CDNI Working Group Internet-Draft

Intended status: Standards Track

Expires: May 7, 2020

F. Fieau, Ed. E. Stephan Orange S. Mishra Verizon November 04, 2019

CDNI extensions for HTTPS delegation draft-ietf-cdni-interfaces-https-delegation-02

Abstract

The delivery of content over HTTPS involving multiple CDNs raises credential management issues. This document proposes extensions in CDNI Control and Metadata interfaces to setup HTTPS delegation from an Upstream CDN (uCDN) to a Downstream CDN (dCDN).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of $\underline{\mathsf{BCP}}$ 78 and $\underline{\mathsf{BCP}}$ 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 7, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

<u>1</u> . Introduction	. <u>2</u>
2. Terminology	. <u>3</u>
3. Known delegation methods	<u>3</u>
4. Extending the CDNI metadata model	
4.1. Extension to PathMetadata object	. <u>3</u>
4.2. Delegation methods	. <u>4</u>
4.2.1. AcmeStarDelegationMethod object	. <u>5</u>
4.2.2. SubcertsDelegationMethod object	. <u>6</u>
<u>5</u> . Metadata Simple Data Type Descriptions	. <u>8</u>
<u>5.1</u> . Periodicity	. <u>8</u>
6. IANA considerations	. <u>8</u>
<u>6.1</u> . CDNI MI AcmeStarDelegationMethod Payload Type	<u>9</u>
<u>6.2</u> . CDNI MI SubCertsDelegationMethod Payload Type	
7. Security considerations	
<u>8</u> . References	
<u>8.1</u> . Normative References	. <u>9</u>
<u>8.2</u> . Informative References	<u> 10</u>
Authors' Addresses	. 10

1. Introduction

Content delivery over HTTPS using one or more CDNs along the path requires credential management. This specifically applies when an entity delegates delivery of encrypted content to another trusted entity.

Several delegation methods are currently proposed within different IETF working groups. They specify different methods for provisioning HTTPS delivery credentials.

This document extends the CDNI Metadata interface to setup HTTPS delegation between an upstream CDN (uCDN) and downstream CDN (dCDN) using the Standardized delegation methods. Furthermore, it includes a proposal of IANA registry to enable adding of new methods.

<u>Section 2</u> is about terminology used in this document. <u>Section 3</u> presents delegation methods specified at the IETF. <u>Section 4</u> addresses the extension for handling HTTPS delegation in CDNI. <u>Section 5</u> describes simple data types. <u>Section 6</u> addresses IANA registry for delegation methods. <u>Section 7</u> covers the security issues.

2. Terminology

This document uses terminology from CDNI framework documents such as: CDNI framework document [RFC7336], CDNI requirements [RFC7337] and CDNI interface specifications documents: CDNI Metadata interface [RFC8006] and CDNI Control interface / Triggers [RFC8007].

3. Known delegation methods

There are currently two Internet drafts within the TLS and ACME working groups adopted to handle delegation of HTTPS delivery between entities.

This Internet Draft (I-D) proposes standardizing HTTPS delegation between the entities using CDNI interfaces.

This document considers the following two I-Ds that deals with HTTPS delegation:

- Sub-certificates [I-D.ietf-tls-subcerts]
- Short-term, Automatically-Renewed (STAR) certificates in Automated Certificate Management Environment(ACME) [I-D.ietf-acme-star]

4. Extending the CDNI metadata model

This section defines a CDNI extension to the current Metadata interface model that allows bootstrapping delegation methods between a uCDN and a delegate dCDN.

4.1. Extension to PathMetadata object

This extension reuses PathMetadata object, as defined in [RFC8006], and adds new "Delegation methods" objects as specified in the following sections.

This allows to explicitly indicate support for a given method. Therefore, the presence (or lack thereof) of an AcmeStarDelegationMethod, SubcertsDelegationMethod, and/or further delegation methods, imply support (or lack thereof) for the given method.

Example:

The PathMatch object can reference a path-metadata that points at the delegation information. Delegation metadata are added to PathMetaData object.

Below shows both PathMatch and PathMetaData objects related to a path (here /movies/* located at https://metadata.ucdn.example/video.example.com/movies)

```
PathMatch:
 "path-pattern": {
      "pattern": "/movies/*",
      "case-sensitive": true
 "path-metadata": {
   "type": "MI.PathMetadata",
      "href": "https://metadata.ucdn.example/video.example.com/movies"
}
}
Following the example above, the PathMetadata can be modeled
for ACMEStarDelegationMethod as:
PathMetadata:
{
    "metadata": [
     {
        "generic-metadata-type": "MI.AcmeStarDelegationMethod",
        "generic-metadata-value": {
           "star-proxy": "10.2.2.2"
           "acme-server" : "10.2.3.3",
           "credentials-location-uri": "www.ucdn.com/credentials",
           "periodicity": 36000,
           "CSR-template": Json/Text representing the CSR template (see section
4.2)
    }}]
}
```

The existence of the "MI.AcmeStarDelegationMethod" object in a PathMetaData Object shall enable the use of one of the AcmeStarDelegation Methods, chosen by the delegating entity. The delegation method will be activated for the set of Path defined in the PathMatch. See <u>Section 4.2</u> for more details about delegation methods metadata specification.

4.2. Delegation methods

This section defines the delegation methods objects metadata. Those metadata allows bootstrapping a secured delegation by providing the dCDN with the needed parameters to set it up.

4.2.1. AcmeStarDelegationMethod object

This section defines the AcmeStarDelegationMethod object which describes metadata related to the use of ACME/STAR API presented in [I-D.ietf-acme-star]

As expressed in [I-D.ietf-acme-star], when an origin has set a delegation to a specific domain (i.e. dCDN), the dCDN should present to the end-user client, a short-term certificate bound to the master certificate.

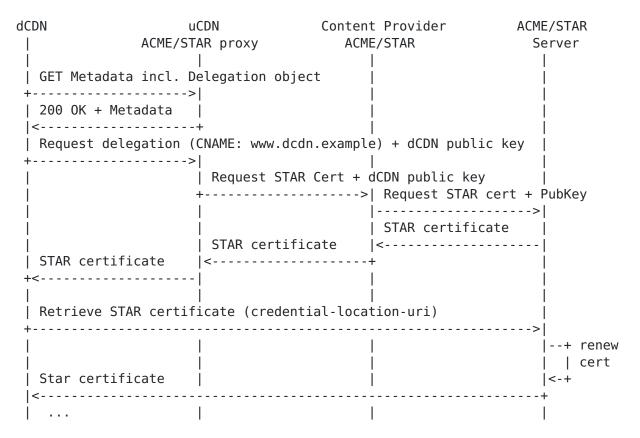


Figure 1: Example call-flow of STAR delegation in CDNI

Property: star-proxy

Description: Used to advertise the STAR Proxy to the dCDN.

Endpoint type defined in RFC8006, Section 4.3.3.

Type: Endpoint

Mandatory-to-Specify: Yes

Description: used to advertise the ACME server to the dCDN.

Endpoint type is defined in RFC8006, Section 4.3.3.

Type: Endpoint

Mandatory-to-Specify: Yes

Property: credentials-location-uri

Description: expresses the location of the credentials to be fetched by the dCDN. Link type is as defined in RFC8006,

Section 4.3.1.

Type: Link

Mandatory-to-Specify: Yes

Property: periodicity

Description: expresses the credentials renewal periodicity. See

Section 5.1.

Type: Periodicity

Mandatory-to-Specify: Yes

Property: CSR-template

Description: The CSR template must be included in the metadata when dealing with AcmeStarDelegation Methods. It shall follow the description in [I-D.ietf-acme-star] section 3. It should be

included in JSON/text format.

Type: Text

Mandatory-to-Specify: Yes

4.2.2. SubcertsDelegationMethod object

This section defines the SubcertsDelegationMethod object which describes metadata related to the use of Subcerts as presented in [I-D.ietf-tls-subcerts]

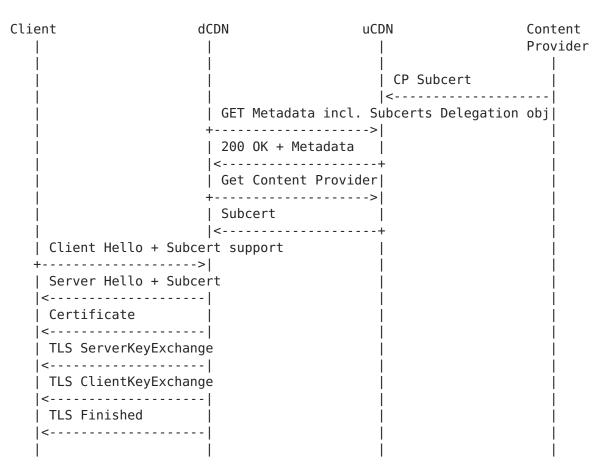


Figure 2: Example call-flow of SubCert delegation in CDNI

As expressed in [I-D.ietf-tls-subcerts], when an origin has set a delegation to a downstream entity such as a downstream CDN (i.e. dCDN), the dCDN should present the Origin or uCDN certificate or "delegated_credential" during the TLS handshake [RFC8446] to the enduser client application, instead of its own certificate.

Property: credentials-delegating-entity

Description: Endpoint ID (IP) of the delegating Entity (uCDN).

Endpoint type defined in RFC8006, Section 4.3.3.

Type: Endpoint

Mandatory-to-Specify: Yes

Property: credential-recipient-entity

Description: Endpoint ID (IP) of the delegated entity (dCDN). Endpoint type is defined in <a href="https://received.ncbi.nlm.ncb

Type: Endpoint

Mandatory-to-Specify: Yes

Property: credentials-location-uri

Description: expresses the location of the credentials to be fetched by the dCDN. Link type is as defined in RFC8006,

Section 4.3.1.

Type: Link

Mandatory-to-Specify: Yes

Property: periodicity

Description: expresses the credentials renewal periodicity. See

Section 5.1.

Type: Periodicity

Mandatory-to-Specify: Yes

5. Metadata Simple Data Type Descriptions

This section describes the simple data types that are used for properties for objects in this document.

5.1. Periodicity

A time value expressed in seconds to indicate a periodicity.

Type: Integer

IANA considerations

This document requests the registration of the following entries under the "CDNI Payload Types" registry hosted by IANA regarding "CDNI delegation":

Payload Type	Specification
MI.AcmeStarDelegationMethod	RFCthis
MI.SubCertDelegationMethod	RFCthis

[RFC Editor: Please replace RFCthis with the published RFC number for this document.]

6.1. CDNI MI AcmeStarDelegationMethod Payload Type

Purpose: The purpose of this Payload Type is to distinguish AcmeStarDelegationMethod MI objects (and any associated capability advertisement)

Interface: MI/FCI

Encoding: see <u>Section 4.2.1</u>

6.2. CDNI MI SubCertsDelegationMethod Payload Type

Purpose: The purpose of this Payload Type is to distinguish SubcertsDelegationMethod MI objects (and any associated capability advertisement)

Interface: MI/FCI

Encoding: see Section 4.2.2

7. Security considerations

Extensions proposed here do not alter nor change Security Considerations as outlined in the CDNI Metadata and Footprint and Capabilities RFCs [RFC8006].

8. References

8.1. Normative References

```
[I-D.ietf-acme-star]
             Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
             Fossati, "Support for Short-Term, Automatically-Renewed
             (STAR) Certificates in Automated Certificate Management
             Environment (ACME)", <a href="mailto:draft-ietf-acme-star-11">draft-ietf-acme-star-11</a> (work in
```

progress), October 2019.

- [I-D.ietf-tls-subcerts] Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla, "Delegated Credentials for TLS", draft-ietf-tlssubcerts-04 (work in progress), July 2019.
- [RFC8006] Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma, "Content Delivery Network Interconnection (CDNI) Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016, https://www.rfc-editor.org/info/rfc8006>.
- Murray, R. and B. Niven-Jenkins, "Content Delivery Network [RFC8007] Interconnection (CDNI) Control Interface / Triggers", RFC 8007, DOI 10.17487/RFC8007, December 2016, <https://www.rfc-editor.org/info/rfc8007>.

8.2. Informative References

- [RFC7336] Peterson, L., Davie, B., and R. van Brandenburg, Ed., "Framework for Content Distribution Network Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336, August 2014, https://www.rfc-editor.org/info/rfc7336.
- [RFC7337] Leung, K., Ed. and Y. Lee, Ed., "Content Distribution Network Interconnection (CDNI) Requirements", RFC 7337, DOI 10.17487/RFC7337, August 2014, https://www.rfc-editor.org/info/rfc7337>.
- [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Frederic Fieau (editor) 0range 40-48, avenue de la Republique Chatillon 92320 France

Email: frederic.fieau@orange.com

Emile Stephan 0range 2, avenue Pierre Marzin Lannion 22300 France

Email: emile.stephan@orange.com

Sanjay Mishra Verizon 13100 Columbia Pike Silver Spring MD 20904 USA

Email: sanjay.mishra@verizon.com