
HTTPAUTH A. Melnikov
Internet-Draft Isode Ltd
Intended status: Standards Track July 26, 2015
Expires: January 27, 2016

Salted Challenge Response (SCRAM) HTTP Authentication Mechanism
draft-ietf-httpauth-scram-auth-07.txt

Abstract

 The secure authentication mechanism most widely deployed and used by
 Internet application protocols is the transmission of clear-text
 passwords over a channel protected by Transport Layer Security (TLS).
 There are some significant security concerns with that mechanism,
 which could be addressed by the use of a challenge response
 authentication mechanism protected by TLS. Unfortunately, the HTTP
 Digest challenge response mechanism presently on the standards track
 failed widespread deployment, and have had success only in limited
 use.

 This specification describes a family of HTTP authentication
 mechanisms called the Salted Challenge Response Authentication
 Mechanism (SCRAM), which addresses security concerns with HTTP Digest
 and meets the deployability requirements. When used in combination
 with TLS or an equivalent security layer, a mechanism from this
 family could improve the status-quo for HTTP authentication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 27, 2016.

Melnikov Expires January 27, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP SCRAM July 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Conventions Used in This Document 2
1.1. Terminology . 3
1.2. Notation . 4
2. Introduction . 5
3. SCRAM Algorithm Overview 6
4. SCRAM Mechanism Names . 7
5. SCRAM Authentication Exchange 7
5.1. One round trip reauthentication 10
6. Use of Authentication-Info header field with SCRAM 11
7. Formal Syntax . 12
8. Security Considerations 12
9. IANA Considerations . 14
10. Acknowledgements . 14
11. Design Motivations . 14
12. Open Issues . 15
13. References . 15
13.1. Normative References 15
13.2. Informative References 17

 Author's Address . 18

1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Formal syntax is defined by [RFC5234] including the core rules
 defined in Appendix B of [RFC5234].

 Example lines prefaced by "C:" are sent by the client and ones
 prefaced by "S:" by the server. If a single "C:" or "S:" label

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B

Melnikov Expires January 27, 2016 [Page 2]

Internet-Draft HTTP SCRAM July 2015

 applies to multiple lines, then the line breaks between those lines
 are for editorial clarity only, and are not part of the actual
 protocol exchange.

1.1. Terminology

 This document uses several terms defined in [RFC4949] ("Internet
 Security Glossary") including the following: authentication,
 authentication exchange, authentication information, brute force,
 challenge-response, cryptographic hash function, dictionary attack,
 eavesdropping, hash result, keyed hash, man-in-the-middle, nonce,
 one-way encryption function, password, replay attack and salt.
 Readers not familiar with these terms should use that glossary as a
 reference.

 Some clarifications and additional definitions follow:

 o Authentication information: Information used to verify an identity
 claimed by a SCRAM client. The authentication information for a
 SCRAM identity consists of salt, iteration count, the "StoredKey"
 and "ServerKey" (as defined in the algorithm overview) for each
 supported cryptographic hash function.

 o Authentication database: The database used to look up the
 authentication information associated with a particular identity.
 For application protocols, LDAPv3 (see [RFC4510]) is frequently
 used as the authentication database. For network-level protocols
 such as PPP or 802.11x, the use of RADIUS [RFC2865] is more
 common.

 o Base64: An encoding mechanism defined in Section 4 of [RFC4648]
 which converts an octet string input to a textual output string
 which can be easily displayed to a human. The use of base64 in
 SCRAM is restricted to the canonical form with no whitespace.

 o Octet: An 8-bit byte.

 o Octet string: A sequence of 8-bit bytes.

 o Salt: A random octet string that is combined with a password
 before applying a one-way encryption function. This value is used
 to protect passwords that are stored in an authentication
 database.

https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc4648#section-4

Melnikov Expires January 27, 2016 [Page 3]

Internet-Draft HTTP SCRAM July 2015

1.2. Notation

 The pseudocode description of the algorithm uses the following
 notations:

 o ":=": The variable on the left hand side represents the octet
 string resulting from the expression on the right hand side.

 o "+": Octet string concatenation.

 o "[]": A portion of an expression enclosed in "[" and "]" may not
 be included in the result under some circumstances. See the
 associated text for a description of those circumstances.

 o Normalize(str): Apply the Preparation and Enforcement steps
 according to the OpaqueString profile (see
 [I-D.ietf-precis-saslprepbis]) to a UTF-8 [RFC3629] encoded "str".
 The resulting string is also in UTF-8. Note that implementations
 MUST either implement OpaqueString profile operations from
 [I-D.ietf-precis-saslprepbis], or disallow use of non US-ASCII
 Unicode codepoints in "str". The latter is a particular case of
 compliance with [I-D.ietf-precis-saslprepbis].

 o HMAC(key, str): Apply the HMAC keyed hash algorithm (defined in
 [RFC2104]) using the octet string represented by "key" as the key
 and the octet string "str" as the input string. The size of the
 result is the hash result size for the hash function in use. For
 example, it is 32 octets for SHA-256 and 20 octets for SHA-1 (see
 [RFC3174]).

 o H(str): Apply the cryptographic hash function to the octet string
 "str", producing an octet string as a result. The size of the
 result depends on the hash result size for the hash function in
 use.

 o XOR: Apply the exclusive-or operation to combine the octet string
 on the left of this operator with the octet string on the right of
 this operator. The length of the output and each of the two
 inputs will be the same for this use.

 o Hi(str, salt, i):

Melnikov Expires January 27, 2016 [Page 4]

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3174

Internet-Draft HTTP SCRAM July 2015

 U1 := HMAC(str, salt + INT(1))
 U2 := HMAC(str, U1)
 ...
 Ui-1 := HMAC(str, Ui-2)
 Ui := HMAC(str, Ui-1)

 Hi := U1 XOR U2 XOR ... XOR Ui

 where "i" is the iteration count, "+" is the string concatenation
 operator and INT(g) is a four-octet encoding of the integer g,
 most significant octet first.

 Hi() is, essentially, PBKDF2 [RFC2898] with HMAC() as the PRF and
 with dkLen == output length of HMAC() == output length of H().

2. Introduction

 This specification describes a family of authentication mechanisms
 called the Salted Challenge Response Authentication Mechanism (SCRAM)
 which addresses the requirements necessary to deploy a challenge-
 response mechanism more widely than past attempts (see [RFC5802]).
 When used in combination with Transport Layer Security (TLS, see
 [RFC5246]) or an equivalent security layer, a mechanism from this
 family could improve the status-quo for HTTP authentication.

 HTTP SCRAM is adoptation of [RFC5802] for use in HTTP. (SCRAM data
 exchanged is identical to what is defined in [RFC5802].) It also
 adds 1 round trip reauthentication mode.

 HTTP SCRAM provides the following protocol features:

 o The authentication information stored in the authentication
 database is not sufficient by itself (without a dictionary attack)
 to impersonate the client. The information is salted to prevent a
 pre-stored dictionary attack if the database is stolen.

 o The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies).

 o The mechanism permits the use of a server-authorized proxy without
 requiring that proxy to have super-user rights with the back-end
 server.

 o Mutual authentication is supported, but only the client is named
 (i.e., the server has no name).

https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5802

Melnikov Expires January 27, 2016 [Page 5]

Internet-Draft HTTP SCRAM July 2015

3. SCRAM Algorithm Overview

 The following is a description of a full HTTP SCRAM authentication
 exchange. Note that this section omits some details, such as client
 and server nonces. See Section 5 for more details.

 To begin with, the SCRAM client is in possession of a username and
 password (*) (or a ClientKey/ServerKey, or SaltedPassword). It sends
 the username to the server, which retrieves the corresponding
 authentication information, i.e. a salt, StoredKey, ServerKey and the
 iteration count i. (Note that a server implementation may choose to
 use the same iteration count for all accounts.) The server sends the
 salt and the iteration count to the client, which then computes the
 following values and sends a ClientProof to the server:

 (*) - Note that both the username and the password MUST be encoded in
 UTF-8 [RFC3629].

 Informative Note: Implementors are encouraged to create test cases
 that use both username passwords with non-ASCII codepoints. In
 particular, it's useful to test codepoints whose "Unicode
 Normalization Form C" and "Unicode Normalization Form KC" are
 different. Some examples of such codepoints include Vulgar Fraction
 One Half (U+00BD) and Acute Accent (U+00B4).

 SaltedPassword := Hi(Normalize(password), salt, i)
 ClientKey := HMAC(SaltedPassword, "Client Key")
 StoredKey := H(ClientKey)
 AuthMessage := client-first-message-bare + "," +
 server-first-message + "," +
 client-final-message-without-proof
 ClientSignature := HMAC(StoredKey, AuthMessage)
 ClientProof := ClientKey XOR ClientSignature
 ServerKey := HMAC(SaltedPassword, "Server Key")
 ServerSignature := HMAC(ServerKey, AuthMessage)

 The server authenticates the client by computing the ClientSignature,
 exclusive-ORing that with the ClientProof to recover the ClientKey
 and verifying the correctness of the ClientKey by applying the hash
 function and comparing the result to the StoredKey. If the ClientKey
 is correct, this proves that the client has access to the user's
 password.

 Similarly, the client authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server. If
 the two are equal, it proves that the server had access to the user's

https://datatracker.ietf.org/doc/html/rfc3629

Melnikov Expires January 27, 2016 [Page 6]

Internet-Draft HTTP SCRAM July 2015

 ServerKey.

 For initial authentication the AuthMessage is computed by
 concatenating decoded "data" attribute values from the authentication
 exchange. The format of these messages is defined in [RFC5802].

4. SCRAM Mechanism Names

 A SCRAM mechanism name (authentication scheme) is a string "SCRAM-"
 followed by the uppercased name of the underlying hash function taken
 from the IANA "Hash Function Textual Names" registry (see

http://www.iana.org) .

 For interoperability, all HTTP clients and servers supporting SCRAM
 MUST implement the SCRAM-SHA-256 authentication mechanism, i.e. an
 authentication mechanism from the SCRAM family that uses the SHA-256
 hash function as defined in [I-D.hansen-scram-sha256].

5. SCRAM Authentication Exchange

 HTTP SCRAM is a HTTP Authentication mechanism whose client response
 (<credentials-scram>) and server challenge (<challenge-scram>)
 messages are text-based messages containing one or more attribute-
 value pairs separated by commas. The messages and their attributes
 are described below and defined in Section 7.

 challenge-scram = scram-name [1*SP 1#auth-param]
 ; Complies with <challenge> ABNF from RFC 7235.
 ; Included in the WWW-Authenticate header field.

 credentials-scram = scram-name [1*SP 1#auth-param]
 ; Complies with <credentials> from RFC 7235.
 ; Included in the Authorization header field.

 scram-name = "SCRAM-SHA-256" / "SCRAM-SHA-1" / other-scram-name
 ; SCRAM-SHA-256 and SCRAM-SHA-1 are registered by this RFC
 other-scram-name = "SCRAM-" hash-name
 ; hash-name is a capitalized form of names from IANA
 ; "Hash Function Textual Names" registry.
 ; Additional SCRAM names must be registered in both
 ; the IANA "SASL mechanisms" registry
 ; and the IANA "authentication scheme" registry.

 This is a simple example of a SCRAM-SHA-256 authentication exchange
 (no support for channel bindings, as this feature is not currently
 supported by HTTP). Username 'user' and password 'pencil' are used.

https://datatracker.ietf.org/doc/html/rfc5802
http://www.iana.org
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235

Melnikov Expires January 27, 2016 [Page 7]

Internet-Draft HTTP SCRAM July 2015

 Note that long lines are folded for readability.

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: [...]

 S: HTTP/1.1 401 Unauthorized
 S: WWW-Authenticate: Digest realm="realm1@host.com",
 Digest realm="realm2@host.com",
 Digest realm="realm3@host.com",
 SCRAM-SHA-1 realm="realm3@host.com",
 SCRAM-SHA-1 realm="testrealm@host.com"
 S: [...]

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: Authorization: SCRAM-SHA-1 realm="testrealm@host.com",
 data=biwsbj11c2VyLHI9ck9wck5HZndFYmVSV2diTkVrcU8K
 C: [...]

 S: HTTP/1.1 401 Unauthorized
 S: WWW-Authenticate: SCRAM-SHA-1
 sid=AAAABBBBCCCCDDDD,
 data=cj1yT3ByTkdmd0ViZVJXZ2JORWtxTyVodllEcFdVYTJSYVRDQWZ1eEZJbGo
 paE5sRixzPVcyMlphSjBTTlk3c29Fc1VFamI2Z1E9PSxpPTQwOTYK
 S: [...]

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: Authorization: SCRAM-SHA-1 sid=AAAABBBBCCCCDDDD,
 data=Yz1iaXdzLHI9ck9wck5HZndFYmVSV2diTkVrcU8laHZZRHBXVWEyUmFUQ0FmdXhG
 SWxqKWhObEYscD1kSHpiWmFwV0lrNGpVaE4rVXRlOXl0YWc5empmTUhnc3FtbWl6
 N0FuZFZRPQo=
 C: [...]

 S: HTTP/1.1 200 Ok
 S: Authentication-Info: sid=AAAABBBBCCCCDDDD,
 data=dj02cnJpVFJCaTIzV3BSUi93dHVwK21NaFVaVW4vZEI1bkxUSlJzamw5NUc0PQo=
 S: [...Other header fields and resource body...]

 In the above example the first client request contains data attribute
 which base64 decodes as follows: "n,,n=user,r=rOprNGfwEbeRWgbNEkqO"
 (with no quotes). Server then responds with data attribute which
 base64 decodes as follows: "r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxF
 Ilj)hNlF$k0,s=W22ZaJ0SNY7soEsUEjb6gQ==,i=4096". The next client
 request contains data attribute which base64 decodes as follows: "c=b

Melnikov Expires January 27, 2016 [Page 8]

Internet-Draft HTTP SCRAM July 2015

 iws,r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxFIlj)hNlF$k0,p=dHzbZapWIk
 4jUhN+Ute9ytag9zjfMHgsqmmiz7AndVQ=". An the final server response
 contains data attribute which base64 decodes as follows:
 "v=6rriTRBi23WpRR/wtup+mMhUZUn/dB5nLTJRsjl95G4=".

 Note that in the example above the client can also initiate SCRAM
 authentication without first being prompted by the server.

 Initial "SCRAM-SHA-256" authentication starts with sending the
 "Authorization" request header field defined by HTTP/1.1, Part 7
 [RFC7235] containing "SCRAM-SHA-256" authentication scheme and the
 following attributes:

 o A "realm" attribute MAY be included to indicate the scope of
 protection in the manner described in HTTP/1.1, Part 7 [RFC7235].
 As specified in [RFC7235], the "realm" attribute MUST NOT appear
 more than once. The realm attribute only appears in the first
 SCRAM message to the server and in the first SCRAM response from
 the server.

 o The client also includes the data attribute that contains base64
 encoded "client-first-message" [RFC5802] containing:

 * a header consisting of a flag indicating whether channel
 binding is supported-but-not-used, not supported, or used .
 Note that the header always starts with "n", "y" or "p",
 otherwise the message is invalid and authentication MUST fail.

 * SCRAM username and a random, unique nonce attributes.

 In HTTP response, the server sends WWW-Authenticate header field
 containing: a unique session identifier (the "sid" attribute) plus
 the "data" attribute containing base64-encoded "server-first-message"
 [RFC5802]. The "server-first-message" contains the user's iteration
 count i, the user's salt, and the nonce with a concatenation of the
 client-specified one with a server nonce. [[CREF1: OPEN ISSUE:
 Alternatively, the "sid" attribute can be another header field.]]

 The client then responds with another HTTP request with the
 Authorization header field, which includes the "sid" attribute
 received in the previous server response, together with the "data"
 attribute containing base64-encoded "client-final-message" data. The
 latter has the same nonce and a ClientProof computed using the
 selected hash function (e.g. SHA-256) as explained earlier.

 The server verifies the nonce and the proof, and, finally, it
 responds with a 200 HTTP response with the Authentication-Info header
 field [I-D.ietf-httpbis-auth-info] containing the "sid" attribute (as

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5802

Melnikov Expires January 27, 2016 [Page 9]

Internet-Draft HTTP SCRAM July 2015

 received from the client) and the "data" attribute containing
 base64-encoded "server-final-message", concluding the authentication
 exchange.

 The client then authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server. If
 the two are different, the client MUST consider the authentication
 exchange to be unsuccessful and it might have to drop the connection.

5.1. One round trip reauthentication

 If the server supports SCRAM reauthentication, the server sends in
 its initial HTTP response a WWW-Authenticate header field containing:
 the "realm" attribute (as defined earlier), the "sr" attribute that
 contains the server part of the "r" attribute (see [RFC5802] and
 optional "ttl" attribute (which contains the "sr" value validity in
 seconds).

 If the client has authenticated to the same realm before (i.e. it
 remembers "i" and "s" attributes for the user from earlies
 authentication exchanges with the server), it can respond to that
 with "client-final-message". [[CREF2: Should some counter be added
 to make "sr" unique for each reauth?]]

 If the server considers the server part of the nonce (the "r"
 attribute) to be still valid, it will provide access to the requested
 resource (assuming the client hash verifies correctly, of course).
 However if the server considers that the server part of the nonce is
 stale (for example if the "sr" value is used after the "ttl"
 seconds), the server returns "401 Unauthorized" containing the SCRAM
 mechanism name with the following attributes: a new "sr",
 "stale=true" and an optional "ttl". The "stale" attribute signals to
 the client that there is no need to ask user for the password.

 Formally, the "stale" attribute is defined as follows: A flag,
 indicating that the previous request from the client was rejected
 because the nonce value was stale. If stale is TRUE (case-
 insensitive), the client may wish to simply retry the request with
 a new encrypted response, without reprompting the user for a new
 username and password. The server should only set stale to TRUE
 if it receives a request for which the nonce is invalid but with a
 valid digest for that nonce (indicating that the client knows the
 correct username/password). If stale is FALSE, or anything other
 than TRUE, or the stale directive is not present, the username
 and/or password are invalid, and new values must be obtained.

 When constructing AuthMessage Section 3 to be used for calculating
 client and server proofs, "client-first-message-bare" and "server-

https://datatracker.ietf.org/doc/html/rfc5802

Melnikov Expires January 27, 2016 [Page 10]

Internet-Draft HTTP SCRAM July 2015

 first-message" are reconstructed from data known to the client and
 the server.

 Reauthentication can look like this:

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: [...]

 S: HTTP/1.1 401 Unauthorized
 S: WWW-Authenticate: Digest realm="realm1@host.com",
 Digest realm="realm2@host.com",
 Digest realm="realm3@host.com",
 SCRAM-SHA-1 realm="realm3@host.com",
 SCRAM-SHA-1 realm="testrealm@host.com", sr=pWUa2RaTCAfuxFIlj)hNlF$k0
 SCRAM-SHA-1 realm="testrealm2@host.com", sr=AAABBBCCCDDD, ttl=120
 S: [...]

 [Client authenticates as usual to realm "testrealm@host.com"]

 [Some time later client decides to reauthenticate.
 It will use the cached "i" (4096) and "s" (W22ZaJ0SNY7soEsUEjb6gQ==) from
earlies exchanges.
 It will use the server advertised "sr" value as the server part of the "r".]

 C: GET /resource HTTP/1.1
 C: Host: server.example.com
 C: Authorization: SCRAM-SHA-1 realm="testrealm@host.com",
 data=Yz1iaXdzLHI9ck9wck5HZndFYmVSV2diTkVrcU8laHZZRHBXVWEyUmFUQ0FmdXhG
 SWxqKWhObEYscD1kSHpiWmFwV0lrNGpVaE4rVXRlOXl0YWc5empmTUhnc3FtbWl6
 N0FuZFZRPQo=
 C: [...]

 S: HTTP/1.1 200 Ok
 S: Authentication-Info: sid=AAAABBBBCCCCDDDD,
 data=dj02cnJpVFJCaTIzV3BSUi93dHVwK21NaFVaVW4vZEI1bkxUSlJzamw5NUc0PQo=
 S: [...Other header fields and resource body...]

6. Use of Authentication-Info header field with SCRAM

 When used with SCRAM, the Authentication-Info header field is allowed
 in the trailer of an HTTP message transferred via chunked transfer-
 coding.

Melnikov Expires January 27, 2016 [Page 11]

Internet-Draft HTTP SCRAM July 2015

7. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [RFC5234]. "UTF8-2", "UTF8-3"
 and "UTF8-4" non-terminal are defined in [RFC3629].

 ALPHA = <as defined in RFC 5234 appendix B.1>
 DIGIT = <as defined in RFC 5234 appendix B.1>

 base64-char = ALPHA / DIGIT / "/" / "+"

 base64-4 = 4base64-char

 base64-3 = 3base64-char "="

 base64-2 = 2base64-char "=="

 base64 = *base64-4 [base64-3 / base64-2]

 sr = "sr=" s-nonce
 ;; s-nonce is defined in RFC 5802.

 data = "data=" base64
 ;; The data attribute value is base64 encoded
 ;; SCRAM challenge or response defined in
 ;; RFC 5802.

 ttl = "ttl" = 1*DIGIT
 ;; "sr" value validity in seconds.
 ;; No leading 0s.

 sid = "sid=" token
 ;; See token definition in RFC 7235.

 stale = "stale=" ("true" / "false")

 realm = "realm=" <as defined in RFC 7235>

8. Security Considerations

 If the authentication exchange is performed without a strong security
 layer (such as TLS with data confidentiality), then a passive
 eavesdropper can gain sufficient information to mount an offline
 dictionary or brute-force attack which can be used to recover the
 user's password. The amount of time necessary for this attack
 depends on the cryptographic hash function selected, the strength of

Melnikov Expires January 27, 2016 [Page 12]

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235

Internet-Draft HTTP SCRAM July 2015

 the password and the iteration count supplied by the server. An
 external security layer with strong encryption will prevent this
 attack.

 If the external security layer used to protect the SCRAM exchange
 uses an anonymous key exchange, then the SCRAM channel binding
 mechanism can be used to detect a man-in-the-middle attack on the
 security layer and cause the authentication to fail as a result.
 However, the man-in-the-middle attacker will have gained sufficient
 information to mount an offline dictionary or brute-force attack.
 For this reason, SCRAM allows to increase the iteration count over
 time. (Note that a server that is only in posession of "StoredKey"
 and "ServerKey" can't automatic increase the iteration count upon
 successful authentication. Such increase would require resetting
 user's password.)

 If the authentication information is stolen from the authentication
 database, then an offline dictionary or brute-force attack can be
 used to recover the user's password. The use of salt mitigates this
 attack somewhat by requiring a separate attack on each password.
 Authentication mechanisms which protect against this attack are
 available (e.g., the EKE class of mechanisms). RFC 2945 [RFC2945] is
 an example of such technology.

 If an attacker obtains the authentication information from the
 authentication repository and either eavesdrops on one authentication
 exchange or impersonates a server, the attacker gains the ability to
 impersonate that user to all servers providing SCRAM access using the
 same hash function, password, iteration count and salt. For this
 reason, it is important to use randomly-generated salt values.

 SCRAM does not negotiate a hash function to use. Hash function
 negotiation is left to the HTTP authentication mechanism negotiation.
 It is important that clients be able to sort a locally available list
 of mechanisms by preference so that the client may pick the most
 preferred of a server's advertised mechanism list. This preference
 order is not specified here as it is a local matter. The preference
 order should include objective and subjective notions of mechanism
 cryptographic strength (e.g., SCRAM with a successor to SHA-1 may be
 preferred over SCRAM with SHA-1).

 SCRAM does not protect against downgrade attacks of channel binding
 types. The complexities of negotiation a channel binding type, and
 handling down-grade attacks in that negotiation, was intentionally
 left out of scope for this document.

 A hostile server can perform a computational denial-of-service attack
 on clients by sending a big iteration count value.

https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945

Melnikov Expires January 27, 2016 [Page 13]

Internet-Draft HTTP SCRAM July 2015

 See [RFC4086] for more information about generating randomness.

9. IANA Considerations

 New mechanisms in the SCRAM- family are registered according to the
 IANA procedure specified in [RFC5802].

 Note to future SCRAM- mechanism designers: each new SCRAM- HTTP
 authentication mechanism MUST be explicitly registered with IANA and
 MUST comply with SCRAM- mechanism naming convention defined in

Section 4 of this document.

 IANA is requested to add the following entry to the Authentication
 Scheme Registry defined in HTTP/1.1, Part 7 [RFC7235]:

 Authentication Scheme Name: SCRAM-SHA-256
 Pointer to specification text: [[this document]]
 Notes (optional): (none)

 Authentication Scheme Name: SCRAM-SHA-1
 Pointer to specification text: [[this document]]
 Notes (optional): (none)

10. Acknowledgements

 This document benefited from discussions on the HTTPAuth, SASL and
 Kitten WG mailing lists. The authors would like to specially thank
 co-authors of [RFC5802] from which lots of text was copied.

 Thank you to Martin Thomson for the idea of adding "ttl" attribute.

 Thank you to Julian F. Reschke for corrections regarding use of
 Authentication-Info header field.

 Special thank you to Tony Hansen for doing an early implementation
 and providing extensive comments on the draft.

11. Design Motivations

 The following design goals shaped this document. Note that some of
 the goals have changed since the initial version of the document.

 o The HTTP authentication mechanism has all modern features: support
 for internationalized usernames and passwords, support for channel

Melnikov Expires January 27, 2016 [Page 14]

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5802

Internet-Draft HTTP SCRAM July 2015

 bindings.

 o The protocol supports mutual authentication.

 o The authentication information stored in the authentication
 database is not sufficient by itself to impersonate the client.

 o The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies),
 unless such other servers allow SCRAM authentication and use the
 same salt and iteration count for the user.

 o The mechanism is extensible, but [hopefully] not overengineered in
 this respect.

 o Easier to implement than HTTP Digest in both clients and servers.

12. Open Issues

 Should "sid" directive be an attribute or a new HTTP header field
 shared with other HTTP authentication mechanisms?

 Username/password normalization algorithm needs to be picked, once
 Precis WG concludes its work.

13. References

13.1. Normative References

 [I-D.hansen-scram-sha256]
 Hansen, T., "SCRAM-SHA-256 and SCRAM-SHA-256-PLUS SASL
 Mechanisms", draft-hansen-scram-sha256-02 (work in
 progress), October 2014.

 [I-D.ietf-httpbis-auth-info]
 Reschke, J., "The Hypertext Transfer Protocol (HTTP)
 Authentication-Info and Proxy- Authentication-Info
 Response Header Fields", draft-ietf-httpbis-auth-info-03
 (work in progress), March 2015.

 [I-D.ietf-precis-saslprepbis]
 Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", draft-ietf-precis-

saslprepbis-18 (work in progress), May 2015.

Melnikov Expires January 27, 2016 [Page 15]

https://datatracker.ietf.org/doc/html/draft-hansen-scram-sha256-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-auth-info-03
https://datatracker.ietf.org/doc/html/draft-ietf-precis-saslprepbis-18
https://datatracker.ietf.org/doc/html/draft-ietf-precis-saslprepbis-18

Internet-Draft HTTP SCRAM July 2015

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <http://www.rfc-editor.org/info/rfc3174>.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 DOI 10.17487/RFC3454, December 2002,
 <http://www.rfc-editor.org/info/rfc3454>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, DOI 10.17487/RFC4013, February
 2005, <http://www.rfc-editor.org/info/rfc4013>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <http://www.rfc-editor.org/info/rfc5056>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802,
 DOI 10.17487/RFC5802, July 2010,
 <http://www.rfc-editor.org/info/rfc5802>.

https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174
http://www.rfc-editor.org/info/rfc3174
https://datatracker.ietf.org/doc/html/rfc3454
http://www.rfc-editor.org/info/rfc3454
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4013
http://www.rfc-editor.org/info/rfc4013
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5056
http://www.rfc-editor.org/info/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5802
http://www.rfc-editor.org/info/rfc5802

Melnikov Expires January 27, 2016 [Page 16]

Internet-Draft HTTP SCRAM July 2015

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <http://www.rfc-editor.org/info/rfc5929>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

13.2. Informative References

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898,
 DOI 10.17487/RFC2898, September 2000,
 <http://www.rfc-editor.org/info/rfc2898>.

 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
RFC 2945, DOI 10.17487/RFC2945, September 2000,

 <http://www.rfc-editor.org/info/rfc2945>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): Technical Specification Road Map", RFC 4510,
 DOI 10.17487/RFC4510, June 2006,
 <http://www.rfc-editor.org/info/rfc4510>.

 [RFC4616] Zeilenga, K., Ed., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616,
 DOI 10.17487/RFC4616, August 2006,
 <http://www.rfc-editor.org/info/rfc4616>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

https://datatracker.ietf.org/doc/html/rfc5929
http://www.rfc-editor.org/info/rfc5929
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc2865
http://www.rfc-editor.org/info/rfc2865
https://datatracker.ietf.org/doc/html/rfc2898
http://www.rfc-editor.org/info/rfc2898
https://datatracker.ietf.org/doc/html/rfc2945
http://www.rfc-editor.org/info/rfc2945
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4510
http://www.rfc-editor.org/info/rfc4510
https://datatracker.ietf.org/doc/html/rfc4616
http://www.rfc-editor.org/info/rfc4616
https://datatracker.ietf.org/doc/html/rfc4949
http://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226

Melnikov Expires January 27, 2016 [Page 17]

Internet-Draft HTTP SCRAM July 2015

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [tls-server-end-point]
 Zhu, L., , "Registration of TLS server end-point channel
 bindings", IANA http://www.iana.org/assignments/

channel-binding-types/tls-server-end-point, July 2008.

Author's Address

 Alexey Melnikov
 Isode Ltd

 Email: Alexey.Melnikov@isode.com

Melnikov Expires January 27, 2016 [Page 18]

https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
http://www.iana.org/assignments/channel-binding-types/tls-server-end-point
http://www.iana.org/assignments/channel-binding-types/tls-server-end-point

