
Internet-Draft R. Housley
Intended Status: Best Current Practice Vigil Security
Expires: 23 November 2015 22 May 2015

Guidelines for Cryptographic Algorithm Agility
and Selecting Mandatory-to-Implement Algorithms

<draft-iab-crypto-alg-agility-04.txt>

Abstract

 Many IETF protocols use cryptographic algorithms to provide
 confidentiality, integrity, authentication or digital signature.
 Communicating peers must support a common set of cryptographic
 algorithms for these mechanisms to work properly. This memo provides
 guidelines to ensure that protocols have the ability to migrate from
 one mandatory-to-implement algorithm suite to another over time.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Housley [Page 1]

https://datatracker.ietf.org/doc/html/draft-iab-crypto-alg-agility-04.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Guidelines for Cryptographic Algorithm Agility May 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 Many IETF protocols use cryptographic algorithms to provide
 confidentiality, integrity, authentication, or digital signature.
 For interoperability, communicating peers must support a common set
 of cryptographic algorithms. In most cases, a combination of
 compatible cryptographic algorithms will be used to provide the
 desired security services. The set of cryptographic algorithms being
 used at a particular time is often referred to as a cryptographic
 algorithm suite or cipher suite. In a protocol, algorithm
 identifiers might name a single cryptographic algorithm or a full
 suite of algorithms.

 Cryptographic algorithms age; they become weaker with time. As new
 cryptanalysis techniques are developed and computing capabilities
 improve, the work factor to break a particular cryptographic
 algorithm will reduce or become more feasible for more attackers.

 Algorithm agility is achieved when a protocol can easily migrate from
 one algorithm suite to another, more desirable one, over time. For
 the protocol implementer, this means that implementations should be
 modular to easily accommodate the insertion of new algorithms or
 suites of algorithms. Ideally, implementations will also provide a
 way to measure when deployed implementations have shifted away from
 the old algorithms and to the better ones. For the protocol
 designer, algorithm agility means that one or more algorithm
 identifier must be supported, the set of mandatory-to-implement
 algorithms will change over time, and an IANA registry of algorithm
 identifiers will be needed.

 Algorithm identifiers by themselves are not sufficient to ensure easy
 migration. Action by people that maintain implementations and
 operate services is needed to develop, deploy, and adjust
 configuration settings to enable the new more desirable algorithms
 and to deprecate or disable older, less desirable ones. In a perfect
 world, this takes place before the older algorithm or suite of
 algorithms is catastrophically weakened. However, experience has
 shown that many people are unwilling to disable older weaker

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Housley [Page 2]

Guidelines for Cryptographic Algorithm Agility May 2015

 algorithms; it seems that these people prefer to live with weaker
 algorithms, sometimes seriously flawed ones, to maintain
 interoperability with older software well after experts recommend
 migration.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Algorithm Agility Guidelines

 These guidelines are for use by IETF working groups and protocol
 authors for IETF protocols that make use of cryptographic algorithms.

2.1. Algorithm Identifiers

 IETF protocols that make use of cryptographic algorithms MUST support
 one or more algorithm or suite identifier. The identifier might be
 explicitly carried in the protocol. Alternatively, it can configured
 by a management mechanism. For example, an entry in a key table that
 includes a key value and an algorithm identifier might be sufficient.

 Some approaches carry one identifier for each algorithm that is used.
 Other approaches carry one identifier for a full suite of algorithms.
 Both approaches are used in IETF protocols. Designers are encouraged
 to pick one of these approaches and use it consistently throughout
 the protocol or family of protocols. Suite identifiers make it
 easier for the protocol designer to ensure that the algorithm
 selections are complete and compatible for future assignments.
 However, suite identifiers inherently face a combinatoric explosion
 as new algorithms are defined. Algorithm identifiers, on the other
 hand, impose a burden on implementations by forcing a determination
 at run-time regarding which algorithm combinations are acceptable.

 Regardless of the approach used, protocols historically negotiate the
 symmetric cipher and cipher mode together to ensure that they are
 completely compatible.

 In the IPsec protocol suite, IKEv2 [RFC7296] carries the algorithm
 identifiers for AH [RFC4302] and ESP [RFC4303]. Such separation is a
 completely fine design choice. In contrast, TLS [RFC5246] carries
 cipher suite identifiers, which is also a completely fine design
 choice.

 An IANA registry SHOULD be used for these algorithm or suite
 identifiers. Once an algorithm identifier is added to the registry,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc5246

Housley [Page 3]

Guidelines for Cryptographic Algorithm Agility May 2015

 it should not be changed or removed. However, it is desirable to
 mark a registry entry as deprecated when implementation is no longer
 advisable.

2.2. Mandatory-to-Implement Algorithms

 For secure interoperability, BCP 61 [RFC3365] recognizes that
 communicating peers that use cryptographic mechanisms must support a
 common set of strong cryptographic algorithms. For this reason, the
 protocol MUST specify one or more mandatory-to-implement algorithm or
 suite. Note that this is not done for protocols that are embedded in
 other protocols, where the system-level protocol specification
 identifies the mandatory-to-implement algorithm or suite. For
 example, S/MIME [RFC5751] makes use of the cryptographic message
 Syntax (CMS) [RFC5652], and S/MIME specifies the mandatory-to-
 implement algorithms, not CMS. This approach allows other protocols
 can make use of CMS and make different mandatory-to-implement
 algorithm choices.

 The IETF needs to be able to change the mandatory-to-implement
 algorithms over time. It is highly desirable to make this change
 without updating the base protocol specification. To achieve this
 goal, the base protocol specification includes a reference to a
 companion algorithms document, allowing the update of one document
 without necessarily requiring an update to the other. This division
 also facilitates the advancement of the base protocol specification
 on the standards maturity ladder even if the algorithm document
 changes frequently.

 The IETF SHOULD keep the set of mandatory-to-implement algorithms
 small. To do so, the set of algorithms will necessarily change over
 time, and the transition SHOULD happen before the algorithms in the
 current set have weakened to the breaking point.

 Some cryptographic algorithms are inherently tied to a specific key
 size, but others allow many different key sizes. Likewise, some
 algorithms support parameters of different sizes, such as integrity
 check values or nonces. The algorithm specification MUST identify
 the specific key sizes and parameter sizes that are to be supported.
 When more than one key size is available, expect the mandatory-to-
 implement key size to increase over time.

 Guidance on cryptographic key size for asymmetric keys can be found
 in BCP 86 [RFC3766].

 Guidance on cryptographic key size for symmetric keys can be found in
BCP 195 [RFC7525].

https://datatracker.ietf.org/doc/html/bcp61
https://datatracker.ietf.org/doc/html/rfc3365
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/bcp86
https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525

Housley [Page 4]

Guidelines for Cryptographic Algorithm Agility May 2015

2.3. Transition from Weak Algorithms

 Transition from an old algorithm that is found to be weak can be
 tricky. It is of course straightforward to specify the use of a new,
 better algorithm. And then, when the new algorithm is widely
 deployed, the old algorithm ought no longer be used. However,
 knowledge about the implementation and deployment of the new
 algorithm will always be imperfect, so one cannot be completely
 assured of interoperability with the new algorithm.

 Algorithm transition is naturally facilitated as part of an algorithm
 selection or negotiation mechanism. Protocols MUST facilitate the
 selection to the best algorithm or suite that is supported by all
 communicating peers. In addition, a mechanism is needed to determine
 whether the new algorithm has been deployed. For example, the DNSSEC
 EDNS0 option [RFC6975] measures the acceptance and use of new digital
 signing algorithms.

 In the worst case, the old algorithm may be found to be tragically
 flawed, permitting a casual attacker to download a simple script to
 break it. Sadly, this has happened when a secure algorithm is used
 incorrectly or used with poor key management, resulting in a weak
 cryptographic algorithm suite. In such situations, the protection
 offered by the algorithm is severely compromised, perhaps to the
 point that one wants to stop using the weak suite altogether,
 rejecting offers to use the weak suite well before the new suite is
 widely deployed.

 In any case, there comes a point in time where one refuses to use the
 old, weak algorithm or suite. This can happen on a flag day, or each
 installation can select a date on their own.

2.4. Balance Security Strength

 When selecting a suite of cryptographic algorithms, the strength of
 each algorithm SHOULD be considered. It needs to be considered at
 the time a protocol is designed. It also needs to be considered at
 the time a protocol implementation is deployed and configured.
 Advice from from experts is useful, but in reality, it is not often
 available to system administrators that are deploying and configuring
 a protocol implementation. For this reason, protocol designers
 SHOULD provide clear guidance to implementors, leading to balanced
 options being available at the time of deployment and configuration.

 Cipher suites include Diffie-Hellman or RSA without specifying a
 particular public key length. If the algorithm identifier or suite
 identifier named a particular public key length, migration to longer
 ones would be more difficult. On the other hand, inclusion of a

https://datatracker.ietf.org/doc/html/rfc6975

Housley [Page 5]

Guidelines for Cryptographic Algorithm Agility May 2015

 public key length would make it easier to migrate away from short
 ones when computational resources available to attacker dictate the
 need to do so. Therefore, flexibility on asymmetric key length is
 both desirable and undesirable at the same time.

 In CMS [RFC5652], a previously distributed symmetric key-encryption
 key can be used to encrypt a content-encryption key, which is in turn
 used to encrypt the content. The key-encryption and content-
 encryption algorithms are often different. If, for example, a
 message content is encrypted with 128-bit AES key and the content-
 encryption key is wrapped with a 256-bit AES key, then at most 128
 bits of protection is provided. In this situation, the algorithm and
 key size selections should ensure that the key encryption is at least
 as strong as the content encryption. In general, wrapping one key
 with another key of a different size yields the security strength of
 the shorter key.

2.5. Opportunistic Security

 Despite the guidance in Section 2.4, opportunistic security [RFC7435]
 SHOULD also be considered, especially at the time a protocol
 implementation is deployed and configured. While RSA with a 2048-bit
 public key is quite a bit stronger than SHA-1, it is quite reasonable
 to use them together if the alternative is no authentication
 whatsoever. That said, the use of strong algorithms is always
 preferable.

3. Algorithm Agility in Protocol Design

 Some attempts at algorithm agility have not been completely
 successful. This section provides some of the insights based on
 protocol designs and deployments.

3.1. Algorithm Identifiers

 If a protocol does not carry an algorithm identifier, then the
 protocol version number or some other major change is needed to
 transition from one algorithm to another. The inclusion of an
 algorithm identifier is a minimal step toward cryptographic algorithm
 agility. In addition, an IANA registry is needed to pair the
 identifier with an algorithm specification.

 Sometimes a combination of protocol version number and explicit
 algorithm or suite identifiers is appropriate. For example, the TLS
 version number names the default key derivation function and the
 cipher suite identifier names the rest of the needed algorithms.

 Sometimes application layer protocols can make use of transport layer

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7435

Housley [Page 6]

Guidelines for Cryptographic Algorithm Agility May 2015

 security protocols, such as TLS or DTLS. This insulates the
 application layer protocol from the details of cryptography, but it
 is likely to still be necessary to handle the transition from
 unprotected traffic to protected traffic in the application layer
 protocol. In addition, the application layer protocol may need to
 handle the downgrade from encrypted communication to plaintext
 communication.

3.2. Migration Mechanisms

 Cryptographic algorithm selection or negotiation SHOULD be integrity
 protected. If selection is not integrity protected, then the
 protocol will be subject to a downgrade attack. Without integrity
 protection of algorithm or suite selection, the attempt to transition
 to a new algorithm or suite may introduce new opportunities for
 downgrade attack.

 If a protocol specifies a single mandatory-to-implement integrity
 algorithm, eventually that algorithm will be found to be weak.

 Extra care is needed when a mandatory-to-implement algorithm is used
 to provide integrity protection for the negotiation of other
 cryptographic algorithms. In this situation, a flaw in the
 mandatory-to-implement algorithm may allow an attacker to influence
 the choices of the other algorithms.

 Performance is always a factor is selecting cryptographic algorithms.
 In many algorithms, shorter keys offer higher performance, but less
 security. Performance and security need to be balanced. Yet, all
 algorithms age, and the advances in computing power available to the
 attacker will eventually make any algorithm obsolete. For this
 reason, protocols need mechanisms to migrate from one algorithm suite
 to another over time, including the algorithm used to provide
 integrity protection for algorithm negotiation.

3.3. Preserving Interoperability

 Cryptographic algorithm deprecation is very hard. People do not like
 to introduce interoperability problems, even to preserve security.
 As a result, flawed algorithms are supported for far too long. The
 impacts of legacy software an long support tails on security can be
 reduced by making it easy to develop, deploy, and configure new
 algorithms.

3.4. Cryptographic Key Management

 Traditionally, protocol designers have avoided more than one approach
 to key management because it makes the security analysis of the

Housley [Page 7]

Guidelines for Cryptographic Algorithm Agility May 2015

 overall protocol more difficult. When frameworks such as EAP and
 GSSAPI are employed, the key management is very flexible, often
 hiding many of the details from the application. This results in
 protocols that support multiple key management approaches. In fact,
 the key management approach itself may be negotiable, which creates a
 design challenge to protect the negotiation of the key management
 approach before it is used to produce cryptographic keys.

 Protocols can negotiate a key management approach, derive an initial
 cryptographic key, and then authenticate the negotiation. However,
 if the authentication fails, the only recourse is to start the
 negotiation over from the beginning.

 Some environments will restrict the key management approaches by
 policy. Such policies tend to improve interoperability within a
 particular environment, but they cause problems for individuals that
 need to work in multiple incompatible environments.

4. Cryptographic Algorithm Specifications

 There are tradeoffs between the number of cryptographic algorithms
 that are supported, time to deploy a new algorithm, and protocol
 complexity. This section provides some of the insights about the
 tradeoff faced by protocol designers.

 Ideally, two independent sets of mandatory-to-implement algorithms
 will be specified, allowing for a primary suite and a secondary
 suite. This approach ensures that the secondary suite is widely
 deployed if a flaw is found in the primary one.

4.1. Choosing Mandatory-to-Implement Algorithms

 It seems like the ability to use an algorithm of one's own choosing
 is very desirable; however, the selection is often better left to
 experts. Further, any and all cryptographic algorithm choices ought
 not be available in every implementation. Mandatory-to-implement
 algorithms ought to have a public stable specification and public
 documentation that it has been well studied, giving rise to
 significant confidence. The IETF has alway had a preference for
 unencumbered algorithms. The selected algorithms need to be
 resistant to side-channel attacks as well as meeting the performance,
 power, and code size requirements on a wide variety of platforms. In
 addition, inclusion of too many alternatives may add complexity to
 algorithm selection or negotiation.

 Sometime more than one mandatory-to-implement algorithm is needed to
 increase the likelihood of interoperability among a diverse
 population. For example, authenticated encryption is provided by

Housley [Page 8]

Guidelines for Cryptographic Algorithm Agility May 2015

 AES-CCM [RFC3610] and AES-GCM [GCM]. Both of these algorithms are
 considered to be secure. AES-CCM is available in hardware used by
 many small devices, and AES-GCM is parallelizable and well suited
 high-speed devices. Therefore an application needing authenticated
 encryption might specify one of these algorithms or both of these
 algorithms, depending of the population.

4.2. Too Many Choices Can Be Harmful

 It is fairly easy to specify the use of any arbitrary cryptographic
 algorithm, and once the specification is available, the algorithm
 gets implemented and deployed. Some people say that the freedom to
 specify algorithms independently from the rest of the protocol has
 lead to the specification of too many cryptographic algorithms. Once
 deployed, even with moderate uptake, it is quite difficult to remove
 algorithms because interoperability with some party will be impacted.
 As a result, weaker ciphers stick around far too long. Sometimes
 implementors are forced to maintain cryptographic algorithm
 implementations well beyond their useful lifetime.

 In order to manage the proliferation of algorithm choices and provide
 an expectation of interoperability, many protocols specify mandatory-
 to-implement algorithms or suites. All implementors are expected to
 support the mandatory-to-implement cryptographic algorithm, and they
 can include any others algorithms that they desire. The mandatory-
 to-implement algorithms are chosen to be highly secure and follow the
 guidance in RFC 1984 [RFC1984]. Of course, many other factors,
 including intellectual property rights, have an impact on the
 cryptographic algorithms that are selected by the community.
 Generally, the mandatory-to-implement algorithms ought to be
 preferred, and the other algorithms ought to be selected only in
 special situations. However, it can be very difficult for a skilled
 system administrator to determine the proper configuration to achieve
 these preferences.

 In some cases, more than one mandatory-to-implement cryptographic
 algorithm has been specified. This is intended to ensure that at
 least one secure cryptographic algorithm will be available, even if
 other mandatory-to-implement algorithms are broken. To achieve this
 goal, the selected algorithms must be diverse, so that a
 cryptoanalytic advance against one of the algorithms does not also
 impact the other selected algorithms. The idea is to have an
 implemented and deployed algorithm as a fallback. However, all of
 the selected algorithms need to be routinely exercised to ensure
 quality implementation. This is not always easy to do, especially if
 the various selected algorithms require different credentials.
 Obtaining multiple credentials for the same installation is an
 unacceptable burden on system administrators. Also, the manner by

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc1984
https://datatracker.ietf.org/doc/html/rfc1984

Housley [Page 9]

Guidelines for Cryptographic Algorithm Agility May 2015

 which system administrators are advised to switch algorithms or
 suites is at best ad hoc, and at worst entirely absent.

4.3. Picking One True Cipher Suite Can Be Harmful

 In the past, protocol designers have chosen one cryptographic
 algorithm or suite, and then tied many protocol details to that
 selection. It is much better to plan for algorithm transition,
 either because a mistake is made in the initial selection or because
 the protocol is successfully used for a long time and the algorithm
 becomes week with age. Either way, the design should enable
 transition.

 Protocol designers are sometimes mislead by the simplicity that
 results from selecting one true algorithm or suite. Since algorithms
 age, the selection cannot be stable forever. Even the most simple
 protocol needs a version number to signal which algorithm that is
 being used. This approach has at least two desirable consequences.
 First, the protocol is simpler because there is no need for algorithm
 negotiation. Second, system administrators do not need to make any
 algorithm-related configuration decisions. However, the only way to
 respond to news that the an algorithm that is part of the one true
 cipher suite has been broken is to update the protocol specification
 to the next version, implement the new specification, and then get it
 deployed.

 The first IEEE 802.11 [WiFi] specification included the Wired
 Equivalent Privacy (WEP) as the only encryption technique. WEP was
 found to be quite weak [WEP], and a very large effort was needed to
 specify, implement, and deploy the alternative encryption techniques.

 Experience with the transition from SHA-1 to SHA-256 indicates that
 the time from protocol specificate to widespread use takes more than
 five years. In this case, the protocol specifications and
 implementation were straightforward and fairly prompt. In many
 software products, the new algorithm was not considered an update to
 existing release, so the roll out of the next release, subsequent
 deployment, and finally adjustment of the configuration by system
 administrators took many years. In many consumer hardware products,
 firmware to implement the new algorithm were difficult to locate and
 install, or the were simply not available. Further, infrastructure
 providers were unwilling to make the transition until all of their
 potential clients were able to use the new algorithm.

4.4. National Cipher Suites

 Some nations specify cryptographic algorithms, and then require their
 use through legislation or regulations. These algorithms may not

Housley [Page 10]

Guidelines for Cryptographic Algorithm Agility May 2015

 have wide public review, and they can have limited reach of
 deployments. Yet, the legislative or regulatory mandate creates a
 captive market. As a result, the use of such algorithms get
 specified, implemented, and deployed. The default server-side
 configuration SHOULD disable such algorithms; in this way, explicit
 action by the system administrator is needed to enable them where
 they are actually required.

4.5. Balance Protocol Complexity

 Protocol designers MUST be prepared for the supported cryptographic
 algorithm set to change over time. As shown by the discussion in the
 previous two sections, there is a spectrum of ways to enable the
 transition.

 Keep implementations as simple as possible. Complex protocol
 negotiation provides opportunities for attack, such as downgrade
 attacks. Support for many algorithm alternatives is also harmful, as
 discussed in Section 4.1. Both of these can lead to portions of the
 implementation that are rarely used, increasing the opportunity for
 undiscovered exploitable implementation bugs.

4.6. Providing Notice

 Fortunately, catastrophic algorithm failures without warning are
 rare. More often, algorithm transition is the result of age. For
 example, the transition from DES to Triple-DES to AES took place over
 decades, causing a shift in symmetric block cipher strength from 56
 bits to 112 bits to 128 bits. Where possible, authors SHOULD provide
 notice to implementers about expected algorithm transitions. One
 approach is to use SHOULD+, SHOULD-, and MUST- in the specification
 of algorithms.

 SHOULD+ This term means the same as SHOULD. However, it is
 likely that an algorithm marked as SHOULD+ will be
 promoted to a MUST in the future.

 SHOULD- This term means the same as SHOULD. However, it is
 likely that an algorithm marked as SHOULD- will be
 deprecated to a MAY or worse in the future.

 MUST- This term means the same as MUST. However, it is
 expected that an algorithm marked as MUST- will be
 downgraded in the future. Although the status of the
 algorithm will be determined at a later time, it is
 reasonable to expect that a the status of a MUST-
 algorithm will remain at least a SHOULD or a SHOULD-.

Housley [Page 11]

Guidelines for Cryptographic Algorithm Agility May 2015

5. Security Considerations

 This document provides guidance to working groups and protocol
 designers. The security of the Internet is improved when broken or
 weak cryptographic algorithms can be easily replaced with strong
 ones.

 From a software development and maintenance perspective,
 cryptographic algorithms can often be added and removed without
 making changes to surrounding data structures, protocol parsing
 routines, or state machines. This approach separates the
 cryptographic algorithm implementation from the rest of the code,
 which makes it easier to tackle special security concerns such as key
 exposure and constant-time execution.

 The situation is different for hardware, for both tiny devices and
 very high-end data center equipment. Many tiny devices do not
 include the ability to update the firmware at all. Even if the
 firmware can be updated, tiny devices are often deployed in places
 that make it very inconvenient to do so. High-end data center
 equipment may use special-purpose chips to achieve very high
 performance, which means that board-level replacement may be needed
 to change the algorithm. Cost and down-time are both factors in such
 an upgrade.

 In most cases, the cryptographic algorithm remains strong, but an
 attack is found against the way that the strong algorithm is used in
 a particular protocol. In these cases, a protocol change will
 probably be needed. For example, the order of cryptographic
 operations in the TLS protocol has evolved as various attacks have
 been discovered. Originally, TLS performed encryption after
 computation of the message authentication code (MAC). This order of
 operations is called MAC-then-encrypt, which actually involves MAC
 computation, padding, and then encryption. This is no longer
 considered secure [BN][K]. As a result, a mechanism was specified to
 use encrypt-then-MAC instead [RFC7366]. Future versions of TLS are
 expected to use exclusively authenticated encryption algorithms
 [RFC5166], which should resolve the ordering discussion altogether.
 After discovery of such attacks, updating the cryptographic
 algorithms is not likely to be sufficient to thwart the new attack.
 It may necessary to make significant changes to the protocol.

 Some protocols are used to protected stored data. For example,
 S/MIME [RFC5751] can protect a message kept in a mailbox. To recover
 the protected stored data, protocol implementations need to support
 older algorithms, even when they no longer use the older algorithms
 for the protection of new stored data.

https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc5166
https://datatracker.ietf.org/doc/html/rfc5751

Housley [Page 12]

Guidelines for Cryptographic Algorithm Agility May 2015

 Support for too many algorithms can lead to implementation
 vulnerabilities. When many algorithms are supported, some of them
 will be rarely used. Any code that is rarely used can contain
 undetected bugs, and algorithm implementations are no different.
 Measurements SHOULD be used to determine whether implemented
 algorithms are actually being used, and if they are not, future
 releases should remove them. In addition, unused algorithms or
 suites SHOULD be marked as deprecated in the IANA registry. In
 short, eliminate the cruft.

Section 2.3 talks about algorithm transition without considering any
 other aspects of the protocol design. In practice, there are
 dependencies between the cryptographic algorithm and other aspects of
 the protocol. For example, the BEAST attack [BEAST] against TLS
 [RFC5246] caused many sites to turn off modern cryptographic
 algorithms in favor of older and clearly weaker algorithms.

6. IANA Considerations

 This document does not establish any new IANA registries, nor does it
 add any entries to existing registries.

 This document does RECOMMEND a convention for new registries for
 cryptographic algorithm or suite identifiers. Once an algorithm or
 suite identifier is added to the registry, it SHOULD NOT be changed
 or removed. However, it is desirable to include a means of marking a
 registry entry as deprecated when implementation is no longer
 advisable.

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For Public
 Keys Used For Exchanging Symmetric Keys", BCP 86, RFC 3766,
 April 2004.

8. Informative References

 [BEAST] http://en.wikipedia.org/wiki/
Transport_Layer_Security#BEAST_attack.

 [BN] Bellare, M. and C. Namprempre, "Authenticated Encryption:
 Relations among notions and analysis of the generic
 composition paradigm", Proceedings of AsiaCrypt '00,
 Springer-Verlag LNCS No. 1976, p. 531, December 2000.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp86
https://datatracker.ietf.org/doc/html/rfc3766
http://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
http://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack

Housley [Page 13]

Guidelines for Cryptographic Algorithm Agility May 2015

 [GCM] Dworkin, M, "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC", NIST
 Special Publication 800-30D, November 2007.

 [K] Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (or: How Secure Is SSL?)",
 Proceedings of Crypto '01, Springer-Verlag LNCS No. 2139,
 p. 310, August 2001.

 [RFC1984] IAB and IESG, "IAB and IESG Statement on Cryptographic
 Technology and the Internet", RFC 1984, August 1996.

 [RFC3365] Schiller, J., "Strong Security Requirements for Internet
 Engineering Task Force Standard Protocols", BCP 61, RFC

3365, August 2002.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302, December
 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

 [RFC5166] Floyd, S., Ed., "Metrics for the Evaluation of Congestion
 Control Mechanisms", RFC 5166, March 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [RFC6975] Crocker, S. and S. Rose, "Signaling Cryptographic Algorithm
 Understanding in DNS Security Extensions (DNSSEC)",

RFC 6975, July 2013.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, October 2014.

https://datatracker.ietf.org/doc/html/rfc1984
https://datatracker.ietf.org/doc/html/bcp61
https://datatracker.ietf.org/doc/html/rfc3365
https://datatracker.ietf.org/doc/html/rfc3365
https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc5166
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc6975
https://datatracker.ietf.org/doc/html/rfc7296

Housley [Page 14]

Guidelines for Cryptographic Algorithm Agility May 2015

 [RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer Security
 (TLS) and Datagram Transport Layer Security (DTLS)",

RFC 7366, September 2014.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection Most
 of the Time", RFC 7435, December 2014.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations
 for Secure Use of Transport Layer Security (TLS) and
 Datagram Transport Layer Security (DTLS)", RFC 7525,

BCP 195, May 2015.

 [WEP] http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

 [WiFi] IEEE , "Wireless LAN Medium Access Control (MAC) And
 Physical Layer (PHY) Specifications, IEEE Std 802.11-1997,
 1997.

Acknowledgements

 Thanks to Bernard Aboba, Derek Atkins, David Black, Randy Bush, Jon
 Callas, Andrew Chi, Steve Crocker, Viktor Dukhovni, Stephen Farrell,
 Tony Finch, Ian Grigg, Peter Gutmann, Wes Hardaker, Joe Hildebrand,
 Christian Huitema, Watson Ladd, Paul Lambert, Ben Laurie, Eliot Lear,
 Nikos Mavrogiannopoulos, Yoav Nir, Rich Salz, Kristof Teichel,
 Jeffrey Walton, Nico Williams, and Peter Yee for their review and
 insightful comments. While some of these people do not agree with
 some aspects of this document, the discussion that resulted for their
 comments has certainly resulted in a better document.

Author's Address

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 EMail: housley@vigilsec.com

Housley [Page 15]

https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp195
http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

