
Internet-Draft D. Bider
Updates: 4252, 4253, 4254 (if approved) Bitvise Limited
Intended status: Standards Track September 5, 2016
Expires: March 5, 2017

Extension Negotiation in Secure Shell (SSH)
draft-ietf-curdle-ssh-ext-info-01.txt

Abstract

 This memo defines a mechanism for SSH clients and servers to exchange
 information about supported protocol extensions confidentially after
 completed key exchange.

Status

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference material
 or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/rfc4252
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bider [Page 1]

Internet-Draft Extension Negotiation in SSH March 2016

1. Overview and Rationale

 Secure Shell (SSH) is a common protocol for secure communication on
 the Internet. The original design of the SSH transport layer [RFC4253]
 lacks proper extension negotiation. Meanwhile, diverse implementations
 take steps to ensure that known message types contain no unrecognized
 information. This makes it difficult for implementations to signal
 capabilities and negotiate extensions without risking disconnection.

 This obstacle has been recognized in relationship with [SSH-RSA-SHA2],
 where the need arises for a client to discover signature algorithms a
 server accepts, to avoid authentication penalties and trial-and-error.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Extension Negotiation Mechanism

2.1. Signaling of Extension Negotiation in KEXINIT

 Applications implementing this mechanism MUST add to the field
 "kex_algorithms", in their KEXINIT packet sent for the first key
 exchange, one of the following indicator names:

 - When acting as server: "ext-info-s"
 - When acting as client: "ext-info-c"

 The indicator name is added without quotes, and MAY be added at any
 position in the name-list, subject to proper separation from other
 names as per name-list conventions.

 The names are added to the "kex_algorithms" field because this is one
 of two name-list fields in KEXINIT that do not have a separate copy
 for each data direction.

 The indicator names inserted by the client and server are different to
 ensure that these names will not produce a match, and will be neutral
 with respect to key exchange algorithm negotiation.

 The inclusion of textual indicator names is intended to provide a clue
 for implementers to discover this mechanism.

2.2. Enabling Criteria

 If a client or server offers "ext-info-c" or "ext-info-s"
 respectively, it must be prepared to accept an SSH_MSG_EXT_INFO
 message from the peer.

https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc2119

Bider [Page 2]

Internet-Draft Extension Negotiation in SSH March 2016

 Thus a server only needs to send "ext-info-s" if it intends to process
 SSH_MSG_EXT_INFO from the client.

 If a server receives an "ext-info-c", it MAY send an SSH_MSG_EXT_INFO
 message, but is not required to do so.

 If an SSH_MSG_EXT_INFO message is sent, then it MUST be the first
 message after the initial SSH_MSG_NEWKEYS.

 Implementations MUST NOT send an incorrect indicator name for their
 role. Implementations MAY disconnect if the counter-party sends an
 incorrect indicator. If "ext-info-c" or "ext-info-s" ends up being
 negotiated as a key exchange method, the parties MUST disconnect.

2.3. SSH_MSG_EXT_INFO Message

 A party that received the "ext-info-c" or "ext-info-s" indicator
 MAY send the following message:

 byte SSH_MSG_EXT_INFO (value 7)
 uint32 nr-extensions
 repeat "nr-extensions" times:
 string extension-name
 string extension-value

 This message is sent without delay, and immediately after
 SSH_MSG_NEWKEYS.

2.4. Server's Secondary SSH_MSG_EXT_INFO

 If the client sent "ext-info-c", the server MAY send, but is not
 obligated to send, an SSH_MSG_EXT_INFO message immediately before
 SSH_MSG_USERAUTH_SUCCESS, as defined in [RFC4252]. The server MAY send
 this message whether or not it sent EXT_INFO after SSH_MSG_NEWKEYS.

 This allows a server to reveal support for additional extensions that
 it was unwilling to reveal to an unauthenticated client. If a server
 sends a subsequent SSH_MSG_EXT_INFO, this replaces any initial one,
 and both the client and the server re-evaluate extensions in effect.
 The server's last EXT_INFO is matched against the client's original.

2.5. Interpretation of Extension Names and Values

 Each extension is identified by its extension-name, and defines the
 conditions under which the extension is considered to be in effect.
 Applications MUST ignore unrecognized extension-names.

 In general, if an extension requires both the client and the server
 to include it in order for the extension to take effect, the relative
 position of the extension-name in each EXT_INFO message is irrelevant.

https://datatracker.ietf.org/doc/html/rfc4252

Bider [Page 3]

Internet-Draft Extension Negotiation in SSH March 2016

 Extension-value fields are interpreted as defined by their respective
 extension. An extension-value field MAY be empty if so permitted by
 the extension. Applications that do not implement or recognize a
 particular extension MUST ignore the associated extension-value field,
 regardless of its size or content.

 The cumulative size of an SSH_MSG_EXT_INFO message is limited only by
 the maximum packet length that an implementation may apply in
 accordance with [RFC4253]. Implementations MUST accept well-formed
 SSH_MSG_EXT_INFO messages up to the maximum packet length they accept.

3. Initially Defined Extensions

3.1. "server-sig-algs"

 This extension is sent with the following extension name and value:

 string "server-sig-algs"
 name-list signature-algorithms-accepted

 Note that the name-list type is a strict subset of the string type,
 and is thus permissible as an extension-value.

 This extension is sent by the server only, and contains a list of
 signature algorithms that the server is able to process as part of a
 "publickey" request.

 A client that wishes to proceed with public key authentication MAY
 wait for the server's SSH_MSG_EXT_INFO so it can send a "publickey"
 authentication request with an appropriate signature algorithm, rather
 than resorting to trial and error.

 Servers that implement public key authentication SHOULD implement this
 extension.

 If a server does not send this extension, a client SHALL NOT make any
 assumptions about the server's signature algorithm support, and MAY
 proceed with authentication request trial and error.

3.2. "no-flow-control"

 This extension is sent with the following extension name and value:

 string "no-flow-control"
 string (empty)

 This extension MUST be sent by both parties in order to take effect.

 If included by both parties, the effect of this extension is that the
 "initial window size" fields in the messages SSH_MSG_CHANNEL_OPEN and

https://datatracker.ietf.org/doc/html/rfc4253

Bider [Page 4]

Internet-Draft Extension Negotiation in SSH March 2016

 SSH_MSG_CHANNEL_OPEN_CONFIRMATION, as defined in [RFC4254], become
 meaningless. The values of these fields MUST be ignored, and a channel
 behaves as if the window size in either direction is infinite. Neither
 side is required to send any SSH_MSG_CHANNEL_WINDOW_ADJUST messages,
 and if received, such messages MUST be ignored.

 This extension is intended, but not limited to, use by file transfer
 applications that are only going to use one channel, and for which the
 flow control provided by SSH is an impediment, rather than a feature.

 Implementations MUST refuse to open more than one simultaneous channel
 when this extension is in effect. Nevertheless, server implementations
 SHOULD support clients opening more than one non-simultaneous channel.

3.3. "accept-channels"

 This extension is sent with the following extension name and value:

 string "accept-channels"
 name-list channel-types-accepted

 An implementation MAY use this extension to signal to the other party
 a list of channel types it might accept. A server that adapts the list
 of available channel types based on authentication MAY defer sending
 this extension until a subsequent EXT_INFO, just before sending the
 message USERAUTH_SUCCESS.

 An implementation is not obligated to unconditionally accept open
 requests for channel types advertised in this extension. An open
 request for a listed channel type MAY still fail for another reason.

3.4. "elevation"

 This extension MAY be sent by the client as follows:

 string "elevation"
 string choice of: "y" | "n" | "d"

 A client sends "y" to indicate its preference that the session should
 be elevated (as used by Windows); "n" to not be elevated; and "d" for
 the server to use its default behavior. If a client does not send the
 "elevation" extension, the server SHOULD act as if "d" was sent.

 If a client has included this extension, then after authentication, a
 server that supports this extension SHOULD indicate to the client
 whether elevation was done by sending the following global request:

 byte SSH_MSG_GLOBAL_REQUEST
 string "elevation"
 boolean want reply = false
 boolean elevation performed

https://datatracker.ietf.org/doc/html/rfc4254

Bider [Page 5]

Internet-Draft Extension Negotiation in SSH March 2016

3.5. "delay-compression"

 This extension MAY be sent by both parties as follows:

 string "delay-compression"
 string:
 name-list compression_algorithms_client_to_server
 name-list compression_algorithms_server_to_client

 This extension allows the server and client to renegotiate compression
 algorithm support without having to conduct a key re-exchange, putting
 new algorithms into effect immediately upon successful authentication.

 This extension takes effect only if both parties send it. Name-lists
 MAY include any compression algorithm that could have been negotiated
 in SSH_MSG_KEXINIT, except algorithms that define their own delayed
 compression semantics. This means "zlib,none" is a valid algorithm
 list in this context; but "zlib@openssh.com" is not.

 If both parties send this extension, but the name-lists do not contain
 a common algorithm in either direction, the parties MUST disconnect in
 the same way as if negotiation failed as part of SSH_MSG_KEXINIT.

 If this extension takes effect, the renegotiated compression algorithm
 is used as follows:

 - By the server, starting with the very next SSH message after
 SSH_MSG_USERAUTH_SUCCESS.

 - By the client, after sending SSH_MSG_NEWCOMPRESS. If this extension
 takes effect, the client MUST send the following message immediately
 after receiving the server's SSH_MSG_USERAUTH_SUCCESS:

 byte SSH_MSG_NEWCOMPRESS (value 8)

 The purpose of this message is to avoid a race condition where the
 server cannot reliably know whether a message sent by the client was
 sent before or after receiving the server's USERAUTH_SUCCESS.

 As with all extensions, the server may delay including this extension
 until its secondary SSH_MSG_EXT_INFO, sent before USERAUTH_SUCCESS.
 This allows the server to avoid advertising compression support until
 the client has been authenticated.

 In subsequent key re-exchange, the compression algorithms negotiated
 in re-exchange override the algorithms negotiated with this extension.

Bider [Page 6]

Internet-Draft Extension Negotiation in SSH March 2016

4. IANA Considerations

4.1. Additions to existing tables

 IANA is requested to insert the following entries into the table
 Message Numbers under Secure Shell (SSH) Protocol Parameters
 [RFC4250]:

 Value Message ID Reference
 7 SSH_MSG_EXT_INFO [this document]
 8 SSH_MSG_NEWCOMPRESS [this document]

 IANA is requested to insert the following entries into the table Key
 Exchange Method Names:

 Method Name Reference Note
 ext-info-s [this document] Section 2.2
 ext-info-c [this document] Section 2.2

4.2. New table: Extension Names

 Also under Secure Shell (SSH) Protocol Parameters, IANA is requested
 to create a new table, Extension Names, with initial content:

 Extension Name Reference Note
 server-sig-algs [this document] Section 3.1
 no-flow-control [this document] Section 3.2
 accept-channels [this document] Section 3.3
 elevation [this document] Section 3.4
 delay-compression [this document] Section 3.5

4.2.1. Future Assignments to Extension Names

 Names in the Extension Names table MUST follow the Conventions for
 Names defined in [RFC4250], Section 4.6.1.

 Requests for assignments of new non-local names in the Extension Names
 table (i.e. names not including the '@' character) MUST be done
 through the IETF CONSENSUS method, as described in [RFC5226].

https://datatracker.ietf.org/doc/html/rfc4250
https://datatracker.ietf.org/doc/html/rfc4250#section-4.6.1
https://datatracker.ietf.org/doc/html/rfc5226

Bider [Page 7]

Internet-Draft Extension Negotiation in SSH March 2016

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4250] Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250, January 2006.

 [RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4254] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [RFC5226] Narten, T. and Alvestrand, H., "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

6.2. Informative References

 [SSH-RSA-SHA2]
 Bider, D., "Use of RSA Keys with SHA-2 256 and 512 in
 Secure Shell (SSH)", draft-ietf-curdle-rsa-sha2-01.txt,
 August 2016, <https://tools.ietf.org/html/

draft-ietf-curdle-rsa-sha2-01>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4250
https://datatracker.ietf.org/doc/html/rfc4252
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-rsa-sha2-01.txt
https://tools.ietf.org/html/draft-ietf-curdle-rsa-sha2-01
https://tools.ietf.org/html/draft-ietf-curdle-rsa-sha2-01

Bider [Page 8]

Internet-Draft Extension Negotiation in SSH March 2016

Author's Address

 Denis Bider
 Bitvise Limited
 Suites 41/42, Victoria House
 26 Main Street
 GI

 Phone: +506 8315 6519
 EMail: ietf-ssh3@denisbider.com
 URI: https://www.bitvise.com/

Acknowledgments

 Thanks to Markus Friedl and Damien Miller for comments and initial
 implementation.

https://www.bitvise.com/

Bider [Page 9]

