
KITTEN W. Mills
Internet-Draft Microsoft
Intended status: Standards Track T. Showalter
Expires: May 29, 2015
 H. Tschofenig
 ARM Ltd.
 November 25, 2014

A set of SASL Mechanisms for OAuth
draft-ietf-kitten-sasl-oauth-18.txt

Abstract

 OAuth enables a third-party application to obtain limited access to a
 protected resource, either on behalf of a resource owner by
 orchestrating an approval interaction, or by allowing the third-party
 application to obtain access on its own behalf.

 This document defines how an application client uses credentials
 obtained via OAuth over the Simple Authentication and Security Layer
 (SASL) to access a protected resource at a resource serve. Thereby,
 it enables schemes defined within the OAuth framework for non-HTTP-
 based application protocols.

 Clients typically store the user's long-term credential. This does,
 however, lead to significant security vulnerabilities, for example,
 when such a credential leaks. A significant benefit of OAuth for
 usage in those clients is that the password is replaced by a shared
 secret with higher entropy, i.e., the token. Tokens typically
 provide limited access rights and can be managed and revoked
 separately from the user's long-term password.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Mills, et al. Expires May 29, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft SASL OAuth November 2014

 This Internet-Draft will expire on May 29, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. OAuth SASL Mechanism Specifications 6
3.1. Initial Client Response 7
3.1.1. Reserved Key/Values 8

3.2. Server's Response . 8
3.2.1. OAuth Identifiers in the SASL Context 8
3.2.2. Server Response to Failed Authentication 9
3.2.3. Completing an Error Message Sequence 10

3.3. OAuth Access Token Types using Keyed Message Digests . . 10
4. Examples . 11
4.1. Successful Bearer Token Exchange 11
4.2. Successful OAuth 1.0a Token Exchange 12
4.3. Failed Exchange . 13
4.4. SMTP Example of a Failed Negotiation 14

5. Security Considerations 15
6. Internationalization Considerations 16
7. IANA Considerations . 16
7.1. SASL Registration . 16

8. References . 17
8.1. Normative References 17
8.2. Informative References 18

Appendix A. Acknowlegements 19
Appendix B. Document History 19

 Authors' Addresses . 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mills, et al. Expires May 29, 2015 [Page 2]

Internet-Draft SASL OAuth November 2014

1. Introduction

 OAuth 1.0a [RFC5849] and OAuth 2.0 [RFC6749] are protocol frameworks
 that enable a third-party application to obtain limited access to a
 protected resource, either on behalf of a resource owner by
 orchestrating an approval interaction, or by allowing the third-party
 application to obtain access on its own behalf.

 The core OAuth 2.0 specification [RFC6749] specifies the interaction
 between the OAuth client and the authorization server; it does not
 define the interaction between the OAuth client and the resource
 server for the access to a protected resource using an Access Token.
 Instead, the OAuth client to resource server interaction is described
 in separate specifications, such as the bearer token specification
 [RFC6750]. OAuth 1.0a included the protocol specification for the
 communication between the OAuth client and the resource server in
 [RFC5849].

 The main use cases for OAuth 2.0 and OAuth 1.0a have so far focused
 on an HTTP-based [RFC2616] environment only. This document
 integrates OAuth 1.0a and OAuth 2.0 into non-HTTP-based applications
 using the integration into SASL. Hence, this document takes
 advantage of the OAuth protocol and its deployment base to provide a
 way to use the Simple Authentication and Security Layer (SASL)
 [RFC4422] to gain access to resources when using non-HTTP-based
 protocols, such as the Internet Message Access Protocol (IMAP)
 [RFC3501] and the Simple Mail Transfer Protocol (SMTP) [RFC5321],
 which is what this memo uses in the examples.

 To illustrate the impact of integrating this specification into an
 OAuth-enabled application environment, Figure 1 shows the abstract
 message flow of OAuth 2.0 [RFC6749]. As indicated in the figure,
 this document impacts the exchange of messages (E) and (F) since SASL
 is used for interaction between the client and the resource server
 instead of HTTP.

Mills, et al. Expires May 29, 2015 [Page 3]

https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc6749

Internet-Draft SASL OAuth November 2014

 ----+
 +--------+ +---------------+ |
 | |--(A)-- Authorization Request --->| Resource | |
 | | | Owner | |Plain
 | |<-(B)------ Access Grant ---------| | |OAuth
 | | +---------------+ |2.0
	Client Credentials & +---------------+		
	--(C)------ Access Grant -------->	Authorization	
Client		Server	
	<-(D)------ Access Token ---------		
	(w/ Optional Refresh Token) +---------------+		
	----+		
	----+		
	+---------------+		
	--(E)------ Access Token -------->	Resource	
		Server	
	<-(F)---- Protected Resource -----		
 +--------+ +---------------+ |
 ----+

 Figure 1: OAuth 2.0 Protocol Flow

 The Simple Authentication and Security Layer (SASL) is a framework
 for providing authentication and data security services in
 connection-oriented protocols via replaceable authentication
 mechanisms. It provides a structured interface between protocols and
 mechanisms. The resulting framework allows new protocols to reuse
 existing authentication protocols and allows old protocols to make
 use of new authentication mechanisms. The framework also provides a
 protocol for securing subsequent exchanges within a data security
 layer.

 When OAuth is integrated into SASL the high-level steps are as
 follows:

 (A) The client requests authorization from the resource owner.
 The authorization request can be made directly to the resource
 owner (as shown), or preferably indirectly via the authorization
 server as an intermediary.

 (B) The client receives an authorization grant which is a
 credential representing the resource owner's authorization,
 expressed using one of the grant types defined in [RFC6749] or
 [RFC5849] or using an extension grant type. The authorization

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5849

Mills, et al. Expires May 29, 2015 [Page 4]

Internet-Draft SASL OAuth November 2014

 grant type depends on the method used by the client to request
 authorization and the types supported by the authorization server.

 (C) The client requests an access token by authenticating with the
 authorization server and presenting the authorization grant.

 (D) The authorization server authenticates the client and
 validates the authorization grant, and if valid issues an access
 token.

 (E) The client requests the protected resource from the resource
 server and authenticates by presenting the access token.

 (F) The resource server validates the access token, and if valid,
 indicates a successful authentication.

 Again, steps (E) and (F) are not defined in [RFC6749] (but are
 described in, for example, [RFC6750] for the OAuth Bearer Token
 instead) and are the main functionality specified within this
 document. Consequently, the message exchange shown in Figure 1 is
 the result of this specification. The client will generally need to
 determine the authentication endpoints (and perhaps the service
 endpoints) before the OAuth 2.0 protocol exchange messages in steps
 (A)-(D) are executed. The discovery of the resource owner,
 authorization server endpoints, and client registration are outside
 the scope of this specification. The client must discover the
 authorization endpoints using a discovery mechanism such as OpenID
 Connect Discovery [OpenID.Discovery] or Webfinger using host-meta
 [RFC7033]. Once credentials are obtained the client proceeds to
 steps (E) and (F) defined in this specification. Authorization
 endpoints MAY require client registration and generic clients SHOULD
 support the Dynamic Client Registration protocol
 [I-D.ietf-oauth-dyn-reg].

 OAuth 1.0 follows a similar model but uses a different terminology
 and does not separate the resource server from the authorization
 server.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is assumed to be familiar with the terms used in the OAuth
 2.0 specification [RFC6749] and SASL [RFC4422].

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7033
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc4422

Mills, et al. Expires May 29, 2015 [Page 5]

Internet-Draft SASL OAuth November 2014

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively. Line breaks have been inserted for readability.

 Note that the IMAP SASL specification requires base64 encoding, see
Section 4 of [RFC4648], not this memo.

3. OAuth SASL Mechanism Specifications

 SASL is used as an authentication framework in a variety of
 application layer protocols. This document defines the following
 SASL mechanisms for usage with OAuth:

 OAUTHBEARER: OAuth 2.0 bearer tokens, as described in [RFC6750].
RFC 6750 uses Transport Layer Security (TLS) to secure the

 protocol interaction between the client and the resource
 server.

 OAUTH10A: OAuth 1.0a MAC tokens (using the HMAC-SHA1 keyed
 message digest), as described in Section 3.4.2 of [RFC5849].

 New extensions may be defined to add additional OAuth Access Token
 Types. Such a new SASL OAuth mechanism can be added by simply
 registering the new name(s) and citing this specification for the
 further definition.

 These mechanisms are client initiated and lock-step, the server
 always replying to a client message. In the case where the client
 has and correctly uses a valid token the flow is:

 1. Client sends a valid and correct initial client response.

 2. Server responds with a successful authentication.

 In the case where authorization fails the server sends an error
 result, then client MUST then send an additional message to the
 server in order to allow the server to finish the exchange. Some
 protocols and common SASL implementations do not support both sending
 a SASL message and finalizing a SASL negotiation, the additional
 client message in the error case deals with this problem. This
 exchange is:

 1. Client sends an invalid initial client response.

 2. Server responds with an error message.

 3. Client sends a dummy client response.

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5849#section-3.4.2

Mills, et al. Expires May 29, 2015 [Page 6]

Internet-Draft SASL OAuth November 2014

 4. Server fails the authentication.

3.1. Initial Client Response

 Client responses are a GS2 [RFC5801] header followed by zero or more
 key/value pairs, or may be empty. The gs2-header is defined here for
 compatibility with GS2 if a GS2 mechanism is formally defined, but
 this document does not define one. These key/value pairs take the
 place of the corresponding HTTP headers and values to convey the
 information necessary to complete an OAuth style HTTP authorization.
 Unknown key/value pairs MUST be ignored by the server. The ABNF
 [RFC5234] syntax is:

 kvsep = %x01
 key = 1*(ALPHA / ",")
 value = *(VCHAR / SP / HTAB / CR / LF)
 kvpair = key "=" value kvsep
 ;;gs2-header = See RFC 5801
 client_resp = (gs2-header kvsep 0*kvpair kvsep) / kvsep

 The GS2 header MAY include the user name associated with the resource
 being accessed, the "authzid". It is worth noting that application
 protocols are allowed to require an authzid, as are specific server
 implementations.

 The following keys and corresponding values are defined in the client
 response:

 auth (REQUIRED): The payload that would be in the HTTP
 Authorization header if this OAuth exchange was being carried
 out over HTTP.

 host: Contains the host name to which the client connected. In
 an HTTP context this is the value of the HTTP Host header.

 port: Contains the port number represented as a decimal positive
 integer string without leading zeros to which the client
 connected.

 For OAuth token types such as OAuth 1.0a that use keyed message
 digests the client MUST send host and port number key/values, and the
 server MUST fail an authorization request requiring keyed message
 digests that are not accompanied by host and port values. In OAuth
 1.0a for example, the so-called "signature base string calculation"
 includes the reconstructed HTTP URL.

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5801

Mills, et al. Expires May 29, 2015 [Page 7]

Internet-Draft SASL OAuth November 2014

3.1.1. Reserved Key/Values

 In these mechanisms values for path, query string and post body are
 assigned default values. OAuth authorization schemes MAY define
 usage of these in the SASL context and extend this specification.
 For OAuth Access Token Types that use request keyed message digest
 the default values MUST be used unless explicit values are provided
 in the client response. The following key values are reserved for
 future use:

 mthd (RESERVED): HTTP method, the default value is "POST".

 path (RESERVED): HTTP path data, the default value is "/".

 post (RESERVED): HTTP post data, the default value is "".

 qs (RESERVED): The HTTP query string, the default value is "".

3.2. Server's Response

 The server validates the response according the specification for the
 OAuth Access Token Types used. If the OAuth Access Token Type
 utilizes a keyed message digest of the request parameters then the
 client must provide a client response that satisfies the data
 requirements for the scheme in use.

 The server responds to a successfully verified client message by
 completing the SASL negotiation. The authenticated identity reported
 by the SASL mechanism is the identity securely established for the
 client with the OAuth credential. The application, not the SASL
 mechanism, based on local access policy determines whether the
 identity reported by the mechanism is allowed access to the requested
 resource. Note that the semantics of the authz-id is specified by
 the SASL framework [RFC4422].

3.2.1. OAuth Identifiers in the SASL Context

 In the OAuth framework the client may be authenticated by the
 authorization server and the resource owner is authenticated to the
 authorization server. OAuth access tokens may contain information
 about the authentication of the resource owner and about the client
 and may therefore make this information accessible to the resource
 server.

Mills, et al. Expires May 29, 2015 [Page 8]

https://datatracker.ietf.org/doc/html/rfc4422

Internet-Draft SASL OAuth November 2014

 If both identifiers are needed by an application the developer will
 need to provide a way to communicate that from the SASL mechanism
 back to the application.

3.2.2. Server Response to Failed Authentication

 For a failed authentication the server returns a JSON [RFC7159]
 formatted error result, and fails the authentication. The error
 result consists of the following values:

 status (REQUIRED): The authorization error code. Valid error
 codes are defined in the IANA "OAuth Extensions Error Registry"
 specified in the OAuth 2 core specification.

 scope (OPTIONAL): An OAuth scope which is valid to access the
 service. This may be empty which implies that unscoped tokens
 are required, or a scope value. If a scope is specified then a
 single scope is preferred, use of a space separated list of
 scopes is NOT RECOMMENDED.

 oauth-configuration (OPTIONAL): The URL for for a document
 following the OpenID Provider Configuration Information schema
 as described in OpenID Connect Discovery [OpenID.Discovery]

section 3 that is appropriate for the user. This document MUST
 have all OAuth related data elements populated. The server MAY
 return different URLs for users in different domains and the
 client SHOULD NOT cache a single returned value and assume it
 applies for all users/domains that the server suports. The
 returned discovery document SHOULD have all data elements
 required by the OpenID Connect Discovery specification
 populated. In addition, the discovery document SHOULD contain
 the 'registration_endpoint' element to learn about the endpoint
 to be used with the Dynamic Client Registration protocol
 [I-D.ietf-oauth-dyn-reg] to obtain the minimum number of
 parameters necessary for the OAuth protocol exchange to
 function. Another comparable discovery or client registration
 mechanism MAY be used if available.

 The use of the 'offline_access' scope, as defined in
 [OpenID.Core] is RECOMMENDED to give clients the capability to
 explicitly request a refresh token.

 If the resource server provides a scope then the client MUST always
 request scoped tokens from the token endpoint. If the resource
 server provides no scope to the client then the client SHOULD presume
 an empty scope (unscoped token) is required to access the resource.

https://datatracker.ietf.org/doc/html/rfc7159

Mills, et al. Expires May 29, 2015 [Page 9]

Internet-Draft SASL OAuth November 2014

 Since clients may interact with a number of application servers, such
 as email servers and XMPP servers, they need to have a way to
 determine whether dynamic client registration has been performed
 already and whether an already available refresh token can be re-used
 to obtain an access token for the desired resource server. This
 specification RECOMMENDs that a client uses the information in the
 'iss' element defined in OpenID Connect Core [OpenID.Core] to make
 this determination.

3.2.3. Completing an Error Message Sequence

Section 3.6 of [RFC4422] explicitly prohibits additional information
 in an unsuccessful authentication outcome. Therefore, the error
 message is sent in a normal message. The client MUST then send an
 additional client response consisting of a single %x01 (control A)
 character to the server in order to allow the server to finish the
 exchange.

3.3. OAuth Access Token Types using Keyed Message Digests

 OAuth Access Token Types may use keyed message digests and the client
 and the resource server may need to perform a cryptographic
 computation for integrity protection and data origin authentication.

 OAuth is designed for access to resources identified by URIs. SASL
 is designed for user authentication, and has no facility for more
 fine-grained access control. In this specification we require or
 define default values for the data elements from an HTTP request
 which allow the signature base string to be constructed properly.
 The default HTTP path is "/" and the default post body is empty.
 These atoms are defined as extension points so that no changes are
 needed if there is a revision of SASL which supports more specific
 resource authorization, e.g., IMAP access to a specific folder or FTP
 access limited to a specific directory.

 Using the example in the OAuth 1.0a specification as a starting
 point, on an IMAP server running on port 143 and given the OAuth 1.0a
 style authorization request (with %x01 shown as ^A and line breaks
 added for readability) below:

https://datatracker.ietf.org/doc/html/rfc4422#section-3.6

Mills, et al. Expires May 29, 2015 [Page 10]

Internet-Draft SASL OAuth November 2014

 n,a=user@example.com,^A
 host=example.com^A
 port=143^A
 auth=OAuth realm="Example",
 oauth_consumer_key="9djdj82h48djs9d2",
 oauth_token="kkk9d7dh3k39sjv7",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131201",
 oauth_nonce="7d8f3e4a",
 oauth_signature="Tm90IGEgcmVhbCBzaWduYXR1cmU"^A^A

 The signature base string would be constructed per the OAuth 1.0
 specification [RFC5849] with the following things noted:

 o The method value is defaulted to POST.

 o The scheme defaults to be "http", and any port number other than
 80 is included.

 o The path defaults to "/".

 o The query string defaults to "".

 In this example the signature base string with line breaks added for
 readability would be:

 POST&http%3A%2F%2Fexample.com:143%2F&oauth_consumer_key%3D9djdj82h4
 8djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHMAC-SH
 A1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39sjv7

4. Examples

 These examples illustrate exchanges between IMAP and SMTP clients and
 servers.

 Note to implementers: The SASL OAuth method names are case
 insensitive. One example uses "Bearer" but that could as easily be
 "bearer", "BEARER", or "BeArEr".

4.1. Successful Bearer Token Exchange

 This example shows a successful OAuth 2.0 bearer token exchange in
 IMAP. Note that line breaks are inserted for readability and the
 underlying TLS establishment is not shown either.

Mills, et al. Expires May 29, 2015 [Page 11]

https://datatracker.ietf.org/doc/html/rfc5849

Internet-Draft SASL OAuth November 2014

 S: * OK IMAP4rev1 Server Ready
 C: t0 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2
 VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyIHZGOWRmdDRxb
 VRjMk52YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
 S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and long
 lines wrapped for readability) is:

 n,a=user@example.com,^Ahost=server.example.com^Aport=143^A
 auth=Bearer vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg==^A^A

 The same credential used in an SMTP exchange is shown below. Note
 that line breaks are inserted for readability, and that the SMTP
 protocol terminates lines with CR and LF characters (ASCII values
 0x0D and 0x0A), these are not displayed explicitly in the example.

 [connection begins]
 S: 220 mx.example.com ESMTP 12sm2095603fks.9
 C: EHLO sender.example.com
 S: 250-mx.example.com at your service,[172.31.135.47]
 S: 250-SIZE 35651584
 S: 250-8BITMIME
 S: 250-AUTH LOGIN PLAIN OAUTHBEARER
 S: 250-ENHANCEDSTATUSCODES
 S: 250 PIPELINING
 C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c
 2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyIHZGOWRmdDR
 xbVRjMk52YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
 S: 235 Authentication successful.
 [connection continues...]

4.2. Successful OAuth 1.0a Token Exchange

 This IMAP example shows a successful OAuth 1.0a token exchange. Note
 that line breaks are inserted for readability and the underlying TLS
 establishment is not shown. Signature computation is discussed in

Section 3.3.

https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires May 29, 2015 [Page 12]

Internet-Draft SASL OAuth November 2014

 S: * OK IMAP4rev1 Server Ready
 C: t0 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER OAUTH10A SASL-IR
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH10A bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9ZXhhb
 XBsZS5jb20BcG9ydD0xNDMBYXV0aD1PQXV0aCByZWFsbT0iRXhhbXBsZSIsb2F1
 dGhfY29uc3VtZXJfa2V5PSI5ZGpkajgyaDQ4ZGpzOWQyIixvYXV0aF90b2tlbj0
 ia2trOWQ3ZGgzazM5c2p2NyIsb2F1dGhfc2lnbmF0dXJlX21ldGhvZD0iSE1BQy
 1TSEExIixvYXV0aF90aW1lc3RhbXA9IjEzNzEzMTIwMSIsb2F1dGhfbm9uY2U9I
 jdkOGYzZTRhIixvYXV0aF9zaWduYXR1cmU9IlRtOTBJR0VnY21WaGJDQnphV2R1
 WVhSMWNtVSUzRCIBAQ==
 S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and
 lines wrapped for readability) is:

 n,a=user@example.com,^A
 host=example.com^A
 port=143^A
 auth=OAuth realm="Example",
 oauth_consumer_key="9djdj82h48djs9d2",
 oauth_token="kkk9d7dh3k39sjv7",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131201",
 oauth_nonce="7d8f3e4a",
 oauth_signature="SSdtIGEgbGl0dGxlIHRlYSBwb3Qu"^A^A

4.3. Failed Exchange

 This IMAP example shows a failed exchange because of the empty
 Authorization header, which is how a client can query for the needed
 scope. Note that line breaks are inserted for readability.

 S: * OK IMAP4rev1 Server Ready
 C: t0 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR IMAP4rev1 Server
 Ready
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAW
 hvc3Q9c2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AQE=
 S: + eyJzdGF0dXMiOiJpbnZhbGlkX3Rva2VuIiwic2NvcGUiOiJleGFtcGxl
 X3Njb3BlIiwib3BlbmlkLWNvbmZpZ3VyYXRpb24iOiJodHRwczovL2V4
 YW1wbGUuY29tLy53ZWxsLWtub3duL29wZW5pZC1jb25maWd1cmF0aW9u
 In0=
 C: + AQ==
 S: t1 NO SASL authentication failed

https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires May 29, 2015 [Page 13]

Internet-Draft SASL OAuth November 2014

 The decoded initial client response is:

 n,a=user@example.com,^Ahost=server.example.com^A
 port=143^Aauth=^A^A

 The decoded server error response is:

{
"status":"invalid_token",
"scope":"example_scope",
"openid-configuration":"https://example.com/.well-known/openid-configuration"
}

 The client responds with the required dummy response, "AQ==" is the
 base64 encoding of the ASCII value 0x01.

4.4. SMTP Example of a Failed Negotiation

 This example shows an authorization failure in an SMTP exchange.
 Note that line breaks are inserted for readability, and that the SMTP
 protocol terminates lines with CR and LF characters (ASCII values
 0x0D and 0x0A), these are not displayed explicitly in the example.

[connection begins]
S: 220 mx.example.com ESMTP 12sm2095603fks.9
C: EHLO sender.example.com
S: 250-mx.example.com at your service,[172.31.135.47]
S: 250-SIZE 35651584
S: 250-8BITMIME
S: 250-AUTH LOGIN PLAIN OAUTHBEARER
S: 250-ENHANCEDSTATUSCODES
S: 250 PIPELINING
C: AUTH OAUTHBEARER bix1c2VyPXNvbWV1c2VyQGV4YW1wbGUuY29tLAFhdXRoPUJlYXJl
 ciB2RjlkZnQ0cW1UYzJOdmIzUmxja0JoZEhSaGRtbHpkR0V1WTI5dENnPT0BAQ==
S: 334 eyJzdGF0dXMiOiI0MDEiLCJzY2hlbWVzIjoiYmVhcmVyIG1hYyIsInNjb3BlIjoia
 HR0cHM6Ly9tYWlsLmdvb2dsZS5jb20vIn0K
C: AQ==
S: 535-5.7.1 Username and Password not accepted. Learn more at
S: 535 5.7.1 http://support.example.com/mail/oauth
[connection continues...]

 The server returned an error message in the 334 SASL message, the
 client responds with the required dummy response, and the server
 finalizes the negotiation.

Mills, et al. Expires May 29, 2015 [Page 14]

Internet-Draft SASL OAuth November 2014

5. Security Considerations

 OAuth 1.0a and OAuth 2 allows for a variety of deployment scenarios,
 and the security properties of these profiles vary. As shown in
 Figure 1 this specification is aimed to be integrated into a larger
 OAuth deployment. Application developers therefore need to
 understand the needs of their security requirements based on a threat
 assessment before selecting a specific SASL OAuth mechanism. For
 OAuth 2.0 a detailed security document [RFC6819] provides guidance to
 select those OAuth 2.0 components that help to mitigate threats for a
 given deployment. For OAuth 1.0a Section 4 of RFC 5849 [RFC5849]
 provides guidance specific to OAuth 1.0.

 This document specifies two SASL Mechanisms for OAuth and each comes
 with different security properties.

 OAUTHBEARER: This mechanism borrows from OAuth 2.0 bearer tokens
 [RFC6750]. It relies on the application using TLS to protect the
 OAuth 2.0 Bearer Token exchange; without TLS usage at the
 application layer this method is completely insecure.
 Consequently, TLS MUST be provided by the application when
 choosing this authentication mechanism.

 OAUTH10A: This mechanism re-uses OAuth 1.0a MAC tokens (using the
 HMAC-SHA1 keyed message digest), as described in Section 3.4.2 of
 [RFC5849]. To compute the keyed message digest in the same way
 was in RFC 5839 this specification conveys additional parameters
 between the client and the server. This SASL mechanism only
 supports client authentication. If server-side authentication is
 desireable then it must be provided by the application underneath
 the SASL layer. The use of TLS is strongly RECOMMENDED.

 Additionally, the following aspects are worth pointing out:

 An access token is not equivalent to the user's long term password.

 Care has to be taken when these OAuth credentials are used for
 actions like changing passwords (as it is possible with some
 protocols, e.g., XMPP [RFC6120]). The resource server should
 ensure that actions taken in the authenticated channel are
 appropriate to the strength of the presented credential.

 Lifetime of the appliation sessions.

 It is possible that SASL will be authenticating a connection and
 the life of that connection may outlast the life of the access
 token used to establish it. This is a common problem in
 application protocols where connections are long-lived, and not a

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc5849#section-4
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5849#section-3.4.2
https://datatracker.ietf.org/doc/html/rfc5849#section-3.4.2
https://datatracker.ietf.org/doc/html/rfc5839
https://datatracker.ietf.org/doc/html/rfc6120

Mills, et al. Expires May 29, 2015 [Page 15]

Internet-Draft SASL OAuth November 2014

 problem with this mechanism per se. Resource servers may
 unilaterally disconnect clients in accordance with the application
 protocol.

 Access tokens have a lifetime.

 Reducing the lifetime of an access token provides security
 benefits and OAuth 2.0 introduces refresh tokens to obtain new
 access token on the fly without any need for a human interaction.
 Additionally, a previously obtained access token might be revoked
 or rendered invalid at any time. The client MAY request a new
 access token for each connection to a resource server, but it
 SHOULD cache and re-use valid credentials.

6. Internationalization Considerations

 The identifer asserted by the OAuth authorization server about the
 resource owner inside the access token may be displayed to a human.
 For example, when SASL is used in the context of IMAP the client may
 assert the resource owner's email address to the IMAP server for
 usage in an email-based application. The identifier may therefore
 contain internationalized characters and an application needs to
 ensure that the mapping between the identifier provided by OAuth is
 suitable for use with the application layer protocol SASL is
 incorporated into.

 At the time of writing the standardization of the various claims in
 the access token (in JSON format) is still ongoing, see
 [I-D.ietf-oauth-json-web-token]. Once completed it will provide a
 standardized format for exchanging identity information between the
 authorization server and the resource server.

7. IANA Considerations

7.1. SASL Registration

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTHBEARER

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

Mills, et al. Expires May 29, 2015 [Page 16]

Internet-Draft SASL OAuth November 2014

 Note: None

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH10A

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

8. References

8.1. Normative References

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", February 2014.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", July 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Mills, et al. Expires May 29, 2015 [Page 17]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246

Internet-Draft SASL OAuth November 2014

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

8.2. Informative References

 [I-D.ietf-oauth-dyn-reg]
 Richer, J., Jones, M., Bradley, J., Machulak, M., and P.
 Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

draft-ietf-oauth-dyn-reg-20 (work in progress), August
 2014.

 [I-D.ietf-oauth-json-web-token]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token-31 (work in
 progress), November 2014.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-20
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-31
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6819

Mills, et al. Expires May 29, 2015 [Page 18]

Internet-Draft SASL OAuth November 2014

 [RFC7033] Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
 "WebFinger", RFC 7033, September 2013.

Appendix A. Acknowlegements

 The authors would like to thank the members of the Kitten working
 group, and in addition and specifically: Simon Josefson, Torsten
 Lodderstadt, Ryan Troll, Alexey Melnikov, Jeffrey Hutzelman, Nico
 Williams, Matt Miller, and Benjamin Kaduk.

 This document was produced under the chairmanship of Alexey Melnikov,
 Tom Yu, Shawn Emery, Josh Howlett, Sam Hartman. The supervising area
 director was Stephen Farrell.

Appendix B. Document History

 [[to be removed by RFC editor before publication as an RFC]]

 -18

 o Last call feedback round #5. Fixed -17 change log.

 o Corrected "issue" to "iss", other minor changes.

 -17

 o Last call feedback again (WGLC #4). eradicated comma splicing.
 Removed extra server message in example 4.3.

 o Added recommendations for discovery and dynamic client
 registration support.

 -16

 o Last call feedback again. Primarily editorial changes. Corrected
 examples.

 -15

 o Last call feedack on the GS2 stuff being ripped out completely.

 o Removed the "user" parameter and put stuff back into the
 gs2-header. Call out that the authzid goes in the gs2-header with
 some prose about when it might be required. Very comparable to
 -10.

 o Added an OAuth 1.0A example explicitly.

Mills, et al. Expires May 29, 2015 [Page 19]

https://datatracker.ietf.org/doc/html/rfc7033

Internet-Draft SASL OAuth November 2014

 -14

 o Last call feedack on RFC citations needed, small editorial.

 o Added the "user" parameter back, which was pulled when we started
 down the GS2 path. Same language as -03.

 o Defined a stub GS2 header to make sure that when the GS2 bride is
 defined for this that nothing will break when it actually starts
 to get populated.

 -13

 o Changed affiliation.

 -12

 o Removed -PLUS components from the specification.

 -11

 o Removed GSS-API components from the specification.

 o Updated security consideration section.

 -10

 o Clarifications throughout the document in response to the feedback
 from Jeffrey Hutzelman.

 -09

 o Incorporated review by Alexey and Hannes.

 o Clarified the three OAuth SASL mechanisms.

 o Updated references

 o Extended acknowledgements

 -08

 o Fixed the channel binding examples for p=$cbtype

 o More tuning of the authcid language and edited and renamed 3.2.1.

 -07

Mills, et al. Expires May 29, 2015 [Page 20]

Internet-Draft SASL OAuth November 2014

 o Struck the MUST langiage from authzid.

 o

 -06

 o Removed the user field. Fixed the examples again.

 o Added canonicalization language.

 o

 -05

 o Fixed the GS2 header language again.

 o Separated out different OAuth schemes into different SASL
 mechanisms. Took out the scheme in the error return. Tuned up
 the IANA registrations.

 o Added the user field back into the SASL message.

 o Fixed the examples (again).

 o

 -04

 o Changed user field to be carried in the gs2-header, and made gs2
 header explicit in all cases.

 o Converted MAC examples to OAuth 1.0a. Moved MAC to an informative
 reference.

 o Changed to sending an empty client response (single control-A) as
 the second message of a failed sequence.

 o Fixed channel binding prose to refer to the normative specs and
 removed the hashing of large channel binding data, which brought
 mroe problems than it solved.

 o Added a SMTP examples for Bearer use case.

 -03

 o Added user field into examples and fixed egregious errors there as
 well.

Mills, et al. Expires May 29, 2015 [Page 21]

Internet-Draft SASL OAuth November 2014

 o Added text reminding developers that Authorization scheme names
 are case insensitive.

 -02

 o Added the user data element back in.

 o Minor editorial changes.

 -01

 o Ripping out discovery. Changed to refer to I-D.jones-appsawg-
 webfinger instead of WF and SWD older drafts.

 o Replacing HTTP as the message format and adjusted all examples.

 -00

 o Renamed draft into proper IETF naming format now that it's
 adopted.

 o Minor fixes.

Authors' Addresses

 William Mills
 Microsoft

 Email: wimills@microsoft.com

 Tim Showalter

 Email: tjs@psaux.com

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Mills, et al. Expires May 29, 2015 [Page 22]

http://www.tschofenig.priv.at

