
Internet Draft R. Pan, P. Natarajan, F. Baker
Active Queue Management G. White, B. VerSteeg, M.S. Prabhu
Working Group C. Piglione, V. Subramanian
Intended Status: Standards Track

Expires: September 1, 2016 February 29, 2016

PIE: A Lightweight Control Scheme To Address the
Bufferbloat Problem

draft-ietf-aqm-pie-04

Abstract

 Bufferbloat is a phenomenon where excess buffers in the network cause
 high latency and jitter. As more and more interactive applications
 (e.g. voice over IP, real time video streaming and financial
 transactions) run in the Internet, high latency and jitter degrade
 application performance. There is a pressing need to design
 intelligent queue management schemes that can control latency and
 jitter; and hence provide desirable quality of service to users.

 This document presents a lightweight active queue management design,
 called PIE (Proportional Integral controller Enhanced), that can
 effectively control the average queueing latency to a target value.
 Simulation results, theoretical analysis and Linux testbed results
 have shown that PIE can ensure low latency and achieve high link
 utilization under various congestion situations. The design does not
 require per-packet timestamp, so it incurs very small overhead and is
 simple enough to implement in both hardware and software.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Pan et al. Expires September 1, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-04
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

INTERNET DRAFT PIE February 29, 2016

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Design Goals . 5
4. The Basic PIE Scheme . 6

 4.1 Random Dropping(ECN Support is described later in this
 document) . 7

4.2 Drop Probability Calculation 8
4.3 Latency Calculation . 10
4.4 Burst Tolerance . 10

5. Optional Design Elements of PIE 11
5.1 ECN Support . 11
5.2 Departure Rate Estimation 11
5.3 Turning PIE on and off 13
5.4 De-randomization . 14
5.5 Cap Drop Adjustment . 15

6. Implementation Cost . 15
7. Future Research . 16
8. Incremental Deployment . 16
9. IANA Considerations . 17
10. References . 17
10.1 Normative References 17
10.2 Informative References 17

http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Pan et al. Expires September 1, 2016 [Page 2]

INTERNET DRAFT PIE February 29, 2016

10.3 Other References . 17
 [CBQ] Cisco White Paper,
 "http://www.cisco.com/en/US/docs/12_0t/12_0tfeature/guide/
cbwfq.html". n
 Authors' Addresses . 18

11. The Basic PIE pseudo Code 19
12. Pseudo code for PIE with optional enhancement 22

Pan et al. Expires September 1, 2016 [Page 3]

INTERNET DRAFT PIE February 29, 2016

1. Introduction

 The explosion of smart phones, tablets and video traffic in the
 Internet brings about a unique set of challenges for congestion
 control. To avoid packet drops, many service providers or data center
 operators require vendors to put in as much buffer as possible. With
 rapid decrease in memory chip prices, these requests are easily
 accommodated to keep customers happy. While this solution succeeds in
 assuring low packet loss and high TCP throughput, it suffers from a
 major downside. The TCP protocol continuously increases its sending
 rate and causes network buffers to fill up. TCP cuts its rate only
 when it receives a packet drop or mark that is interpreted as a
 congestion signal. However, drops and marks usually occur when
 network buffers are full or almost full. As a result, excess buffers,
 initially designed to avoid packet drops, would lead to highly
 elevated queueing latency and jitter. It is a delicate balancing act
 to design a queue management scheme that not only allows short-term
 burst to smoothly pass, but also controls the average latency in the
 presence of long-running greedy flows.

 Active queue management (AQM) schemes, such as Random Early Detection
 (RED), have been around for well over a decade. AQM schemes could
 potentially solve the aforementioned problem. RFC 2309[RFC2309]
 strongly recommends the adoption of AQM schemes in the network to
 improve the performance of the Internet. RED is implemented in a wide
 variety of network devices, both in hardware and software.
 Unfortunately, due to the fact that RED needs careful tuning of its
 parameters for various network conditions, most network operators
 don't turn RED on. In addition, RED is designed to control the queue
 length which would affect delay implicitly. It does not control
 latency directly. Hence, the Internet today still lacks an effective
 design that can control buffer latency to improve the quality of
 experience to latency-sensitive applications. Notably, a recent IETF
 AQM working group draft [IETF-AQM] calls for new methods of
 controlling network latency.

 New algorithms are beginning to emerge to control queueing latency
 directly to address the bufferbloat problem [CoDel]. Along these
 lines, PIE also aims to keep the benefits of RED: such as easy
 implementation and scalability to high speeds. Similar to RED, PIE
 randomly drops an incoming packet at the onset of the congestion. The
 congestion detection, however, is based on the queueing latency
 instead of the queue length like RED. Furthermore, PIE also uses the
 derivative (rate of change) of the queueing latency to help determine
 congestion levels and an appropriate response. The design parameters
 of PIE are chosen via control theory stability analysis. While these
 parameters can be fixed to work in various traffic conditions, they
 could be made self-tuning to optimize system performance.

https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/rfc2309

Pan et al. Expires September 1, 2016 [Page 4]

INTERNET DRAFT PIE February 29, 2016

 Separately, it is assumed that any delay-based AQM scheme would be
 applied over a Fair Queueing (FQ) structure or one of its approximate
 designs, Flow Queueing or Class Based Queueing (CBQ). FQ is one of
 the most studied scheduling algorithms since it was first proposed in
 1985 [RFC970]. CBQ has been a standard feature in most network
 devices today[CBQ]. Any AQM scheme that is built on top of FQ or CBQ
 could benefit from these advantages. Furthermore, these advantages
 such as per flow/class fairness are orthogonal to the AQM design
 whose primary goal is to control latency for a given queue. For flows
 that are classified into the same class and put into the same queue,
 one needs to ensure their latency is better controlled and their
 fairness is not worse than those under the standard DropTail or RED
 design. More details about the relationship between FQ and AQM can be
 found in IETF draft [FQ-Implement].

 In October 2013, CableLabs' DOCSIS 3.1 specification [DOCSIS_3.1]
 mandated that cable modems implement a specific variant of the PIE
 design as the active queue management algorithm. In addition to cable
 specific improvements, the PIE design in DOCSIS 3.1 [DOCSIS-PIE] has
 improved the original design in several areas, including de-
 randomization of coin tosses and enhanced burst protection.

 This draft separates the PIE design into the basic elements that are
 MUST to be implemented and optional SHOULD/MAY enhancement elements.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Design Goals

 A queue management framework is designed to improve the performance
 of interactive and delay-sensitive applications. It should follow the
 general guidelines set by the AQM working group document "IETF
 Recommendations Regarding Active Queue Management" [IETF-AQM]. More
 specifically PIE design has the following basic criteria.

 * First, queueing latency, instead of queue length, is
 controlled. Queue sizes change with queue draining rates and
 various flows' round trip times. Delay bloat is the real issue
 that needs to be addressed as it impairs real time applications.
 If latency can be controlled, bufferbloat is not an issue. In

https://datatracker.ietf.org/doc/html/rfc970
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Pan et al. Expires September 1, 2016 [Page 5]

INTERNET DRAFT PIE February 29, 2016

 fact, once latency is under control it frees up buffers for
 sporadic bursts.

 * Secondly, PIE aims to attain high link utilization. The goal
 of low latency shall be achieved without suffering link under-
 utilization or losing network efficiency. An early congestion
 signal could cause TCP to back off and avoid queue building up.
 On the other hand, however, TCP's rate reduction could result in
 link under-utilization. There is a delicate balance between
 achieving high link utilization and low latency.

 * Furthermore, the scheme should be simple to implement and
 easily scalable in both hardware and software. PIE strives to
 maintain similar design simplicity to RED, which has been
 implemented in a wide variety of network devices.

 * Finally, the scheme should ensure system stability for various
 network topologies and scale well across an arbitrary number of
 streams. Design parameters shall be set automatically. Users
 only need to set performance-related parameters such as target
 queue delay, not design parameters.

In the following, the design of PIE and its operation are described in
detail.

4. The Basic PIE Scheme

As illustrated in Fig. 1, PIE conceptually comprises three simple MUST
components: a) random dropping at enqueueing; b) periodic drop
probability update; c) latency calculation. When a packet arrives, a
random decision is made regarding whether to drop the packet. The drop
probability is updated periodically based on how far the current delay
is away from the target and whether the queueing delay is currently
trending up or down. The queueing delay can be obtained using direct
measurements or using estimations calculated from the queue length and
the dequeue rate.

The detailed definition of parameters can be found in the pseudo code
section of this document (Section 11). Any state variables that PIE
maintains are noted using "PIE->". For full description of the
algorithm, one can refer to the full paper [HPSR-PIE].

Pan et al. Expires September 1, 2016 [Page 6]

INTERNET DRAFT PIE February 29, 2016

 Random Drop
 / --------------
 -------/ --------------> | | | | | -------------->
 /|\ | | | | |
 | --------------
 | Queue Buffer \
 | | \
 | |queue \
 | |length \
 | | \
 | \|/ \/
 | ----------------- -------------------
 | | Drop | | |
 -----<-----| Probability |<---| Latency |
 | Calculation | | Calculation |
 ----------------- -------------------

 Figure 1. The PIE Structure

4.1 Random Dropping(ECN Support is described later in this document)

PIE MUST drop a packet upon its arrival to a queue according to a drop
probability, PIE->drop_prob_, that is obtained from the drop-
probability-calculation component. The random drop is triggered by a
packet arrival before enqueueing into a queue.

 * Upon a packet enqueue, PIE MUST:

 randomly drop the packet with a probability PIE->drop_prob_.

To ensure that PIE is work conserving, we MAY bypass the random drop if
the delay sample, PIE->qdelay_old_, is smaller than half of QDELAY_REF
when the drop probability is not too high, PIE->drop_prob_ < 0.2; or if
the queue has less than a couple of packets.

 * Upon a packet enqueue, PIE MAY:

 //Safeguard PIE to be work conserving
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 else
 randomly drop the packet with a probability PIE->drop_prob_.

PIE optionally supports ECN and see Section 5.1.

Pan et al. Expires September 1, 2016 [Page 7]

INTERNET DRAFT PIE February 29, 2016

4.2 Drop Probability Calculation

The PIE algorithm periodically updates the drop probability based on the
delay samples: not only the current delay sample but also the trend
where the delay is going, up or down. This is the classical Proportional
Integral (PI) controller method which is known for eliminating steady
state errors. This type of controller has been studied before for
controlling the queue length [PI, QCN]. PIE adopts the Proportional
Integral controller for controlling delay. The algorithm also auto-
adjusts the control parameters based on how heavy the congestion is,
which is reflected in the current drop probability. Note that the
current drop probability is a direct measure of current congestion
level, no need to measure the arrival rate and departure rate
mismatches.

When a congestion period goes away, we might be left with a high drop
probability with light packet arrivals. Hence, the PIE algorithm MUST
include a mechanism by which the drop probability decay exponentially
(rather than linearly) when the system is not congested. This would help
the drop probability converge to 0 faster while the PI controller
ensures that it would eventually reaches zero. The decay parameter of 2%
gives us around 750ms time constant, a few RTT.

Specifically, the PIE algorithm MUST periodically adjust the drop
probability every T_UPDATE interval:

 * MUST calculate drop probability PIE->drop_prob_ and auto-tune it
 as:

 p = alpha*(current_qdelay-QDELAY_REF) +
 beta*(current_qdelay-PIE->qdelay_old_);

 if (PIE->drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (PIE->drop_prob_ < 0.00001) {
 p /= 512;
 } else if (PIE->drop_prob_ < 0.0001) {
 p /= 128;
 } else if (PIE->drop_prob_ < 0.001) {
 p /= 32;
 } else if (PIE->drop_prob_ < 0.01) {
 p /= 8;
 } else if (PIE->drop_prob_ < 0.1) {
 p /= 2;
 } else {
 p = p;

Pan et al. Expires September 1, 2016 [Page 8]

INTERNET DRAFT PIE February 29, 2016

 }
 PIE->drop_prob_ += p;

 * MUST decay the drop probability exponentially:

 if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {

 PIE->drop_prob_ = PIE->drop_prob_*0.98; //1- 1/64
 //is sufficient

 }

 * MUST bound the drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0.0
 if (PIE->drop_prob_ > 1)
 PIE->drop_prob_ = 1.0

 * MUST store current delay value:

 PIE->qdelay_old_ = current_qdelay.

The update interval, T_UPDATE, is defaulted to be 15ms. It MAY be
reduced on high speed links in order to provide smoother response. The
target delay value, QDELAY_REF, SHOULD be set to 15ms. Variables,
current_qdelay and PIE->qdelay_old_ represent the current and previous
samples of the queueing delay, which are calculated by the "Latency
Calculation" component (see Section 4.3). The variable current_qdelay is
actually a temporary variable while PIE->qdelay_old_ is a state variable
that PIE keeps. The drop probability is a value between 0 and 1.
However, implementations can certainly use integers.

The controller parameters, alpha and beta(in the unit of hz) are
designed using feedback loop analysis where TCP's behaviors are modeled
using the results from well-studied prior art[TCP-Models]. Note that the
above adjustment of p effectively scales the alpha and beta parameters
based on current congestion level indicated by the drop probability.

The theoretical analysis of PIE can be found in [HPSR-PIE]. As a rule of
thumb, to keep the same feedback loop dynamics, if we cut T_UPDATE in
half, we should also cut alpha by half and increase beta by alpha/4. If
the target delay is reduced, e.g. for data center use, the values of
alpha and beta SHOULD be increased by the same order of magnitude that
the target latency is reduced. For example, if QDELAY_REF is reduced
changed from 15ms to 150us, a reduction of two orders of magnitude, then
alpha and beta values should be increased to alpha*100 and beta*100.

Pan et al. Expires September 1, 2016 [Page 9]

INTERNET DRAFT PIE February 29, 2016

4.3 Latency Calculation

The PIE algorithm MUST use latency to calculate drop probability.

 * It MAY estimate current queueing delay using Little's law:

 current_qdelay = queue_.byte_length()/dequeue_rate;

 Details can be found in Section 5.2.

 * or MAY use other techniques for calculating queueing delay, ex:
 timestamp packets at enqueue and use the same to calculate delay
 during dequeue.

4.4 Burst Tolerance

PIE MUST also NOT penalize short-term packet bursts [IETF-AQM]. PIE MUST
allow bursts of traffic that create finite-duration events in which
current queueing delay exceeds the QDELAY_REF, without triggering packet
drops. A parameter, MAX_BURST, is introduced that defines the burst
duration that will be protected. By default, the parameter SHOULD be set
to be 150ms. For simplicity, the PIE algorithm MAY effectively round
MAX_BURST up to an integer multiple of T_UPDATE.

To implement the burst tolerance function, two basic components of PIE
are involved: "random dropping" and "drop probability calculation". The
PIE algorithm MUST do the following:

 * In "Random Dropping" block and upon a packet arrival , PIE MUST
 check:

 Upon a packet enqueue:
 if PIE->burst_allowance_ > 0 enqueue packet;
 else randomly drop a packet with a probability PIE->drop_prob_.

 if (PIE->drop_prob_ == 0 and current_qdelay < QDELAY_REF/2 and
 PIE->qdelay_old_ < QDELAY_REF/2)
 PIE->burst_allowance_ = MAX_BURST;

 * In "Drop Probability Calculation" block, PIE MUST additionally
 calculate:

 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ -
 T_UPDATE);

The burst allowance, noted by PIE->burst_allowance_, is initialized to

Pan et al. Expires September 1, 2016 [Page 10]

INTERNET DRAFT PIE February 29, 2016

MAX_BURST. As long as PIE->burst_allowance_ is above zero, an incoming
packet will be enqueued bypassing the random drop process. During each
update instance, the value of PIE->burst_allowance_ is decremented by
the update period, T_UPDATE and is bottomed at 0. When the congestion
goes away, defined here as PIE->drop_prob_ equals 0 and both the current
and previous samples of estimated delay are less than half of
QDELAY_REF, PIE->burst_allowance_ is reset to MAX_BURST.

5. Optional Design Elements of PIE

The above forms the basic MUST have elements of the PIE algorithm. There
are several enhancements that are added to further augment the
performance of the basic algorithm. For clarity purposes, they are
included in this section.

5.1 ECN Support

PIE SHOULD support ECN by marking (rather than dropping) ECN capable
packets [IETF-ECN]. However, as a safeguard, an additional threshold,
mark_ecnth, is introduced. If the calculated drop probability exceeds
mark_ecnth, PIE MUST revert to packet drop for ECN capable packets. The
variable mark_ecnth SHOULD be set at 0.1(10%).

 * To support ECN, the "random drop with a probability
 PIE->drop_prob_" function in "Random Dropping" block SHOULD be
 changed to the following:

 * Upon a packet enqueue:

 if rand() < PIE->drop_prob_:

 if PIE->drop_prob_ < mark_ecnth && ecn_capable_packet == TRUE:

 mark packet;

 else:

 drop packet;

5.2 Departure Rate Estimation

One way to calculate latency is to obtain the departure rate. The
draining rate of a queue in the network often varies either because
other queues are sharing the same link, or the link capacity fluctuates.

Pan et al. Expires September 1, 2016 [Page 11]

INTERNET DRAFT PIE February 29, 2016

Rate fluctuation is particularly common in wireless networks. One MAY
measure directly at the dequeue operation. Short, non-persistent bursts
of packets result in empty queues from time to time, this would make the
measurement less accurate. PIE SHOULD measure when a sufficient data in
the buffer, i.e., when the queue length is over a certain threshold
(DQ_THRESHOLD). PIE measures how long it takes to drain DQ_THRESHOLD of
packets. More specifically, PIE MAY implement the rate estimation as
follows:

 current_qdelay = queue_.byte_length() *
 PIE->avg_dq_time_/DQ_THRESHOLD;

 * Upon a packet deque:

 if PIE->in_measurement_ == FALSE and queue.byte_length() >
 DQ_THRESHOLD:
 PIE->in_measurement_ = TRUE;
 PIE->measurement_start_ = now;
 PIE->dq_count_ = 0;

 if PIE->in_measurement_ == TRUE:
 PIE->dq_count_ = PIE->dq_count_ + deque_pkt_size;
 if PIE->dq_count_ > DQ_THRESHOLD then
 weight = DQ_THRESHOLD/2^16
 PIE->avg_dq_time_ = (now-PIE->measurement_start_)*weight
 + PIE->avg_dq_time_*(1-weight);
 PIE->dq_count_=0;
 PIE->measurement_start_ = now

The parameter, PIE->dq_count_, represents the number of bytes departed
since the last measurement. Once PIE->dq_count_ is over DQ_THRESHOLD, a
measurement sample is obtained. The threshold is recommended to be set
to 16KB assuming a typical packet size of around 1KB or 1.5KB. This
threshold would allow sufficient data to obtain an average draining rate
but also fast enough (< 64KB) to reflect sudden changes in the draining
rate. IF DQ_THRESHOLD is smaller than 64KB, a small weight is used to
smooth out the dequeue time and obtain PIE->avg_dq_time_. The dequeue
rate is simply DQ_THRESHOLD divided by PIE->avg_dq_time_. This threshold
is not crucial for the system's stability. Please note that the update
interval for calculating the drop probability is different from the rate
measurement cycle. The drop probability calculation is done periodically
per section 4.2 and it is done even when the algorithm is not in a
measurement cycle; in this case the previously latched value of PIE-
>avg_dq_time_ is used.

 Random Drop

Pan et al. Expires September 1, 2016 [Page 12]

INTERNET DRAFT PIE February 29, 2016

 / --------------
 -------/ --------------------> | | | | | -------------->
 /|\ | | | | | |
 | | --------------
 | | Queue Buffer
 | | |
 | | |queue
 | | |length
 | | |
 | \|/ \|/
 | ------------------------------
 | | Departure Rate |
 -----<-----| & Drop Probability |
 | Calculation |

 Figure 2. The Enqueue-based PIE Structure

In some platforms, enqueueing and dequeueing functions belong to
different modules that are independent of each other. In such
situations, a pure enqueue-based design MAY be designed. As shown in
Figure 2, an enqueue-based design is depicted. The departure rate is
deduced from the number of packets enqueued and the queue length. The
design is based on the following key observation: over a certain time
interval, the number of departure packets = the number of enqueued
packets - the number of remaining packets in queue. In this design,
everything can be triggered by a packet arrival including the background
update process. The design complexity here is similar to the original
design.

5.3 Turning PIE on and off

Traffic naturally fluctuates in a network. It would be preferable not to
unnecessarily drop packets due to a spurious uptick in queueing latency.
PIE can be optionally turned on and off. It SHOULD only be turned on
(from off) when the buffer occupancy is over a certain threshold, which
SHOULD be set to 1/3 of the tail drop threshold. If it is on, PIE SHOULD
be turned off when congestion is over, i.e. when the drop probability
reaches 0, current and previous delay samples are all below half of
QDELAY_REF.

Ideally PIE should be turned on or off based on the latency. However,
calculating latency when PIE is off would introduce unnecessary packet
processing overhead. Weighing the trade-offs, it is decided to compare

Pan et al. Expires September 1, 2016 [Page 13]

INTERNET DRAFT PIE February 29, 2016

against tail drop threshold to keep things simple.

When PIE is optionally turned on and off, the burst protection logic in
Section 4.4 MAY be modified as follows:

 * "Random Dropping" block, PIE MAY add:

 Upon packet arrival:

 if PIE->active_ == FALSE && queue_length >= TAIL_DROP/3:
 PIE->active_ = TRUE;
 PIE->burst_allowance_ = MAX_BURST;

 if PIE->burst_allowance_ > 0 enqueue packet;
 else randomly drop a packet with a probability PIE->drop_prob_.

 if (PIE->drop_prob_ == 0 and current_qdelay < QDELAY_REF/2 and
 PIE->qdelay_old_ < QDELAY_REF/2)
 PIE->active_ = FALSE;
 PIE->burst_allowance_ = MAX_BURST;

 * "Drop Probability Calculation" block, PIE MAY do the following:
 if PIE->active_ == TRUE:
 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);

5.4 De-randomization

Although PIE adopts random dropping to achieve latency control,
independent coin tosses could introduce outlier situations where packets
are dropped too close to each other or too far from each other. This
would cause real drop percentage to temporarily deviate from the
intended value PIE->drop_prob_. In certain scenarios, such as small
number of simultaneous TCP flows, these deviations can cause significant
deviations in link utilization and queueing latency. PIE MAY introduce a
de-randomization mechanism to avoid such scenarios. A parameter, called
PIE->accu_prob_, is reset to 0 after a drop. Upon a packet arrival, PIE-
>accu_prob_ is incremented by the amount of drop probability, PIE-
>drop_prob_. If PIE->accu_prob_ is less than a low threshold, e.g. 0.85,
the arriving packet is enqueued; on the other hand, if PIE->accu_prob_
is more than a high threshold, e.g. 8.5, a packet is forced to be
dropped. A packet is only randomly dropped if PIE->accu_prob_ falls in
between the two thresholds. Since PIE->accu_prob_ is reset to 0 after a
drop, another drop will not happen until 0.85/PIE->drop_prob_ packets
later. This avoids packets being dropped too close to each other. In the
other extreme case where 8.5/PIE->drop_prob_ packets have been enqueued
without incurring a drop, PIE would force a drop in order to prevent the
drops from being spaced too far apart. Further analysis can be found in

Pan et al. Expires September 1, 2016 [Page 14]

INTERNET DRAFT PIE February 29, 2016

[DOCSIS-PIE].

5.5 Cap Drop Adjustment

In the case of one single TCP flow during slow start phase in the
system, queue could quickly increase during slow start and demands high
drop probability. In some environments such as Cable Modem Speed Test,
one could not afford triggering timeout and lose throughput as
throughput is shown to customers who are testing his/her connection
speed. We MAY cap the maximum drop probability increase in each step.

 * "Drop Probability Calculation" block, PIE MAY add:

 if (PIE->drop_prob_ >= 0.1 && p > 0.02) {

 p = 0.02;

 }

6. Implementation Cost

PIE can be applied to existing hardware or software solutions. There are
three steps involved in PIE as discussed in Section 4. Their
complexities are examined below.

Upon packet arrival, the algorithm simply drops a packet randomly based
on the drop probability. This step is straightforward and requires no
packet header examination and manipulation. If the implementation
doesn't rely on packet timestamps for calculating latency, PIE does not
require extra memory. Furthermore, the input side of a queue is
typically under software control while the output side of a queue is
hardware based. Hence, a drop at enqueueing can be readily retrofitted
into existing hardware or software implementations.

The drop probability calculation is done in the background and it occurs
every T_UPDATE interval. Given modern high speed links, this period
translates into once every tens, hundreds or even thousands of packets.
Hence the calculation occurs at a much slower time scale than packet
processing time, at least an order of magnitude slower. The calculation
of drop probability involves multiplications using alpha and beta. Since
PIE's control law is robust to minor changes in alpha and beta values,
an implementation MAY choose these values to the closest multiples of 2
or 1/2 (ex: alpha=1/8, beta=1 + 1/4) such that the multiplications can
be done using simple adds and shifts. As no complicated functions are
required, PIE can be easily implemented in both hardware and software.
The state requirement is only one variables per queue: PIE->qdelay_old_.
Hence the memory overhead is small.

Pan et al. Expires September 1, 2016 [Page 15]

INTERNET DRAFT PIE February 29, 2016

If one chooses to implement the departure rate estimation, PIE uses a
counter to keep track of the number of bytes departed for the current
interval. This counter is incremented per packet departure. Every
T_UPDATE, PIE calculates latency using the departure rate, which can be
implemented using a multiplication. Note that many network devices keep
track of an interface's departure rate. In this case, PIE might be able
to reuse this information, simply skip the third step of the algorithm
and hence incurs no extra cost. If platform already leverages packet
timestamps for other purposes, PIE MAY make use of these packet
timestamps for latency calculation instead of estimating departure rate.

Since the PIE design is separated into data path and control path, if
control path is implemented in software, any further improvement in
control path can be easily accommodated.

SFQ can also be combined with PIE to further improve latency for various
flows with different priorities. If the timestamp is used to obtain
queueing latency, PIE can be adopted directly to each individual queue.
If the latency is obtained via the deque rate calculation, we recommend
one PIE instance using the overall queue length divided by the overall
deque rate. Then the overall PIE->drop_prob_ is modified using each
individual queue divided by the maximum individual queue length: PIE-
>drop_prob_(i)=queue_.byte_length(i)/max(queue_.byte_length(i)).

In summary, PIE is simple enough to be implemented in both software and
hardware.

7. Future Research

The design of the PIE algorithm is presented in this document. It
effectively controls the average queueing latency to a target value. The
following areas can be further studied:

 * Autotuning of target delay without losing utilization;

 * Autotuning for average RTT of traffic;

8. Incremental Deployment

 PIE scheme can be independently deployed and managed without any
 need for interoperability.

 Although all network nodes cannot be changed altogether to adopt
 latency-based AQM schemes, a gradual adoption would eventually lead
 to end-to-end low latency service for all applications.

Pan et al. Expires September 1, 2016 [Page 16]

INTERNET DRAFT PIE February 29, 2016

9. IANA Considerations

 There are no actions for IANA.

10. References

10.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2 Informative References

 [RFC970] Nagle, J., "On Packet Switches With Infinite
 Storage",RFC970, December 1985.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Patridge, C., Peterson, L., Ramakrishnan, K., Shenker, S.,
 Wroclawski, J. and Zhang, L., "Recommendations on Queue
 Management and Congestion Avoidance in the Internet",
 April, 1998.

10.3 Other References

 [CBQ] Cisco White Paper,
 "http://www.cisco.com/en/US/docs/12_0t/12_0tfeature/guide/cbwfq.html".

 [CoDel] Nichols, K., Jacobson, V., "Controlling Queue Delay",
 ACM Queue. ACM Publishing. doi:10.1145/2209249.22W.09264.

 [DOCSIS_3.1] http://www.cablelabs.com/wp-content/uploads/specdocs
/CM-SP-MULPIv3.1-I01-131029.pdf.

 [DOCSIS-PIE] White, G. and Pan, R., "A PIE-Based AQM for DOCSIS
 Cable Modems", IETF draft-white-aqm-docsis-pie-02.

 [FQ-Implement] Baker, F. and Pan, R. "On Queueing, Marking and
 Dropping", IETF draft-ietf-aqm-fq-implementation.

 [HPSR-PIE] Pan, R., Natarajan, P. Piglione, C., Prabhu, M.S.,
 Subramanian, V., Baker, F. Steeg and B. V., "PIE: A Lightweight
 Control Scheme to Address the Bufferbloat Problem", IEEE HPSR 2013.

Pan et al. Expires September 1, 2016 [Page 17]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc970
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/CM-SP-MULPIv3.1-I01-131029.pdf
https://datatracker.ietf.org/doc/html/draft-white-aqm-docsis-pie-02
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-fq-implementation

INTERNET DRAFT PIE February 29, 2016

https://www.researchgate.net/publication/261134127_PIE_A_lightweight
 _control_scheme_to_address_the_bufferbloat_problem?origin=mail

 [IETF-AQM] Baker, F. and Fairhurst, G., "IETF Recommendations
 Regarding Active Queue Management", draft-ietf-aqm-recommendation-11.

 [IETF-ECN] Briscoe, B. Kaippallimalil, J and Phaler, P.,
 "Guidelines for Adding Congestion Notification to Protocols that
 Encapsulate IP", draft-ietf-tsvwg-ecn-encap-guidelines. [AQM DOCSIS]

http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-
AQM_May2014.pdf

 [PI] Hollot, C.V., Misra, V., Towsley, D. and Gong, W., "On
 Designing Improved Controller for AQM Routers Supporting TCP Flows",
 Infocom 2001.

 [QCN] "Data Center Bridging - Congestion Notification",
http://www.ieee802.org/1/pages/802.1au.html.

 [TCP-Models] Misra, V., Gong, W., and Towsley, D., "Fluid-base
 Analysis of a Network of AQM Routers Supporting TCP Flows with an
 Application to RED", SIGCOMM 2000

Authors' Addresses

 Rong Pan
 Cisco Systems
 3625 Cisco Way,
 San Jose, CA 95134, USA
 Email: ropan@cisco.com

 Preethi Natarajan,
 Cisco Systems
 725 Alder Drive,
 Milpitas, CA 95035, USA
 Email: prenatar@cisco.com

 Fred Baker
 Cisco Systems
 725 Alder Drive,
 Milpitas, CA 95035, USA
 Email: fred@cisco.com

 Bill Ver Steeg
 Cisco Systems

https://www.researchgate.net/publication/261134127_PIE_A_lightweight
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-recommendation-11
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-encap-guidelines
http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.ieee802.org/1/pages/802.1au.html

Pan et al. Expires September 1, 2016 [Page 18]

INTERNET DRAFT PIE February 29, 2016

 5030 Sugarloaf Parkway
 Lawrenceville, GA, 30044, USA
 Email: versteb@cisco.com

 Mythili Prabhu*
 Akamai Technologies
 3355 Scott Blvd
 Santa Clara, CA - 95054
 Email: mythili@akamai.com

 Chiara Piglione*
 Broadcom Corporation
 3151 Zanker Road
 San Jose, CA 95134
 Email: chiara@broadcom.com

 Vijay Subramanian*
 PLUMgrid, Inc.
 350 Oakmead Parkway,
 Suite 250
 Sunnyvale, CA 94085
 Email: vns@plumgrid.com

 Greg White
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027, USA
 Email: g.white@cablelabs.com

 * Formerly at Cisco Systems

11. The Basic PIE pseudo Code

 Configurable Parameters:
 - QDELAY_REF. AQM Latency Target (default: 15ms)
 - MAX_BURST. AQM Max Burst Allowance (default: 150ms)

 Internal Parameters:
 - Weights in the drop probability calculation (1/s):
 alpha (default: 1/8), beta(default: 1 + 1/4)
 - T_UPDATE: a period to calculate drop probability (default:15ms)

 Table which stores status variables (ending with "_"):
 - burst_allowance_: current burst allowance
 - drop_prob_: The current packet drop probability. reset to 0
 - qdelay_old_: The previous queue delay. reset to 0

Pan et al. Expires September 1, 2016 [Page 19]

INTERNET DRAFT PIE February 29, 2016

 Public/system functions:
 - queue_. Holds the pending packets.
 - drop(packet). Drops/discards a packet
 - now(). Returns the current time
 - random(). Returns a uniform r.v. in the range 0 ~ 1
 - queue_.byte_length(). Returns current queue_ length in bytes
 - queue_.enque(packet). Adds packet to tail of queue_
 - queue_.deque(). Returns the packet from the head of queue_
 - packet.size(). Returns size of packet
 - packet.timestamp_delay(). Returns timestamped packet latency

============================

//called on each packet arrival
 enque(Packet packet) {
 if (PIE->drop_prob_ == 0 && current_qdelay < QDELAY_REF
 && PIE->qdelay_old_ < QDELAY_REF) {
 PIE->burst_allowance_ = MAX_BURST;
 }
 if (PIE->burst_allowance_ == 0 && drop_early() == DROP) {
 drop(packet);
 } else {
 queue_.enque(packet);
 }
 }

===========================

 drop_early() {

 //Safeguard PIE to be work conserving
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 }

 double u = random();
 if (u < PIE->drop_prob_) {
 return DROP;
 } else {
 return ENQUE;
 }
 }

Pan et al. Expires September 1, 2016 [Page 20]

INTERNET DRAFT PIE February 29, 2016

===========================
//we choose the timestamp option of obtaining latency for clarity
//rate estimation method can be found in the extended PIE pseudo code

 deque(Packet packet) {

 current_qdelay = packet.timestamp_delay();

 }

============================
//update periodically, T_UPDATE = 15ms

 calculate_drop_prob() {

 //can be implemented using integer multiply,

 p = alpha*(current_qdelay - QDELAY_REF) + \
 beta*(current_qdelay-PIE->qdelay_old_);

 if (PIE->drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (PIE->drop_prob_ < 0.00001) {
 p /= 512;
 } else if (PIE->drop_prob_ < 0.0001) {
 p /= 128;
 } else if (PIE->drop_prob_ < 0.001) {
 p /= 32;
 } else if (PIE->drop_prob_ < 0.01) {
 p /= 8;
 } else if (PIE->drop_prob_ < 0.1) {
 p /= 2;
 } else {
 p = p;
 }

 PIE->drop_prob_ += p;

 //Exponentially decay drop prob when congestion goes away
 if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {
 PIE->drop_prob_ *= 0.98; //1- 1/64 is sufficient
 }

 //bound drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0.0
 if (PIE->drop_prob_ > 1)

Pan et al. Expires September 1, 2016 [Page 21]

INTERNET DRAFT PIE February 29, 2016

 PIE->drop_prob_ = 1.0

 PIE->qdelay_old_ = current_qdelay;

 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);

 }
}

12. Pseudo code for PIE with optional enhancement

 Configurable Parameters:
 - QDELAY_REF. AQM Latency Target (default: 15ms)
 - MAX_BURST. AQM Max Burst Allowance (default: 150ms)
 - MAX_ECNTH. AQM Max ECN Marking Threshold (default: 10%)

 Internal Parameters:
 - Weights in the drop probability calculation (1/s):
 alpha (default: 1/8), beta(default: 1+1/4)
 - DQ_THRESHOLD: (in bytes, default: 2^14 (in a power of 2))
 - T_UPDATE: a period to calculate drop probability (default:15ms)
 - TAIL_DROP: each queue has a tail drop threshold, pass it to PIE

 Table which stores status variables (ending with "_"):
 - active_: INACTIVE/ACTIVE
 - burst_allowance_: current burst allowance
 - drop_prob_: The current packet drop probability. reset to 0
 - accu_prob_: Accumulated drop probability. reset to 0
 - qdelay_old_: The previous queue delay estimate. reset to 0
 - last_timestamp_: Timestamp of previous status update
 - dq_count_, measurement_start_, in_measurement_,
 avg_dq_time_. variables for measuring average dequeue rate.

 Public/system functions:
 - queue_. Holds the pending packets.
 - drop(packet). Drops/discards a packet
 - mark(packet). Marks ECN for a packet
 - now(). Returns the current time
 - random(). Returns a uniform r.v. in the range 0 ~ 1
 - queue_.byte_length(). Returns current queue_ length in bytes
 - queue_.enque(packet). Adds packet to tail of queue_
 - queue_.deque(). Returns the packet from the head of queue_

Pan et al. Expires September 1, 2016 [Page 22]

INTERNET DRAFT PIE February 29, 2016

 - packet.size(). Returns size of packet
 - packet.ecn(). Returns whether packet is ECN capable or not

============================
//called on each packet arrival
 enque(Packet packet) {
 if (queue_.byte_length()+packet.size() > TAIL_DROP) {
 drop(packet);
 PIE->accu_prob_ = 0;
 } else if (PIE->active_ == TRUE && drop_early() == DROP
 && PIE->burst_allowance_ == 0) {
 if (PIE->drop_prob_ < MAX_ECNTH && packet.ecn() == TRUE)
 mark(packet);
 else
 drop(packet);
 PIE->accu_prob_ = 0;
 } else {
 queue_.enque(packet);
 }

 //If the queue is over a certain threshold, turn on PIE
 if (PIE->active_ == INACTIVE
 && queue_.byte_length() >= TAIL_DROP/3) {
 PIE->active_ = ACTIVE;
 PIE->qdelay_old_ = 0;
 PIE->drop_prob_ = 0;
 PIE->in_measurement_ = TRUE;
 PIE->dq_count_ = 0;
 PIE->avg_dq_time_ = 0;
 PIE->last_timestamp_ = now;
 PIE->burst_allowance_ = MAX_BURST;
 PIE->accu_prob_ = 0;
 PIE->measurement_start_ = now;
 }

 //If the queue has been idle for a while, turn off PIE
 //reset counters when accessing the queue after some idle
 //period if PIE was active before
 if (PIE->drop_prob_ == 0 && PIE->qdelay_old_ == 0
 && queue_.byte_length() == 0) {
 PIE->active_ = INACTIVE;
 PIE->in_measurement_ = FALSE;
 }
 }

===========================

Pan et al. Expires September 1, 2016 [Page 23]

INTERNET DRAFT PIE February 29, 2016

 drop_early() {

 //PIE is active but the queue is not congested, return ENQUE
 if ((PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
 || (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {
 return ENQUE;
 }

 if (PIE->drop_prob_ == 0) {
 PIE->accu_prob_ = 0;
 }

 //For practical reasons, drop probability can be further scaled
 //according to packet size. but need to set a bound to
 //avoid unnecessary bias

 //Random drop
 PIE->accu_prob_ += PIE->drop_prob_;
 if (PIE->accu_prob_ < 0.85)
 return ENQUE;
 if (PIE->accu_prob_ >= 8.5)
 return DROP;
 double u = random();
 if (u < PIE->drop_prob_) {
 PIE->accu_prob_ = 0;
 return DROP;
 } else {
 return ENQUE;
 }
 }

============================
 //update periodically, T_UPDATE = 15ms
 calculate_drop_prob() {
 if ((now - PIE->last_timestamp_) >= T_UPDATE &&
 PIE->active_ == ACTIVE) {
 //can be implemented using integer multiply,
 //DQ_THRESHOLD is power of 2 value
 current_qdelay = queue_.byte_length() * PIE-
 >avg_dq_time_/DQ_THRESHOLD;

Pan et al. Expires September 1, 2016 [Page 24]

INTERNET DRAFT PIE February 29, 2016

 p = alpha*(current_qdelay - QDELAY_REF) + \
 beta*(current_qdelay-PIE->qdelay_old_);

 if (PIE->drop_prob_ < 0.000001) {
 p /= 2048;
 } else if (PIE->drop_prob_ < 0.00001) {
 p /= 512;
 } else if (PIE->drop_prob_ < 0.0001) {
 p /= 128;
 } else if (PIE->drop_prob_ < 0.001) {
 p /= 32;
 } else if (PIE->drop_prob_ < 0.01) {
 p /= 8;
 } else if (PIE->drop_prob_ < 0.1) {
 p /= 2;
 } else {
 p = p;
 }

 if (PIE->drop_prob_ >= 0.1 && p > 0.02) {
 p = 0.02;
 }
 PIE->drop_prob_ += p;

 //Exponentially decay drop prob when congestion goes away
 if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {
 PIE->drop_prob_ *= 0.98; //1- 1/64 is sufficient
 }

 //bound drop probability
 if (PIE->drop_prob_ < 0)
 PIE->drop_prob_ = 0
 if (PIE->drop_prob_ > 1)
 PIE->drop_prob_ = 1

 PIE->qdelay_old_ = current_qdelay;
 PIE->last_timestamp_ = now;
 PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);
 }
}

==========================
//called on each packet departure
 deque(Packet packet) {

 //deque rate estimation

Pan et al. Expires September 1, 2016 [Page 25]

INTERNET DRAFT PIE February 29, 2016

 if (PIE->in_measurement_ == TRUE) {
 PIE->dq_count_ = packet.size() + PIE->dq_count_;
 //start a new measurement cycle if we have enough packets
 if (PIE->dq_count_ >= DQ_THRESHOLD) {
 dq_time = now - PIE->measurement_start_;
 if(PIE->avg_dq_time_ == 0) {
 PIE->avg_dq_time_ = dq_time;
 } else {
 weight = DQ_THRESHOLD/2^16
 PIE->avg_dq_time_ = dq_time*weight + PIE->avg_dq_time_*(1-
 weight);
 }
 PIE->in_measurement_ = FALSE;
 }
 }

 //start a measurement if we have enough data in the queue:
 if (queue_.byte_length() >= DQ_THRESHOLD &&
 PIE->in_measurement_ == FALSE) {
 PIE->in_measurement_ = TRUE;
 PIE->measurement_start_ = now;
 PIE->dq_count_ = 0;
 }
 }

Pan et al. Expires September 1, 2016 [Page 26]

