-of-service.

Sethi, et al. Expires May 4, 2017 [Page 25]

Internet-Draft Smart Object Security Experiences October 2016

 The main question mark is whether this type of a solution provides
 sufficient advantages over the more commonly implemented transport
 and application layer solutions.

14. Symmetric vs. Asymmetric Crypto

 The second trade-off that is worth discussing is the use of plain
 asymmetric cryptographic mechanisms, plain symmetric cryptographic
 mechanisms, or some mixture thereof.

 Contrary to popular cryptographic community beliefs, a symmetric
 crypto solution can be deployed in large scale. In fact, one of the
 largest deployment of cryptographic security, the cellular network
 authentication system, uses SIM cards that are based on symmetric
 secrets. In contrast, public key systems have yet to show ability to
 scale to hundreds of millions of devices, let alone billions. But
 the authors do not believe scaling is an important differentiator
 when comparing the solutions.

 As can be seen from the Section 8, the time needed to calculate some
 of the asymmetric crypto operations with reasonable key lengths can
 be significant. There are two contrary observations that can be made
 from this. First, recent wisdom indicates that computing power on
 small devices is far cheaper than transmission power [wiman], and
 keeps on becoming more efficient very quickly. From this we can
 conclude that the sufficient CPU is or at least will be easily
 available.

 But the other observation is that when there are very costly
 asymmetric operations, doing a key exchange followed by the use of
 generated symmetric keys would make sense. This model works very
 well for DTLS and other transport layer solutions, but works less
 well for data object security, particularly when the number of
 communicating entities is not exactly two.

15. Security Considerations

 This entire memo deals with security issues.

16. IANA Considerations

 There are no IANA impacts in this memo.

17. Informative references

 [arduino-uno]
 Arduino, "Arduino Uno", September 2015,
 <http://arduino.cc/en/Main/arduinoBoardUno>.

http://arduino.cc/en/Main/arduinoBoardUno

Sethi, et al. Expires May 4, 2017 [Page 26]

Internet-Draft Smart Object Security Experiences October 2016

 [avr-crypto-lib]
 AVR-CRYPTO-LIB, "AVR-CRYPTO-LIB", September 2015,
 <http://www.das-labor.org/wiki/AVR-Crypto-Lib/en>.

 [avr-cryptolib]
 Van der Laan, E., "AVR CRYPTOLIB", September 2015,
 <http://www.emsign.nl/>.

 [avrora] Titzer, Ben., "Avrora", September 2015,
 <http://compilers.cs.ucla.edu/avrora/>.

 [huang] Huang, C., "Low-overhead freshness transmission in sensor
 networks", 2008.

 [I-D.arkko-core-security-arch]
 Arkko, J. and A. Keranen, "CoAP Security Architecture",

draft-arkko-core-security-arch-00 (work in progress), July
 2011.

 [I-D.arkko-core-sleepy-sensors]
 Arkko, J., Rissanen, H., Loreto, S., Turanyi, Z., and O.
 Novo, "Implementing Tiny COAP Sensors", draft-arkko-core-

sleepy-sensors-01 (work in progress), July 2011.

 [I-D.daniel-6lowpan-security-analysis]
 Park, S., Kim, K., Haddad, W., Chakrabarti, S., and J.
 Laganier, "IPv6 over Low Power WPAN Security Analysis",

draft-daniel-6lowpan-security-analysis-05 (work in
 progress), March 2011.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-08
 (work in progress), July 2016.

 [I-D.irtf-cfrg-eddsa]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-08
 (work in progress), August 2016.

 [I-D.irtf-t2trg-iot-seccons]
 Garcia-Morchon, O., Kumar, S., and M. Sethi, "Security
 Considerations in the IP-based Internet of Things", draft-

irtf-t2trg-iot-seccons-00 (work in progress), October
 2016.

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.emsign.nl/
http://compilers.cs.ucla.edu/avrora/
https://datatracker.ietf.org/doc/html/draft-arkko-core-security-arch-00
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-daniel-6lowpan-security-analysis-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-eddsa-08
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-iot-seccons-00
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-iot-seccons-00

Sethi, et al. Expires May 4, 2017 [Page 27]

Internet-Draft Smart Object Security Experiences October 2016

 [I-D.jennings-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., and A. Keranen,
 "Media Types for Sensor Markup Language (SenML)", draft-

jennings-core-senml-06 (work in progress), April 2016.

 [I-D.moskowitz-hip-dex]
 Moskowitz, R. and R. Hummen, "HIP Diet EXchange (DEX)",

draft-moskowitz-hip-dex-05 (work in progress), January
 2016.

 [I-D.vial-core-mirror-proxy]
 Vial, M., "CoRE Mirror Server", draft-vial-core-mirror-

proxy-01 (work in progress), July 2012.

 [matrix-ssl]
 PeerSec Networks, "Matrix SSL", September 2015,
 <http://www.matrixssl.org/>.

 [micronacl]
 MicroNaCl, "The Networking and Cryptography library for
 microcontrollers", <http://munacl.cryptojedi.org/>.

 [mosdorf] Mosdorf, M. and W. Zabolotny, "Implementation of elliptic
 curve cryptography for 8 bit and 32 bit embedded systems
 time efficiency and power consumption analysis", 2010.

 [nacl] NaCl, "Networking and Cryptography library",
 <http://nacl.cr.yp.to/>.

 [naclavr] Hutter, M. and P. Schwabe, "NaCl on 8-Bit AVR
 Microcontrollers", International Conference on Cryptology
 in Africa , Springer Berlin Heidelberg , 2013.

 [relic-toolkit]
 Aranha, D. and C. Gouv, "Relic Toolkit", September 2015,
 <http://code.google.com/p/relic-toolkit/>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <http://www.rfc-editor.org/info/rfc3748>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
RFC 3972, DOI 10.17487/RFC3972, March 2005,

 <http://www.rfc-editor.org/info/rfc3972>.

https://datatracker.ietf.org/doc/html/draft-jennings-core-senml-06
https://datatracker.ietf.org/doc/html/draft-jennings-core-senml-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-05
https://datatracker.ietf.org/doc/html/draft-vial-core-mirror-proxy-01
https://datatracker.ietf.org/doc/html/draft-vial-core-mirror-proxy-01
http://www.matrixssl.org/
http://munacl.cryptojedi.org/
http://nacl.cr.yp.to/
http://code.google.com/p/relic-toolkit/
https://datatracker.ietf.org/doc/html/rfc3748
http://www.rfc-editor.org/info/rfc3748
https://datatracker.ietf.org/doc/html/rfc3972
http://www.rfc-editor.org/info/rfc3972

Sethi, et al. Expires May 4, 2017 [Page 28]

Internet-Draft Smart Object Security Experiences October 2016

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <http://www.rfc-editor.org/info/rfc4303>.

 [RFC5191] Forsberg, D., Ohba, Y., Ed., Patil, B., Tschofenig, H.,
 and A. Yegin, "Protocol for Carrying Authentication for
 Network Access (PANA)", RFC 5191, DOI 10.17487/RFC5191,
 May 2008, <http://www.rfc-editor.org/info/rfc5191>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5406] Bellovin, S., "Guidelines for Specifying the Use of IPsec
 Version 2", BCP 146, RFC 5406, DOI 10.17487/RFC5406,
 February 2009, <http://www.rfc-editor.org/info/rfc5406>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC6078] Camarillo, G. and J. Melen, "Host Identity Protocol (HIP)
 Immediate Carriage and Conveyance of Upper-Layer Protocol
 Signaling (HICCUPS)", RFC 6078, DOI 10.17487/RFC6078,
 January 2011, <http://www.rfc-editor.org/info/rfc6078>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6574] Tschofenig, H. and J. Arkko, "Report from the Smart Object
 Workshop", RFC 6574, DOI 10.17487/RFC6574, April 2012,
 <http://www.rfc-editor.org/info/rfc6574>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/rfc4303
http://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc5191
http://www.rfc-editor.org/info/rfc5191
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/bcp146
https://datatracker.ietf.org/doc/html/rfc5406
http://www.rfc-editor.org/info/rfc5406
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6078
http://www.rfc-editor.org/info/rfc6078
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6574
http://www.rfc-editor.org/info/rfc6574
https://datatracker.ietf.org/doc/html/rfc6690
http://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252

Sethi, et al. Expires May 4, 2017 [Page 29]

Internet-Draft Smart Object Security Experiences October 2016

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

 [RFC7401] Moskowitz, R., Ed., Heer, T., Jokela, P., and T.
 Henderson, "Host Identity Protocol Version 2 (HIPv2)",

RFC 7401, DOI 10.17487/RFC7401, April 2015,
 <http://www.rfc-editor.org/info/rfc7401>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <http://www.rfc-editor.org/info/rfc7748>.

 [RFC7815] Kivinen, T., "Minimal Internet Key Exchange Version 2
 (IKEv2) Initiator Implementation", RFC 7815,
 DOI 10.17487/RFC7815, March 2016,
 <http://www.rfc-editor.org/info/rfc7815>.

 [rsa-8bit]
 Gura, N., Patel, A., Wander, A., Eberle, H., and S.
 Shantz, "Comparing Elliptic Curve Cryptography and RSA on
 8-bit CPUs", 2010.

 [rsa-high-speed]
 Koc, C., "High-Speed RSA Implementation", November 1994,
 <http://cs.ucsb.edu/~koc/docs/r01.pdf>.

 [tinyecc] North Carolina State University and North Carolina State
 University, "TinyECC", 2008,
 <http://discovery.csc.ncsu.edu/software/TinyECC/>.

 [truerandom]
 Drow, C., "Truerandom", September 2015,
 <http://code.google.com/p/tinkerit/wiki/TrueRandom>.

 [wiman] Margi, C., Oliveira, B., Sousa, G., Simplicio, M., Paulo,
 S., Carvalho, T., Naslund, M., and R. Gold, "Impact of
 Operating Systems on Wireless Sensor Networks (Security)
 Applications and Testbeds. In International Conference on
 Computer Communication Networks (ICCCN'2010) / IEEE
 International Workshop on Wireless Mesh and Ad Hoc
 Networks (WiMAN 2010), 2010, Zurich. Proceedings of
 ICCCN'2010/WiMAN'2010", 2010.

https://datatracker.ietf.org/doc/html/rfc7296
http://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc7401
http://www.rfc-editor.org/info/rfc7401
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7748
http://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc7815
http://www.rfc-editor.org/info/rfc7815
http://cs.ucsb.edu/~koc/docs/r01.pdf
http://discovery.csc.ncsu.edu/software/TinyECC/
http://code.google.com/p/tinkerit/wiki/TrueRandom

Sethi, et al. Expires May 4, 2017 [Page 30]

Internet-Draft Smart Object Security Experiences October 2016

 [wiselib] Baumgartner, T., Chatzigiannakis, I., Fekete, S., Koninis,
 C., Kroller, A., and A. Pyrgelis, "Wiselib", 2010,
 <www.wiselib.org/>.

 [Withings]
 Withings, "The Withings scale", February 2012,
 <http://www.withings.com/en/bodyscale>.

Sethi, et al. Expires May 4, 2017 [Page 31]

http://www.withings.com/en/bodyscale

Internet-Draft Smart Object Security Experiences October 2016

Appendix A. Acknowledgments

 The authors would like to thank Mats Naslund, Salvatore Loreto, Bob
 Moskowitz, Oscar Novo, Vlasios Tsiatsis, Daoyuan Li, Muhammad Waqas,
 Eric Rescorla and Tero Kivinen for interesting discussions in this
 problem space. The authors would also like to thank Diego Aranha for
 helping with the relic-toolkit configurations and Tobias Baumgartner
 for helping with questions regarding wiselib.

Authors' Addresses

 Mohit Sethi
 Ericsson
 Jorvas 02420
 Finland

 EMail: mohit@piuha.net

 Jari Arkko
 Ericsson
 Jorvas 02420
 Finland

 EMail: jari.arkko@piuha.net

 Ari Keranen
 Ericsson
 Jorvas 02420
 Finland

 EMail: ari.keranen@ericsson.com

 Heidi-Maria Back
 Comptel
 Helsinki 00181
 Finland

 EMail: heidi.back@comptel.com

Sethi, et al. Expires May 4, 2017 [Page 32]

