
DNSOP Working Group                                          D. Lawrence
Internet-Draft                                              Oracle + Dyn
Updates: 1034, 1035 (if approved)                              W. Kumari
Intended status: Standards Track                                 P. Sood
Expires: April 17, 2019                                           Google
                                                        October 14, 2018

Serving Stale Data to Improve DNS Resiliency
draft-ietf-dnsop-serve-stale-02

Abstract

   This draft defines a method for recursive resolvers to use stale DNS
   data to avoid outages when authoritative nameservers cannot be
   reached to refresh expired data.  It updates the definition of TTL
   from [RFC1034] and [RFC1035] to make it clear that data can be kept
   in the cache beyond the TTL expiry and used for responses when a
   refreshed answer is not readily available.

Ed note

   Text inside square brackets ([]) is additional background
   information, answers to frequently asked questions, general musings,
   etc.  They will be removed before publication.  This document is
   being collaborated on in GitHub at <https://github.com/vttale/serve-

stale>.  The most recent version of the document, open issues, etc
   should all be available here.  The authors gratefully accept pull
   requests.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 17, 2019.

Lawrence, et al.         Expires April 17, 2019                 [Page 1]

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://github.com/vttale/serve-stale
https://github.com/vttale/serve-stale
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/


Internet-Draft               DNS Serve Stale                October 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
2.  Notes to readers  . . . . . . . . . . . . . . . . . . . . . .   3
3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
4.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   4
5.  Standards Action  . . . . . . . . . . . . . . . . . . . . . .   4
6.  EDNS Option . . . . . . . . . . . . . . . . . . . . . . . . .   5
6.1.  Option Format Proposal 1  . . . . . . . . . . . . . . . .   5
6.2.  Option Usage  . . . . . . . . . . . . . . . . . . . . . .   6
6.3.  Option Format Proposal 2  . . . . . . . . . . . . . . . .   7

7.  Example Method  . . . . . . . . . . . . . . . . . . . . . . .   7
8.  Implementation Caveats  . . . . . . . . . . . . . . . . . . .   9
9.  Implementation Status . . . . . . . . . . . . . . . . . . . .  10
10. Security Considerations . . . . . . . . . . . . . . . . . . .  11
11. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  11
12. NAT Considerations  . . . . . . . . . . . . . . . . . . . . .  11
13. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
14. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  11
15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  11
15.1.  Normative References . . . . . . . . . . . . . . . . . .  11
15.2.  Informative References . . . . . . . . . . . . . . . . .  12

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   Traditionally the Time To Live (TTL) of a DNS resource record has
   been understood to represent the maximum number of seconds that a
   record can be used before it must be discarded, based on its
   description and usage in [RFC1035] and clarifications in [RFC2181].

   This document proposes that the definition of the TTL be explicitly
   expanded to allow for expired data to be used in the exceptional

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2181


Lawrence, et al.         Expires April 17, 2019                 [Page 2]



Internet-Draft               DNS Serve Stale                October 2018

   circumstance that a recursive resolver is unable to refresh the
   information.  It is predicated on the observation that authoritative
   server unavailability can cause outages even when the underlying data
   those servers would return is typically unchanged.

   We describe a method below for this use of stale data, balancing the
   competing needs of resiliency and freshness.  While this is intended
   to be immediately useful to the installed base of DNS software, we
   also propose an [RFC6891] EDNS option for enhanced signalling around
   the use of stale data by implementations that understand it.

2.  Notes to readers

   [ RFC Editor, please remove this section before publication!
   Readers: This is conversational text to describe what we've done, and
   will be removed, please don't bother sending editorial nits. :-) ]

   Due to circumstances, the authors of this document got sidetracked,
   and we lost focus.  We are now reviving it, and are trying to address
   and incorporate comments.  There has also been more deployment and
   implementation recently, and so this document is now more describing
   what is known to work instead of simply proposing a concept.

   Open questions:

   o  The EDNS option that we propose for debugging is relatively full-
      featured to identify which RRsets are stale.  It could be
      simplified to just indicate that an answer is stale, or even
      removed entirely in favour of an Extended Error result that
      indicates staleness.

   o  What TTL value to recommend be set in stale answers returned by
      recursive resolvers.

3.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119] when, and only when, they appear in all capitals, as shown
   here.

   For a comprehensive treatment of DNS terms, please see [RFC7719].

https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7719


Lawrence, et al.         Expires April 17, 2019                 [Page 3]



Internet-Draft               DNS Serve Stale                October 2018

4.  Background

   There are a number of reasons why an authoritative server may become
   unreachable, including Denial of Service (DoS) attacks, network
   issues, and so on.  If the recursive server is unable to contact the
   authoritative servers for a name but still has relevant data that has
   aged past its TTL, that information can still be useful for
   generating an answer under the metaphorical assumption that, "stale
   bread is better than no bread."

   [RFC1035] Section 3.2.1 says that the TTL "specifies the time
   interval that the resource record may be cached before the source of
   the information should again be consulted", and Section 4.1.3 further
   says the TTL, "specifies the time interval (in seconds) that the
   resource record may be cached before it should be discarded."

   A natural English interpretation of these remarks would seem to be
   clear enough that records past their TTL expiration must not be used,
   However, [RFC1035] predates the more rigorous terminology of
   [RFC2119] which softened the interpretation of "may" and "should".

   [RFC2181] aimed to provide "the precise definition of the Time to
   Live" but in Section 8 was mostly concerned with the numeric range of
   values and the possibility that very large values should be capped.
   (It also has the curious suggestion that a value in the range
   2147483648 to 4294967295 should be treated as zero.)  It closes that
   section by noting, "The TTL specifies a maximum time to live, not a
   mandatory time to live."  This is again not [RFC2119]-normative
   language, but does convey the natural language connotation that data
   becomes unusable past TTL expiry.

   Several major recursive resolver operators currently use stale data
   for answers in some way, including Akamai (via both Nomimum and
   Xerocole), Knot, OpenDNS, and Unbound.  Apple can also use stale data
   as part of the Happy Eyeballs algorithms in mDNSResponder.  The
   collective operational experience is that it provides significant
   benefit with minimal downside.

5.  Standards Action

   The definition of TTL in [RFC1035] Sections 3.2.1 and 4.1.3 is
   amended to read:

   TTL  a 32 bit unsigned integer number of seconds in the range 0 -
      2147483647 that specifies the time interval that the resource
      record MAY be cached before the source of the information MUST
      again be consulted.  Zero values are interpreted to mean that the
      RR can only be used for the transaction in progress, and should

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1035


Lawrence, et al.         Expires April 17, 2019                 [Page 4]



Internet-Draft               DNS Serve Stale                October 2018

      not be cached.  Values with the high order bit set SHOULD be
      capped at no more than 2147483647.  If the authority for the data
      is unavailable when attempting to refresh the data past the given
      interval, the record MAY be used as though it is unexpired.

   [ Discussion point: capping values with the high order bit as being
   max positive, rather than 0, is a change from [RFC2181].  Also, we
   could use this opportunity to recommend a much more sane maximum
   value like 604800 seconds, one week, instead of the literal maximum
   of 68 years. ]

6.  EDNS Option

   While the basic behaviour of this answer-of-last-resort can be
   achieved with changes only to resolvers, explicit signalling about
   the use of stale data can be done with an EDNS [RFC6891] option.
   This option can be included from a stub or forwarding resolver to a
   recursive resolver, explicitly signalling that it does not want stale
   answers, or for learning that stale data was in use.  It is expected
   that this could be useful for debugging.

   [ NOTE: This section will be fleshed out a bit more thoroughly if
   there is interest in pursuing the option.  Here are two potential
   options that could be used, one more fully-featured to indicate which
   RRsets are stale and one much more simple to indicate that stale data
   is present.  These are proposed as mutually exclusive; the final
   document will have one or zero such options.  We're especially
   soliciting feedback on this from the working group. ]

6.1.  Option Format Proposal 1

   The option is structured as follows:

                 +0 (MSB)                        +1 (LSB)
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   0: |                         OPTION-CODE                       |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   2: |                        OPTION-LENGTH                      |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   4: |                     STALE-RRSET-INDEX 1                   |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   6: |                                                           |
   8: |                         TTL-EXPIRY 1                      |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      :  ... additional STALE-RRSET-INDEX / TTL-EXPIRY pairs ...  :
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc6891


Lawrence, et al.         Expires April 17, 2019                 [Page 5]



Internet-Draft               DNS Serve Stale                October 2018

   OPTION-CODE:  2 octets per [RFC6891].  For Serve-Stale the code is
      TBD by IANA.

   OPTION-LENGTH:  2 octets per [RFC6891].  Contains the length of the
      payload following OPTION-LENGTH, in octets.

   STALE-RRSET-INDEX:  Two octets as a signed integer, indicating the
      first RRSet in the message which is beyond its TTL, with RRSet
      counting starting at 1 and spanning message sections.

   TTL-EXPIRY:  Four octets as an unsigned integer, representing the
      number of seconds that have passed since the TTL for the RRset
      expired.

6.2.  Option Usage

   Software making a DNS request can signal that it understands Serve-
   Stale by including the option with one STALE-RRSET-INDEX initialized
   to any negative value and TTY-EXPIRY initialized to 0.  The index is
   set to a negative value to detect mere reflection of the option by
   responders that don't really understand it.

   If the request is made to a recursive resolver which used any stale
   RRsets in its reply, it then fills in the corresponding indices and
   staleness values.  If no records are stale, STALE-RRSET-INDEX and
   TTL-EXPIRY are set to 0.

   If the request is made to an authoritative nameserver, it can use the
   option in the reply to indicate how the resolver should treat the
   records in the reply if they are unable to be refreshed later.  A
   default for all RRsets in the message is established by setting the
   first STALE-RRSET-INDEX to 0, with optional additional STALE-RRSET-
   INDEX values overriding the default.  A TTL-EXPIRY value of 0 means
   to never serve the RRset as stale, while non-zero values represent
   the maximum amount of time it can be used before it MUST be evicted.
   [ Does anyone really want to do this?  It adds more state into
   resolvers.  Is the idea only for purists, or is there a practical
   application? ]

   No facility is made for a client of a resolver to signal that it
   doesn't want stale answers, because if a client has knowledge of
   Serve-Stale as an option, it also has enough knowledge to just ignore
   any records that come back stale.  [ There is admittedly the issue
   that the client might just want to wait out the whole attempted
   resolution, which there's currently no way to indicate.  The absolute
   value of STALE-RRSET-INDEX could be taken as a timer the requester is
   willing to wait for an answer, but that's kind of gross overloading
   it like that.  Shame to burn another field on that, but on the other

https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc6891


Lawrence, et al.         Expires April 17, 2019                 [Page 6]



Internet-Draft               DNS Serve Stale                October 2018

   hand it might also be nice if a client could always signal its
   impatience level - "I must have an answer within 900 milliseconds!" ]

6.3.  Option Format Proposal 2

   The option is structured as follows:

                +0 (MSB)                        +1 (LSB)
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   0: |                         OPTION-CODE                       |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   2: |                        OPTION-LENGTH                      |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   4: | D | U | S |             RESERVED                          |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

   OPTION-CODE:  2 octets per [RFC6891].  For Serve-Stale the code is
      TBD by IANA.

   OPTION-LENGTH:  2 octets per [RFC6891].  Contains the length of the
      payload following OPTION-LENGTH, in octets.

   D Flag:  If set, the client explicitly does NOT want stale answers.
      If clear, the client would like an indication of whether any data
      in the response is stale.

   U Flag:  This indicates that the server understands the Serve-Stale
      EDNS option, and more information is communicated via the S flag.
      It exists to get around the issue of some authorative servers
      simply echoing back ENDS options it does not understand.

   S Flag:  If set, this indicates that the response contains stale
      data.  If clear, no data in the response has reached its TTL
      expiry.

   RESERVED:  Reserved for future use.  Should be set to zero on send
      and ignored on receipt.

7.  Example Method

   There is conceivably more than one way a recursive resolver could
   responsibly implement this resiliency feature while still respecting
   the intent of the TTL as a signal for when data is to be refreshed.

   In this example method three notable timers drive considerations for
   the use of stale data, as follows:

https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc6891


Lawrence, et al.         Expires April 17, 2019                 [Page 7]



Internet-Draft               DNS Serve Stale                October 2018

   o  A client response timer, which is the maximum amount of time a
      recursive resolver should allow between the receipt of a
      resolution request and sending its response.

   o  A query resolution timer, which caps the total amount of time a
      recursive resolver spends processing the query.

   o  A maximum stale timer, which caps the amount of time that records
      will be kept past their expiration.

   Recursive resolvers already have the second timer; the first and
   third timers are new concepts for this mechanism.

   When a request is received by the recursive resolver, it SHOULD start
   the client response timer.  This timer is used to avoid client
   timeouts.  It SHOULD be configurable, with a recommended value of 1.8
   seconds.

   The resolver then checks its cache for an unexpired answer.  If it
   finds none and the Recursion Desired flag is not set in the request,
   it SHOULD immediately return the response without consulting the
   cache for expired records.

   If iterative lookups will be done, it SHOULD start the query
   resolution timer.  This timer bounds the work done by the resolver,
   and is commonly around 10 to 30 seconds.

   If the answer has not been completely determined by the time the
   client response timer has elapsed, the resolver SHOULD then check its
   cache to see whether there is expired data that would satisfy the
   request.  If so, it adds that data to the response message and SHOULD
   set the TTL of each expired record in the message to 30 seconds.  The
   response is then sent to the client while the resolver continues its
   attempt to refresh the data.  30 second was chosen because
   historically 0 second TTLs have been problematic for some
   implementations, and similarly very short TTLs could lead to
   congestive collapse as TTL-respecting clients rapidly try to refresh.
   30 seconds not only sidesteps those potential problems with no
   practical negative consequence, it would also rate limit further
   queries from any client that is honoring the TTL, such as a
   forwarding resolver. [ NOTE: we're looking for further working group
   feedback on this value. ]

   The maximum stale timer is used for cache management and is
   independent of the query resolution process.  This timer is
   conceptually different from the maximum cache TTL that exists in many
   resolvers, the latter being a clamp on the value of TTLs as received
   from authoritative servers.  The maximum stale timer SHOULD be



Lawrence, et al.         Expires April 17, 2019                 [Page 8]



Internet-Draft               DNS Serve Stale                October 2018

   configurable, and defines the length of time after a record expires
   that it SHOULD be retained in the cache.  The suggested value is 7
   days, which gives time to notice the resolution problem and for human
   intervention to fix it.

   This same basic technique MAY be used to handle stale data associated
   with delegations.  If authoritative server addresses are not able to
   be refreshed, resolution can possibly still be successful if the
   authoritative servers themselves are still up.

8.  Implementation Caveats

   Answers from authoritative servers that have a DNS Response Code of
   either 0 (NOERROR) or 3 (NXDOMAIN) MUST be considered to have
   refreshed the data at the resolver.  In particular, this means that
   this method is not meant to protect against operator error at the
   authoritative server that turns a name that is intended to be valid
   into one that is non-existent, because there is no way for a resolver
   to know intent.

   Resolution is given a chance to succeed before stale data is used to
   adhere to the original intent of the design of the DNS.  This
   mechanism is only intended to add robustness to failures, and to be
   enabled all the time.  If stale data were used immediately and then a
   cache refresh attempted after the client response has been sent, the
   resolver would frequently be sending data that it would have had no
   trouble refreshing.  As modern resolvers use techniques like pre-
   fetching and request coalescing for efficiency, it is not necessary
   that every client request needs to trigger a new lookup flow in the
   presence of stale data, but rather than a good-faith effort have been
   recently made to refresh the stale data before it is delivered to any
   client.  The recommended period between attempting refreshes is 30
   seconds.

   It is important to continue the resolution attempt after the stale
   response has been sent, until the query resolution timeout, because
   some pathological resolutions can take many seconds to succeed as
   they cope with unavailable servers, bad networks, and other problems.
   Stopping the resolution attempt when the response with expired data
   has been sent would mean that answers in these pathological cases
   would never be refreshed.

   Canonical Name (CNAME) records mingled in the expired cache with
   other records at the same owner name can cause surprising results.
   This was observed with an initial implementation in BIND when a
   hostname changed from having an IPv4 Address (A) record to a CNAME.
   The version of BIND being used did not evict other types in the cache
   when a CNAME was received, which in normal operations is not a



Lawrence, et al.         Expires April 17, 2019                 [Page 9]



Internet-Draft               DNS Serve Stale                October 2018

   significant issue.  However, after both records expired and the
   authorities became unavailable, the fallback to stale answers
   returned the older A instead of the newer CNAME.

   [ This probably applies to other occluding types, so more thought
   should be given to the overall issue. ]

   Keeping records around after their normal expiration will of course
   cause caches to grow larger than if records were removed at their
   TTL.  Specific guidance on managing cache sizes is outside the scope
   of this document.  Some areas for consideration include whether to
   track the popularity of names in client requests versus evicting by
   maximum age, and whether to provide a feature for manually flushing
   only stale records.

9.  Implementation Status

   [RFC Editor: per RFC 6982 this section should be removed prior to
   publication.]

   The algorithm described in the Section 7 section was originally
   implemented as a patch to BIND 9.7.0.  It has been in production on
   Akamai's production network since 2011, and effectively smoothed over
   transient failures and longer outages that would have resulted in
   major incidents.  The patch was contributed to Internet Systems
   Consortium and the functionality is now available in BIND 9.12 via
   the options stale-answer-enable, stale-answer-ttl, and max-stale-ttl.

   Unbound has a similar feature for serving stale answers, but it works
   in a very different way by returning whatever cached answer it has
   before trying to refresh expired records.  This is unfortunately not
   faithful to the ideal that data past expiry should attempt to be
   refreshed before being served.

   Knot Resolver has an demo module here: https://knot-
resolver.readthedocs.io/en/stable/modules.html#serve-stale

   Details of Apple's implementation are not currently known.

   In the research paper "When the Dike Breaks: Dissecting DNS Defenses
   During DDoS" [DikeBreaks], the authors detected some use of stale
   answers by resolvers when authorities came under attack.  Their
   research results suggest that more widespread adoption of the
   technique would significantly improve resiliency for the large number
   of requests that fail or experience abnormally long resolution times
   during an attack.

https://datatracker.ietf.org/doc/html/rfc6982
https://knot-resolver.readthedocs.io/en/stable/modules.html#serve-stale
https://knot-resolver.readthedocs.io/en/stable/modules.html#serve-stale


Lawrence, et al.         Expires April 17, 2019                [Page 10]



Internet-Draft               DNS Serve Stale                October 2018

10.  Security Considerations

   The most obvious security issue is the increased likelihood of DNSSEC
   validation failures when using stale data because signatures could be
   returned outside their validity period.  This would only be an issue
   if the authoritative servers are unreachable, the only time the
   techniques in this document are used, and thus does not introduce a
   new failure in place of what would have otherwise been success.

   Additionally, bad actors have been known to use DNS caches to keep
   records alive even after their authorities have gone away.  This
   potentially makes that easier, although without introducing a new
   risk.

11.  Privacy Considerations

   This document does not add any practical new privacy issues.

12.  NAT Considerations

   The method described here is not affected by the use of NAT devices.

13.  IANA Considerations

   This document contains no actions for IANA.  This section will be
   removed during conversion into an RFC by the RFC editor.

14.  Acknowledgements

   The authors wish to thank Matti Klock, Mukund Sivaraman, Jean Roy,
   and Jason Moreau for initial review.  Feedback from Robert Edmonds,
   Giovane Moura, Davey Song, and Ralf Weber has also been incorporated.

15.  References

15.1.  Normative References

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
              <https://www.rfc-editor.org/info/rfc1034>.

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Lawrence, et al.         Expires April 17, 2019                [Page 11]

https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035


Internet-Draft               DNS Serve Stale                October 2018

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2181]  Elz, R. and R. Bush, "Clarifications to the DNS
              Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
              <https://www.rfc-editor.org/info/rfc2181>.

   [RFC6891]  Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
              for DNS (EDNS(0))", STD 75, RFC 6891,
              DOI 10.17487/RFC6891, April 2013,
              <https://www.rfc-editor.org/info/rfc6891>.

15.2.  Informative References

   [DikeBreaks]
              Moura, G., Heidemann, J., Mueller, M., Schmidt, R., and M.
              Davids, "When the Dike Breaks: Dissecting DNS Defenses
              During DDos", ACM 2018 Internet Measurement Conference,
              DOI 10.1145/3278532.3278534, October 2018,
              <https://www.isi.edu/~johnh/PAPERS/Moura18b.pdf>.

   [RFC7719]  Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
              Terminology", RFC 7719, DOI 10.17487/RFC7719, December
              2015, <https://www.rfc-editor.org/info/rfc7719>.

Authors' Addresses

   David C Lawrence
   Oracle + Dyn

   Email: tale@dd.org

   Warren Kumari
   Google
   1600 Amphitheatre Parkway
   Mountain View  CA 94043
   USA

   Email: warren@kumari.net

   Puneet Sood
   Google

   Email: puneets@google.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2181
https://www.rfc-editor.org/info/rfc2181
https://datatracker.ietf.org/doc/html/rfc6891
https://www.rfc-editor.org/info/rfc6891
https://www.isi.edu/~johnh/PAPERS/Moura18b.pdf
https://datatracker.ietf.org/doc/html/rfc7719
https://www.rfc-editor.org/info/rfc7719


Lawrence, et al.         Expires April 17, 2019                [Page 12]


