Network Working Group Internet-Draft

Updates: <u>6376</u> (if approved)
Intended status: Standards Track

Expires: November 11, 2018

J. Levine Taughannock Networks May 10, 2018

A new cryptographic signature method for DKIM draft-ietf-dcrup-dkim-crypto-09

Abstract

This document adds a new signing algorithm to DKIM.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of $\underline{\mathsf{BCP}}$ 78 and $\underline{\mathsf{BCP}}$ 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 11, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP-78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$. Introduction	<u>2</u>
2. Conventions Used in This Document	2
3. Ed25519-SHA256 Signing Algorithm	<u>3</u>
4. Signature and key syntax	<u>3</u>
	<u>3</u>
<u>4.2</u> . Key syntax	<u>3</u>
5. Key and algorithm choice and strength	<u>4</u>
6. Transition Considerations	4
7. Security Considerations	<u>4</u>
8. IANA Considerations	4
<u>8.1</u> . DKIM Key Type registry	<u>4</u>
$\underline{9}$. References	4
<u>9.1</u> . Normative References	<u>5</u>
	<u>5</u>
	<u>5</u>
	<u>5</u>
A.2. Public key DNS record	<u>6</u>
A.3. Signed Message	<u>6</u>
	<u>6</u>
Author's Address	7

1. Introduction

Discussion Venue: Discussion about this draft is directed to the dcrup@ietf.org [1] mailing list.

DKIM [RFC6376] signs e-mail messages, by creating hashes of the message headers and body and signing the header hash with a digital signature. Message recipients fetch the signature verification key from the DNS. The defining documents specify a single signing algorithm, RSA [RFC3447].

This document adds a new stronger signing algorithm, Edwards-Curve Digital Signature Algorithm using the Curve25519 curve (ed25519), which has much shorter keys than RSA for similar levels of security.

2. Conventions Used in This Document

The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Syntax descriptions use Augmented BNF (ABNF) [RFC5234]. The ABNF tokens sig-a-tag-k and key-k-tag-type are imported from [RFC6376].

3. Ed25519-SHA256 Signing Algorithm

The ed25519-sha256 signing algorithm computes a message hash as defined in section3 of [RFC6376] using SHA-256 SHPS-180-4-2015] as the hash-alg, and signs it with the PureEDdSA variant Ed25519, as defined in in RFC 8032 section 5.1 [RFC8032]]. Example keys and signatures in Appendix XX below are based on the test vectors in RFC 8032 section 7.1 [RFC8032]].

The DNS record for the verification public key has a "k=ed25519" tag to indicate that the key is an Ed25519 rather than RSA key.

This is an additional DKIM signature algorithm added to <u>Section 3.3</u> of [RFC6376] as envisioned in <u>Section 3.3.4 of [RFC6376]</u>.

Note: since Ed25519 keys are 256 bits long, the base64 encoded key is only 44 octets, so only DNS key record data will generally fit in a single 255 byte TXT string, and will work with DNS provisioning software that doesn't handle multi-string TXT records.

4. Signature and key syntax

The syntax of DKIM signatures and DKIM keys are updated as follows.

4.1. Signature syntax

The syntax of DKIM algorithm tags in <u>section 3.5 of [RFC6376]</u> is updated by adding this rule to the existing rule for sig-a-tag-k:

ABNF:

sig-a-tag-k = / "ed25519"

4.2. Key syntax

The syntax of DKIM key tags in <u>section 3.6.1 of [RFC6376]</u> is updated by adding this rule to the existing rule for key-k-tag-type:

ABNF:

```
key-k-tag-type = / "ed25519"
```

The p= value in the key record is the ed25519 public key encoded in base64. Since the key is 256 bits long, the base64 text is 44 octets long. For example, a key record using the public key in [RFC8032] Section 7.1, Test 1, might be:

```
s._domainkey.example TXT (
    "v=DKIM1; k=ed25519; p=11qYAYKxCrfVS/7TyWQH0g7hcvPapiMlrwIaaPcHURo="
)
```

5. Key and algorithm choice and strength

<u>Section 3.3 of [RFC6376]</u> describes DKIM's hash and signature algorithms. It is updated as follows:

Signers SHOULD implement and verifiers MUST implement the ed25519-sha256 algorithm.

6. Transition Considerations

For backward compatibility, signers MAY add multiple signatures that use old and new signing algorithms. Since there can only be a single key record in the DNS for each selector, the signatures will have to use different selectors, although they can use the same d= and i= identifiers.

Security Considerations

Ed25519 is a widely used cryptographic technique, so the security of DKIM signatures using new signing algorithms should be at least as good as those using old algorithms.

8. IANA Considerations

IANA is requested to update registries as follows.

8.1. DKIM Key Type registry

The following value is added to the DKIM Key Type Registry

```
| TYPE | REFERENCE | STATUS | +----+ | ed25519 | [RFC8032] | active | +----+
```

Table 1: DKIM Key Type Registry Added Values

9. References

9.1. Normative References

[FIPS-180-4-2015]

U.S. Department of Commerce, "Secure Hash Standard", FIPS
PUB 180-4, August 2015,
<http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf>.

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.
- [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
 2003, https://www.rfc-editor.org/info/rfc3447>.
- [RFC6376] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
 RFC 6376, DOI 10.17487/RFC6376, September 2011,
 https://www.rfc-editor.org/info/rfc6376>.
- [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, January 2017, https://www.rfc-editor.org/info/rfc8032>.

9.2. URIS

[1] mailto:dcrup@ietf.org

Appendix A. Example of a signed message

This is a small message with an ed25519-rsa DKIM signature.

A.1. Secret key

Ed25519 secret key in base64.

fL+5V9EquCZAovKik3pA6Lk9zwCzoEtjIuIqK9ZXHHA=

A.2. Public key DNS record

A.3. Signed Message

The text in each line of the message start at the first position except for the five continuation lines on the DKIM-Signature which start with a single space.

DKIM-Signature: v=1; a=ed25519; c=relaxed/simple; d=example.com; i=@example.com; q=dns/txt; s=test; t=5; h=message-id : date : from : to : subject : date : from : subject; bh=wE7NXSkgnx9PGiavN40ZhJztvkqPDlemV30GuEnLwNo=; b=wt7P+9DoBwcln1RKE3LN7069ZEEiSyVE/NH1YXnqnJy4JcrSCZUbeIEh vXssPHelX4yNSXG9eTGTwwk5NxYqBw== Received: from localhost Message-ID: <example@example.com> Date: Mon, 01 Jan 2011 01:02:03 +0400 From: Test User <test@example.com> To: somebody@example.com
Subject: Testing

This is a test message.

Appendix B. Change log

- 08 to 09 Specify sha-256 for the extremely literal minded. Take out the prehash stuff. Add example.
- 07 to 08 Specify base64 key records. Style edits per Dave C.
- 06 to 07: Remove RSA fingerprints. Change Pure to hashed eddsa.
- 05 to 06: Editorial changes only.
- 04 to 05: Remove deprecation cruft and inconsistent key advice. Fix p= and k= text.
- 03 to 04: Change eddsa to ed25519. Add Martin's key regeneration issue. Remove hashed ed25519 keys. Fix typos and clarify text. Move syntax updates to separate section. Take out SHA-1 stuff.
- 01 to 02: Clarify EdDSA algorithm is ed25519 with Pure version of the signing. Make references to tags and fields consistent.

Author's Address

John Levine Taughannock Networks PO Box 727 Trumansburg, NY 14886

Phone: +883.5100.01196712 Email: standards@taugh.com