
KITTEN W. Mills
Internet-Draft Yahoo! Inc.
Intended status: Standards Track T. Showalter
Expires: February 21, 2013
 H. Tschofenig
 Nokia Siemens Networks
 August 20, 2012

A SASL and GSS-API Mechanism for OAuth
draft-ietf-kitten-sasl-oauth-04

Abstract

 OAuth enables a third-party application to obtain limited access to a
 protected resource, either on behalf of a resource owner by
 orchestrating an approval interaction, or by allowing the third-party
 application to obtain access on its own behalf.

 This document defines how an application client uses OAuth over the
 Simple Authentication and Security Layer (SASL) or the Generic
 Security Service Application Program Interface (GSS-API) to access a
 protected resource at a resource serve. Thereby, it enables schemes
 defined within the OAuth framework for non-HTTP-based application
 protocols.

 Clients typically store the user's long term credential. This does,
 however, lead to significant security vulnerabilities, for example,
 when such a credential leaks. A significant benefit of OAuth for
 usage in those clients is that the password is replaced by a token.
 Tokens typically provided limited access rights and can be managed
 and revoked separately from the user's long-term credential
 (password).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Mills, et al. Expires February 21, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 This Internet-Draft will expire on February 21, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Mills, et al. Expires February 21, 2013 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Table of Contents

1. Introduction . 4
2. Terminology . 8
3. OAuth SASL Mechanism Specification 9
3.1. Initial Client Response 9
3.1.1. Reserved Key/Values in OAUTH 10
3.1.2. Use of the gs2-header 11

3.2. Server's Response . 11
3.2.1. Mapping to SASL Identities 11

 3.2.2. Server response to failed authentication. 12
 3.2.3. Completing an error message sequence. 12

3.3. Use of Signature Type Authorization 13
3.4. Channel Binding . 14

4. GSS-API OAuth Mechanism Specification 15
5. Examples . 16
5.1. Successful Bearer Token Exchange 16
5.2. OAuth 1.0a Authorization with Channel Binding 17
5.3. Failed Exchange . 18
5.4. Failed Channel Binding 19

 5.5. SMTP Example of a failed negotiation. 19
6. Security Considerations 21
7. IANA Considerations . 22
7.1. SASL Registration . 22
7.2. GSS-API Registration 22

8. References . 23
8.1. Normative References 23
8.2. Informative References 24

Appendix A. Acknowlegements 25
Appendix B. Document History 26

 Authors' Addresses . 28

Mills, et al. Expires February 21, 2013 [Page 3]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

1. Introduction

 OAuth [I-D.ietf-oauth-v2] enables a third-party application to obtain
 limited access to a protected resource, either on behalf of a
 resource owner by orchestrating an approval interaction, or by
 allowing the third-party application to obtain access on its own
 behalf. The core OAuth specification [I-D.ietf-oauth-v2] does not
 define the interaction between the client and the resource server
 with the access to a protected resource using an Access Token. This
 functionality is described in separate specifications, for example
 [I-D.ietf-oauth-v2-bearer], [I-D.ietf-oauth-v2-http-mac], and OAuth
 1.0a [RFC5849] where the focus is on an HTTP-based environment only.

 Figure 1 shows the abstract message flow as shown in Figure 1 of
 [I-D.ietf-oauth-v2].

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---h------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract OAuth 2.0 Protocol Flow

 This document takes advantage of the OAuth protocol and its
 deployment base to provide a way to use SASL [RFC4422] as well as the
 GSS-API [RFC2743] to gain access to resources when using non-HTTP-
 based protocols, such as the Internet Message Access Protocol (IMAP)
 [RFC3501] and SMTP [RFC5321], which is what this memo uses in the
 examples.

 The Simple Authentication and Security Layer (SASL) is a framework
 for providing authentication and data security services in
 connection-oriented protocols via replaceable mechanisms. It
 provides a structured interface between protocols and mechanisms.

https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc5321

Mills, et al. Expires February 21, 2013 [Page 4]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 The resulting framework allows new protocols to reuse existing
 mechanisms and allows old protocols to make use of new mechanisms.
 The framework also provides a protocol for securing subsequent
 protocol exchanges within a data security layer.

 The Generic Security Service Application Program Interface (GSS-API)
 [RFC2743] provides a framework for applications to support multiple
 authentication mechanisms through a unified interface.

 This document defines a SASL mechanism for OAuth, but it conforms to
 the new bridge between SASL and the GSS-API called GS2 [RFC5801].
 This means that this document defines both a SASL mechanism and a
 GSS-API mechanism. Implementers may be interested in either the
 SASL, the GSS-API, or even both mechanisms. To faciliate these two
 variants, the description has been split into two parts, one part
 that provides normative references for those interested in the SASL
 OAuth mechanism (see Section 3), and a second part for those
 implementers that wish to implement the GSS-API portion (see

Section 4).

 When OAuth is integrated into SASL and the GSS-API the high-level
 steps are as follows:

 (A) The client requests authorization from the resource owner.
 The authorization request can be made directly to the resource
 owner (as shown), or preferably indirectly via the authorization
 server as an intermediary.

 (B) The client receives an authorization grant which is a
 credential representing the resource owner's authorization,
 expressed using one of four grant types defined in this
 specification or using an extension grant type. The authorization
 grant type depends on the method used by the client to request
 authorization and the types supported by the authorization server.

 (C) The client requests an access token by authenticating with the
 authorization server and presenting the authorization grant.

 (D) The authorization server authenticates the client and
 validates the authorization grant, and if valid issues an access
 token.

 (E) The client requests the protected resource from the resource
 server and authenticates by presenting the access token.

 (F) The resource server validates the access token, and if valid,
 indicates a successful authentication.

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5801

Mills, et al. Expires February 21, 2013 [Page 5]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 Steps (E) and (F) are not defined in [I-D.ietf-oauth-v2] and are the
 main functionality specified within this document. Consequently, the
 message exchange shown in Figure 2 is the result of this
 specification. The client will genrally need to determine the
 authentication endpoints (and perhaps the service endpoints) before
 the OAuth 2.0 protocol exchange messages in steps (A)-(D) are
 executed. The discovery of the resource owner and authorization
 server endpoints is outside the scope of this specification. The
 client must discover those endpoints using a discovery mechanisms
 such as Webfinger using host-meta [I-D.jones-appsawg-webfinger]. In
 band discovery is not tenable if clients support the OAuth 2.0
 password grant. Once credentials are obtained the client proceeds to
 steps (E) and (F) defined in this specification.

 The client need not implement more than one authorization scheme, and
 there are no mandatory to implement schemes. The server MUST
 advertise at least one scheme if the OAUTH mechanism is offered.
 During discovery the client might not find any schemes that it
 supports, an OAuth 2.0 enabled client MAY attempt to fetch a
 credential for a scheme it supports from a discovered OAuth 2.0
 authorization endpoint. If the client finds no schemes it supports
 the client SHOULD provide feedback to the user that the requested
 enpoint can not be supported.

 ----+
 +--------+ +---------------+ |
 | |--(A)-- Authorization Request --->| Resource | |
 | | | Owner | |Plain
 | |<-(B)------ Access Grant ---------| | |OAuth
 | | +---------------+ |2.0
	Client Credentials & +---------------+		
	--(C)------ Access Grant -------->	Authorization	
Client		Server	
	<-(D)------ Access Token ---------		
	(w/ Optional Refresh Token) +---------------+		
	----+		
	----+		
	+---------------+		
	--(E)------ Access Token -------->	Resource	
		Server	
	<-(F)---- Protected Resource -----		
 +--------+ +---------------+ |
 ----+

Mills, et al. Expires February 21, 2013 [Page 6]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 Figure 2: OAuth SASL Architecture

Mills, et al. Expires February 21, 2013 [Page 7]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is assumed to be familiar with the terms used in the OAuth
 2.0 specification [I-D.ietf-oauth-v2].

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively. Line breaks have been inserted for readability.

 Note that the IMAP SASL specification requires base64 encoding
 message, not this memo.

Mills, et al. Expires February 21, 2013 [Page 8]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

3. OAuth SASL Mechanism Specification

 SASL is used as a generalized authentication method in a variety of
 application layer protocols. This document defines two SASL
 mechanisms for usage with OAuth: "OAUTH" and "OAUTH-PLUS". The
 "OAUTH" SASL mechanism enables OAuth authorization schemes for SASL,
 "OAUTH-PLUS" adds channel binding [RFC5056] capability for additional
 security guarantees.

 This mechanism is client initiated and lock-step, the server always
 replying to a client message. In the case where the client has and
 correctly uses a valid token the flow is:

 o Client sends a valid and correct initial client response.

 o Server responds with a successful authentication.

 In the case where authorization fails the server sends an error
 result, then client MUST then send an additional message to the
 server in order to allow the server to finish the exchange. Some
 protocols and common SASL implementations do not support both sending
 a SASL message and finalizing a SASL negotiation, the additional
 client message in the error case deals with this problem. This
 exchange is:

 o Client sends an invalid initial client response.

 o Server responds with an error message.

 o Client sends an empty client reponse.

 o Server fails the authentication.

3.1. Initial Client Response

 Client responses are a key/value pair sequence. The initial client
 response includes a gs2-header as defined in GSS-API [RFC5801], which
 carries the authorization ID as a hint. These key/value pairs carry
 the equivalent values from an HTTP context in order to be able to
 complete an OAuth style HTTP authorization. The client MUST send an
 authorization ID in the gs2-header. The server MAY use this as a
 routing or database lookup hint. The server MUST NOT use this as
 authoritative, the user name MUST be asserted by the OAuth
 credential. The ABNF [RFC5234] syntax is:

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5234

Mills, et al. Expires February 21, 2013 [Page 9]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 kvsep = %x01
 key = 1*ALPHA
 value = *(VCHAR | SP | HTAB | CR | LF)
 kvpair = key "=" value kvsep
 client_resp = 0*kvpair kvsep
 ;; gs2-header = As defined in GSS-API
 initial_client_resp = gs2-header kvsep client_resp

 The following key/value pairs are defined in the client response:

 auth (REQUIRED): The payload of the HTTP Authorization header for
 an equivalent HTTP OAuth authroization.

 host: Contains the host name to which the client connected.

 port: Contains the port number represented as a decimal positive
 integer string without leading zeros to which the client
 connected.

 qs: The HTTP query string. In OAUTH this is reserved, the client
 SHOUD NOT send it, and has the default value of "". In OAUTH-
 PLUS this carries a single key value pair "cbdata" for the
 channel binding data payload formatted as an HTTP query string.

 In authorization schemes that use signatures, the client MUST send
 host and port number key/values, and the server MUST fail an
 authorization request requiring signatures that does not have host
 and port values. For authorization schemes that require a scheme as
 part of the URI being signed "http" is always used.

3.1.1. Reserved Key/Values in OAUTH

 In the OAUTH mechanism values for path, query string and post body
 are assigned default values. OAuth authorization schemes MAY define
 usage of these in the SASL context and extend this specification.
 For OAuth schemes that use request signatures the default values MUST
 be used unless explict values are provided in the client response.
 The following key values are reserved for future use:

 mthd (RESERVED): HTTP method for use in signatures, the default
 value is "POST".

Mills, et al. Expires February 21, 2013 [Page 10]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 path (RESERVED): HTTP path data, the default value is "/".

 post (RESERVED): HTTP post data, the default value is "".

3.1.2. Use of the gs2-header

 The gs2-header is used as follows:

 o The "gs2-nonstd-flag" MUST NOT be present.

 o The "gs2-authzid" carries the authorization identity as specified
 in [RFC5801].

 In the OAUTH mechanism the "gs2-cb-flag" MUST be set to "n" because
 channel-binding [RFC5056] data is not expected. In the OAUTH-PLUS
 mechanism the "gs2-cb-flag" MUST be set appropriately by the client.

3.2. Server's Response

 The server validates the response per the specification for the
 authorization scheme used. If the authorization scheme used includes
 signing of the request parameters the client must provide a client
 response that satisfies the data requirements for the scheme in use.

 In the OAUTH-PLUS mechanism the server examines the channel binding
 data, extracts the channel binding unique prefix, and extracts the
 raw channel biding data based on the channel binding type used. It
 then computes it's own copy of the channel binding payload and
 compares that to the payload sent by the client in the cbdata key/
 value. Those two must be equal for channel binding to succeed.

 The server responds to a successfully verified client message by
 completing the SASL negotiation. The authorization scheme MUST carry
 the user ID to be used as the authorization identity (identity to act
 as). The server MUST use the ID obtained from the credential as the
 user being authorized.

3.2.1. Mapping to SASL Identities

 Some OAuth mechanisms can provide both an authorization identity and
 an authentication identity. An example of this is OAuth 1.0a
 [RFC5849] where the consumer key (oauth_consumer_key) identifies the
 entity using the token which equates to the SASL authentication
 identity, and is authenticated using the shared secret. The
 authorization identity in the OAuth 1.0a case is carried in the token
 (per the requirement above), which SHOULD be validated independently.
 The server MAY use a consumer key, a value derived from it, or other
 comparable identity in the OAuth authorization scheme as the SASL

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5849

Mills, et al. Expires February 21, 2013 [Page 11]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 authentication identity. If an appropriate authentication identity
 is not available the server MUST use the authorization identity as
 the authentication identity.

3.2.2. Server response to failed authentication.

 For a failed authentication the server returns a JSON [RFC4627]
 formatted error result, and fails the authentication. The error
 result consists of the following values:

 status (REQUIRED): The authorization error code. Valid error
 codes are defined in the IANA [[need registry name]] registry
 specified in the OAuth 2 core specification.

 schemes (REQUIRED): A space separated list of the OAuth
 authorization schemes supported by the server, i.e. "bearer" or
 "bearer mac".

 scope (OPTIONAL): An OAuth scope which is valid to access the
 service. This may be empty which implies that unscoped tokens
 are required, or a space separated list. Use of a space
 separated list is NOT RECOMMENDED.

 If the resource server provides a scope the client SHOULD always
 request scoped tokens from the token endpoint. The client MAY use a
 scope other than the one provided by the resource server. Scopes
 other than those advertised by the resource server are be defined by
 the resource owner and provided in service documentation or discovery
 information (which is beyond the scope of this memo). If not present
 then the client SHOULD presume an empty scope (unscoped token) is
 needed.

 If channel binding is in use and the channel binding fails the server
 responds with a status code set to 412 to indicate that the channel
 binding precondition failed. If the authentication scheme in use
 does not include signing the server SHOULD revoke the presented
 credential and the client SHOULD discard that credential.

3.2.3. Completing an error message sequence.

 If the client gets an error message form the server it MUST send an
 empty client response consisting of a single %x01 (control A)
 character, which is a correctly formatted client response with no
 key/value pairs. The server then completes the SASL negotiation with
 a failure result.

https://datatracker.ietf.org/doc/html/rfc4627

Mills, et al. Expires February 21, 2013 [Page 12]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

3.3. Use of Signature Type Authorization

 This mechanism supports authorization using signatures, which
 requires that both client and server construct the string to be
 signed. OAuth 2 is designed for authentication/authorization to
 access specific URIs. SASL is designed for user authentication, and
 has no facility for being more specific. In this mechanism we
 require or define default values for the data elements from an HTTP
 request which allow the signature base string to be constructed
 properly. The default HTTP path is "/" and the default post body is
 empty. These atoms are defined as extension points so that no
 changes are needed if there is a revision of SASL which supports more
 specific resource authorization, e.g. IMAP access to a specific
 folder or FTP access limited to a specific directory.

 Using the example in the OAuth 1.0a specification as a starting
 point, on an IMAP server running on port 143 and given the OAuth 1.0a
 style authorization request (with %x01 shown as ^A and line breaks
 added for readability) below:

 n,a=user@example.com,^A
 host=example.com^A
 port=143^A
 auth=OAuth realm="Example",
 oauth_consumer_key="9djdj82h48djs9d2",
 oauth_token="kkk9d7dh3k39sjv7",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131201",
 oauth_nonce="7d8f3e4a",
 oauth_signature="Tm90IGEgcmVhbCBzaWduYXR1cmU%3D"^A^A

 The signature base string would be constructed per the OAuth 1.0
 specification [RFC5849] with the following things noted:

 o The method value is defaulted to POST.

 o The scheme defaults to be "http", and any port number other than
 80 is included.

 o The path defaults to "/".

 o The query string defaults to "".

 In this example the signature base string with line breaks added for
 readability would be:

https://datatracker.ietf.org/doc/html/rfc5849

Mills, et al. Expires February 21, 2013 [Page 13]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 POST&http%3A%2F%2Fexample.com:143%2F&oauth_consumer_key%3D9djdj82h4
 8djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHMAC-SH
 A1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39sjv7

3.4. Channel Binding

 The channel binding data is carried in the "qs" (query string) key
 value pair formatted as a standard HTTP query parameter with the name
 "cbdata". Channel binding requires that the channel binding data be
 integrity protected end-to-end in order to protect against man-in-
 the-middle attacks. All authorization schemes offered in an OAUTH-
 PLUS mechanism MUST provide integrity protection. It should be noted
 that while the Bearer token scheme specifies SSL for normal usage it
 offers no integrity protection and is not suitable for use in OAUTH-
 PLUS.

 The channel binding data is computed by the client based on it's
 choice of preferred channel binding type. As specified in [RFC5056],
 the channel binding information MUST start with the channel binding
 unique prefix, followed by a colon (ASCII 0x3A), followed by a base64
 encoded channel binding payload. The channel binding payload is the
 raw data from the channel binding type. For example, if the client
 is using tls-unique for channel binding then the raw channel binding
 data is the TLS finished message as specified in section 3.1 of
 [RFC5929].

Mills, et al. Expires February 21, 2013 [Page 14]

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5929#section-3.1
https://datatracker.ietf.org/doc/html/rfc5929#section-3.1

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

4. GSS-API OAuth Mechanism Specification

 Note: The normative references in this section are informational for
 SASL implementers, but they are normative for GSS-API implementers.

 The SASL OAuth mechanism is also a GSS-API mechanism and the messages
 described in Section 3 are the same, but

 1. the initial context token header is prefixed to the client's
 first authentication message (context token), as described in

Section 3.1 of RFC 2743,

 The GSS-API mechanism OID for OAuth is [[TBD: IANA]].

 OAuth security contexts always have the mutual_state flag
 (GSS_C_MUTUAL_FLAG) set to TRUE. OAuth supports credential
 delegation, therefore security contexts may have the deleg_state flag
 (GSS_C_DELEG_FLAG) set to either TRUE or FALSE.

 The mutual authentication property of this mechanism relies on
 successfully comparing the TLS server identity with the negotiated
 target name. Since the TLS channel is managed by the application
 outside of the GSS-API mechanism, the mechanism itself is unable to
 confirm the name while the application is able to perform this
 comparison for the mechanism. For this reason, applications MUST
 match the TLS server identity with the target name, as discussed in
 [RFC6125].

 The OAuth mechanism does not support per-message tokens or
 GSS_Pseudo_random.

 OAuth supports a standard generic name syntax for acceptors, such as
 GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1). These
 service names MUST be associated with the "entityID" claimed by the
 RP. OAuth supports only a single name type for initiators:
 GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name type.
 The query, display, and exported name syntaxes for OAuth principal
 names are all the same. There is no OAuth-specific name syntax;
 applications SHOULD use generic GSS-API name types, such as
 GSS_C_NT_USER_NAME and GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743],
 Section 4). The exported name token does, of course, conform to

[RFC2743], Section 3.2, but the "NAME" part of the token should be
 treated as a potential input string to the OAuth name normalization
 rules.

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc2743#section-4.1
https://datatracker.ietf.org/doc/html/rfc2743#section-4
https://datatracker.ietf.org/doc/html/rfc2743#section-4
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2

Mills, et al. Expires February 21, 2013 [Page 15]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

5. Examples

 These example illustrate exchanges between an IMAP client and an IMAP
 server.

 Note to implementers: Authorization scheme names are case
 insensitive. One example uses "Bearer" but that could as easily be
 "bearer", "BEARER", or "BeArEr".

5.1. Successful Bearer Token Exchange

 This example shows a successful OAuth 2.0 bearer token exchange.
 Note that line breaks are inserted for readability.

 S: * IMAP4rev1 Server Ready
 C: t0 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=OAUTH
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2VydmVy
 LmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyIHZGOWRmdDRxbVRjMk5
 2YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
 S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and long
 lines wrapped for readability) is:

 n,a=user@example.com,^Ahost=server.example.com^Aport=143^A
 auth=Bearer vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg==^A^A

 The same credential used in an SMTP exchange is shown below. Note
 that line breaks are inserted for readability, and that the SMTP
 protocol terminates lines with CR and LF characters (ASCII values
 0x0D and 0x0A), these are not displayed explicitly in the example.

Mills, et al. Expires February 21, 2013 [Page 16]

https://datatracker.ietf.org/doc/html/rfc3501

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 [connection begins]
 S: 220 mx.example.com ESMTP 12sm2095603fks.9
 C: EHLO sender.example.com
 S: 250-mx.example.com at your service,[172.31.135.47]
 S: 250-SIZE 35651584
 S: 250-8BITMIME
 S: 250-AUTH LOGIN PLAIN OAUTH
 S: 250-ENHANCEDSTATUSCODES
 S: 250-PIPELINING
 C: t1 AUTHENTICATE OAUTH bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2VydmVy
 LmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyIHZGOWRmdDRxbVRjMk5
 2YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
 S: 235 Authentication successful.
 [connection continues...]

5.2. OAuth 1.0a Authorization with Channel Binding

 This example shows channel binding in the context of an OAuth 1.0a
 signed authorization request. Note that line breaks are inserted for
 readability.

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready
S: t0 OK Completed
C: t1 AUTHENTICATE OAUTH-PLUS eSxhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2Vydm
 VyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9T0F1dGggcmVhbG09IkV4YW1wbGUi
 LG9hdXRoX2NvbnN1bWVyX2tleT0iOWRqZGo4Mmg0OGRqczlkMiIsb2F1dGhfdG9rZW
 49ImtrazlkN2RoM2szOXNqdjciLG9hdXRoX3NpZ25hdHVyZV9tZXRob2Q9IkhNQUMt
 U0hBMSIsb2F1dGhfdGltZXN0YW1wPSIxMzcxMzEyMDEiLG9hdXRoX25vbmNlPSI3ZD
 hmM2U0YSIsb2F1dGhfc2lnbmF0dXJlPSJTU2R0SUdFZ2JHbDBkR3hsSUhSbFlTQndi
 M1F1IgFxcz1jYmRhdGE9dGxzLXVuaXF1ZTpTRzkzSUdKcFp5QnBjeUJoSUZSTVV5Qm
 1hVzVoYkNCdFpYTnpZV2RsUHdvPQEB
S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and
 lines wrapped for readability) is:

Mills, et al. Expires February 21, 2013 [Page 17]

https://datatracker.ietf.org/doc/html/rfc3501

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 y,a=user@example.com,^A
 host=server.example.com^A
 port=143^A
 auth=OAuth realm="Example",
 oauth_consumer_key="9djdj82h48djs9d2",
 oauth_token="kkk9d7dh3k39sjv7",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131201",
 oauth_nonce="7d8f3e4a",
 oauth_signature="SSdtIGEgbGl0dGxlIHRlYSBwb3Qu"^A
 qs=cbdata=tls-unique:SG93IGJpZyBpcyBhIFRMUyBmaW5hbCBtZXNzYWdlPwo=^A^A

 In this example the signature base string with line breaks added for
 readability would be:

 POST&http%3A%2F%2Fserver.example.com:143%2F&cbdata=tls-unique:SG93I
 GJpZyBpcyBhIFRMUyBmaW5hbCBtZXNzYWdlPwo=%26oauth_consumer_key%3D9djd
 j82h48djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHM
 AC-SHA1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39s
 jv7

5.3. Failed Exchange

 This example shows a failed exchange because of the empty
 Authorization header, which is how a client can query for the needed
 scope. Note that line breaks are inserted for readability.

 S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2Vy
 dmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AQE=
 S: + ewoic3RhdHVzIjoiNDAxIiwKInNjaGVtZXMiOiJiZWFyZXIiLAoic2NvcGUi
 OiJleGFtcGxlX3Njb3BlIgp9
 C: + AQ==
 S: t1 NO SASL authentication failed

 The decoded initial client response is:

 n,a=user@example.com,^Ahost=server.example.com^Aport=143^Aauth=^A^A

 The decoded server error response is:

Mills, et al. Expires February 21, 2013 [Page 18]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 {
 "status":"401",
 "schemes":"bearer",
 "scope":"example_scope"
 }

 The client responds with the required empty response.

5.4. Failed Channel Binding

 This example shows a channel binding failure in an empty request.
 The channel binding information is empty. Note that line breaks are
 inserted for readability.

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH OAUTH-PLUS SASL-IR IMAP4rev1 Server
 Ready
S: t0 OK Completed
C: t1 AUTHENTICATE OAUTH-PLUS eSxhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2Vydm
 VyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AWNiZGF0YT0BAQ==
S: + ewoic3RhdHVzIjoiNDEyIiwKInNjaGVtZXMiOiJiZWFyZXIgb2F1dGgiLAoi
 c2NvcGUiOiJleGFtcGxlX3Njb3BlIgp9
C: + AQ==
S: t1 NO SASL authentication failed

 The decoded initial client response is:

 y,a=user@example.com,^A
 host=server.example.com^Aport=143^A
 auth=^Acbdata=^A^A

 The decoded server response is:

 {
 "status":"412",
 "schemes":"bearer oauth",
 "scope":"example_scope"
 }

 The client responds with the required empty response.

5.5. SMTP Example of a failed negotiation.

 This example shows an authorization failure in an SMTP exchange.
 Note that line breaks are inserted for readability, and that the SMTP
 protocol terminates lines with CR and LF characters (ASCII values

Mills, et al. Expires February 21, 2013 [Page 19]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 0x0D and 0x0A), these are not displayed explicitly in the example.

[connection begins]
S: 220 mx.example.com ESMTP 12sm2095603fks.9
C: EHLO sender.example.com
S: 250-mx.example.com at your service,[172.31.135.47]
S: 250-SIZE 35651584
S: 250-8BITMIME
S: 250-AUTH LOGIN PLAIN OAUTH
S: 250-ENHANCEDSTATUSCODES
S: 250-PIPELINING
C: AUTH OAUTH dXNlcj1zb21ldXNlckBleGFtcGxlLmNvbQFhdXRoPUJlYXJlciB2RjlkZn
 Q0cW1UYzJOdmIzUmxja0JoZEhSaGRtbHpkR0V1WTI5dENnPT0BAQo=
S: 334 eyJzdGF0dXMiOiI0MDEiLCJzY2hlbWVzIjoiYmVhcmVyIG1hYyIsInNjb3BlIjoia
 HR0cHM6Ly9tYWlsLmdvb2dsZS5jb20vIn0K
C: AQ==
S: 535-5.7.1 Username and Password not accepted. Learn more at
S: 535 5.7.1 http://support.example.com/mail/oauth
[connection continues...]

 The client responds with the required empty response.

Mills, et al. Expires February 21, 2013 [Page 20]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

6. Security Considerations

 This mechanism does not provide a security layer, but does provide a
 provision for channel binding. The OAuth 2 specification
 [I-D.ietf-oauth-v2] allows for a variety of usages, and the security
 properties of these profiles vary. The usage of bearer tokens, for
 example, provide security features similar to cookies. Applications
 using this mechanism SHOULD exercise the same level of care using
 this mechanism as they would in using the SASL PLAIN mechanism. In
 particular, TLS 1.2 or an equivalent secure channel MUST be
 implemented and its usage is RECOMMENDED.

 The channel binding in this mechanism has different properties based
 on the authentication scheme used. The integrity guarantee for
 channel binding depends on the quality of the guarantee in the the
 authorization scheme.

 It is possible that SASL will be authenticating a connection and the
 life of that connection may outlast the life of the token used to
 authenticate it. This is a common problem in application protocols
 where connections are long-lived, and not a problem with this
 mechanism per se. Servers MAY unilaterally disconnect clients in
 accordance with the application protocol.

 An OAuth credential is not equivalent to the password or primary
 account credential. There are protocols like XMPP that allow actions
 like change password. The server SHOULD ensure that actions taken in
 the authenticated channel are appropriate to the strength of the
 presented credential.

 Tokens have a lifetime associated with them. Reducing the lifetime
 of a token provides security benefits in the case that tokens leak.
 In addition a previously obtained token MAY be revoked or rendered
 invalid at any time. The client MAY request a new access token for
 each connection to a resource server, but it SHOULD cache and re-use
 access credentials that appear to be valid.

Mills, et al. Expires February 21, 2013 [Page 21]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

7. IANA Considerations

7.1. SASL Registration

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH-PLUS

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

7.2. GSS-API Registration

 IANA is further requested to assign an OID for this GSS mechanism in
 the SMI numbers registry, with the prefix of
 iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5) and to
 reference this specification in the registry.

Mills, et al. Expires February 21, 2013 [Page 22]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

8. References

8.1. Normative References

 [I-D.ietf-oauth-v2]
 Hardt, D., "The OAuth 2.0 Authorization Framework",

draft-ietf-oauth-v2-31 (work in progress), August 2012.

 [I-D.ietf-oauth-v2-bearer]
 Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage",

draft-ietf-oauth-v2-bearer-23 (work in progress),
 August 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-31
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-bearer-23
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5321

Mills, et al. Expires February 21, 2013 [Page 23]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 October 2008.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

8.2. Informative References

 [I-D.ietf-oauth-v2-http-mac]
 Hammer-Lahav, E., "HTTP Authentication: MAC Access
 Authentication", draft-ietf-oauth-v2-http-mac-01 (work in
 progress), February 2012.

 [I-D.jones-appsawg-webfinger]
 Jones, P., Salgueiro, G., and J. Smarr, "WebFinger",

draft-jones-appsawg-webfinger-06 (work in progress),
 June 2012.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

Mills, et al. Expires February 21, 2013 [Page 24]

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-01
https://datatracker.ietf.org/doc/html/draft-jones-appsawg-webfinger-06
https://datatracker.ietf.org/doc/html/rfc3501

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Appendix A. Acknowlegements

 The authors would like to thank the members of the Kitten working
 group, and in addition and specifically: Simon Josefson, Torsten
 Lodderstadt, Ryan Troll, and Nico Williams.

Mills, et al. Expires February 21, 2013 [Page 25]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Appendix B. Document History

 [[to be removed by RFC editor before publication as an RFC]]

 -04

 o Changed user field to be carried in the gs2-header, and made gs2
 header explicit in all cases.

 o Converted MAC examples to OAuth 1.0a. Moved MAC to an informative
 reference.

 o Changed to sending an empty client response (single control-A) as
 the second message of a failed sequence.

 o Fixed channel binding prose to refer to the normative specs and
 removed the hashing of large channel binding data, which brought
 mroe problems than it solved.

 o Added a SMTP examples for Bearer use case.

 -03

 o Added user field into examples and fixed egregious errors there as
 well.

 o Added text reminding developers that Authorization scheme names
 are case insensitive.

 -02

 o Added the user data element back in.

 o Minor editorial changes.

 -01

 o Ripping out discovery. Changed to refer to I-D.jones-appsawg-
 webfinger instead of WF and SWD older drafts.

 o Replacing HTTP as the message format and adjusted all examples.

 -00

 o Renamed draft into proper IETF naming format now that it's
 adopted.

Mills, et al. Expires February 21, 2013 [Page 26]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 o Minor fixes.

Mills, et al. Expires February 21, 2013 [Page 27]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Authors' Addresses

 William Mills
 Yahoo! Inc.

 Phone:
 Email: wmills@yahoo-inc.com

 Tim Showalter

 Phone:
 Email: tjs@psaux.com

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Mills, et al. Expires February 21, 2013 [Page 28]

http://www.tschofenig.priv.at

