
Thing-to-Thing Research Group K. Hartke
Internet-Draft Ericsson
Intended status: Experimental February 6, 2019
Expires: August 10, 2019

The Constrained RESTful Application Language (CoRAL)
draft-hartke-t2trg-coral-07

Abstract

 The Constrained RESTful Application Language (CoRAL) defines a data
 model and interaction model as well as two specialized serialization
 formats for the description of typed connections between resources on
 the Web ("links"), possible operations on such resources ("forms"),
 as well as simple resource metadata.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 10, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hartke Expires August 10, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Constrained RESTful Application Language February 2019

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 4

2. Examples . 4
3. Data and Interaction Model 4
3.1. Browsing Context . 4
3.2. Documents . 5
3.3. Links . 5
3.4. Forms . 6
3.5. Form Fields . 7
3.6. Embedded Representations 7
3.7. Navigation . 7
3.8. History Traversal . 9

4. Binary Format . 9
4.1. Data Structure . 10
4.1.1. Documents . 10
4.1.2. Links . 10
4.1.3. Forms . 11
4.1.4. Embedded Representations 12
4.1.5. Directives . 12

4.2. Dictionaries . 13
4.2.1. Dictionary References 13
4.2.2. Media Type Parameter 13

5. Textual Format . 14
5.1. Lexical Structure . 14
5.1.1. Line Terminators 15
5.1.2. White Space . 15
5.1.3. Comments . 15
5.1.4. Identifiers . 15
5.1.5. IRIs and IRI References 16
5.1.6. Literals . 16
5.1.7. Punctuators . 19

5.2. Syntactic Structure 20
5.2.1. Documents . 20
5.2.2. Links . 20
5.2.3. Forms . 21
5.2.4. Embedded Representations 22
5.2.5. Directives . 23

6. Usage Considerations . 24
6.1. Specifying CoRAL-based Applications 24
6.1.1. Application Interfaces 24
6.1.2. Resource Names 25
6.1.3. Implementation Limits 25

6.2. Minting New Relation Types 26
6.3. Expressing Registered Link Relation Types 27
6.4. Expressing Link Target Attributes 27
6.5. Expressing Simple RDF Statements 28

Hartke Expires August 10, 2019 [Page 2]

Internet-Draft Constrained RESTful Application Language February 2019

6.6. Embedding CoRAL in CBOR Structures 29
7. Security Considerations 29
8. IANA Considerations . 30
8.1. Media Type "application/coral+cbor" 30
8.2. Media Type "text/coral" 32
8.3. CoAP Content Formats 33
8.4. CBOR Tag . 33

9. References . 34
9.1. Normative References 34
9.2. Informative References 36

Appendix A. Core Vocabulary 38
A.1. Link Relation Types 38
A.2. Form Relation Types 38
A.3. Form Field Names . 39

Appendix B. Default Dictionary 39
 Acknowledgements . 40
 Author's Address . 40

1. Introduction

 The Constrained RESTful Application Language (CoRAL) is a language
 for the description of typed connections between resources on the Web
 ("links"), possible operations on such resources ("forms"), as well
 as simple resource metadata.

 CoRAL is intended for driving automated software agents that navigate
 a Web application based on a standardized vocabulary of link and form
 relation types. It is designed to be used in conjunction with a Web
 transfer protocol such as the Hypertext Transfer Protocol (HTTP)
 [RFC7230] or the Constrained Application Protocol (CoAP) [RFC7252].

 This document defines the CoRAL data and interaction model, as well
 as two specialized CoRAL serialization formats.

 The CoRAL data and interaction model is a superset of the Web Linking
 model of RFC 8288 [RFC8288]. The data model consists of two primary
 elements: "links" that describe the relationship between two
 resources and the type of that relationship, and "forms" that
 describe a possible operation on a resource and the type of that
 operation. Additionally, the data model can describe simple resource
 metadata in a way similar to the Resource Description Framework (RDF)
 [W3C.REC-rdf11-concepts-20140225]. In contrast to RDF, the focus of
 CoRAL however is on the interaction with resources, not just the
 relationships between them. The interaction model derives from HTML
 5 [W3C.REC-html52-20171214] and specifies how an automated software
 agent can navigate between resources by following links and perform
 operations on resources by submitting forms.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288

Hartke Expires August 10, 2019 [Page 3]

Internet-Draft Constrained RESTful Application Language February 2019

 The primary CoRAL serialization format is a compact, binary encoding
 of links and forms in Concise Binary Object Representation (CBOR)
 [RFC7049]. It is intended for environments with constraints on
 power, memory, and processing resources [RFC7228] and shares many
 similarities with the message format of the Constrained Application
 Protocol (CoAP) [RFC7252]: For example, it uses numeric identifiers
 instead of verbose strings for link and form relation types, and pre-
 parses Uniform Resource Identifiers (URIs) [RFC3986] into (what CoAP
 considers to be) their components, which simplifies URI processing
 for constrained nodes a lot. As a result, link serializations in
 CoRAL are often much more compact than equivalent serializations in
 CoRE Link Format [RFC6690].

 The secondary CoRAL serialization format is a lightweight, textual
 encoding of links and forms that is intended to be easy to read and
 write for humans. The format is loosely inspired by the syntax of
 Turtle [W3C.REC-turtle-20140225] and is mainly intended for giving
 examples.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Terms defined in this document appear in _cursive_ where they are
 introduced.

2. Examples

 [[NOTE TO READERS: Examples and test vectors will be provided on a
 companion website.]]

3. Data and Interaction Model

 The Constrained RESTful Application Language (CoRAL) is designed for
 building Web-based applications [W3C.REC-webarch-20041215] in which
 automated software agents navigate between resources by following
 links and perform operations on resources by submitting forms.

3.1. Browsing Context

 Borrowing from HTML 5 [W3C.REC-html52-20171214], each such agent
 maintains a _browsing context_ in which the representations of Web
 resources are processed. (In HTML 5, the browsing context typically
 corresponds to a tab or window in a Web browser.)

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Hartke Expires August 10, 2019 [Page 4]

Internet-Draft Constrained RESTful Application Language February 2019

 At any time, one representation in each browsing context is
 designated the _active_ representation.

3.2. Documents

 A resource representation in one of the CoRAL serialization formats
 is called a CoRAL _document_. The Internationalized Resource
 Identifier (IRI) [RFC3987] that was used to retrieve such a document
 is called the document's _retrieval context_.

 A CoRAL document consists of a list of zero or more links, forms, and
 embedded resource representations, collectively called _elements_.
 CoRAL serialization formats may define additional types of elements
 for efficiency or convenience, such as a base for relative IRI
 references [RFC3987].

3.3. Links

 A _link_ describes a relationship between two resources on the Web
 [RFC8288]. As defined in RFC 8288, it consists of a _link context_,
 a _link relation type_, and a _link target_. In CoRAL, a link can
 additionally have a nested list of zero or more elements, which take
 the place of link target attributes.

 A link can be viewed as a statement of the form "{link context} has a
 {link relation type} resource at {link target}" where the link target
 may be further described by nested elements.

 The link relation type identifies the semantics of a link. In HTML 5
 and RFC 8288, link relation types are typically denoted by an IANA-
 registered name, such as "stylesheet" or "type". In CoRAL, they are
 denoted by an IRI such as <http://www.iana.org/assignments/relation/

stylesheet> or <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.
 This allows for the creation of new link relation types without the
 risk of collisions when from different organizations or domains of
 knowledge. An IRI also can lead to documentation, schema, and other
 information about the link relation type. These IRIs are primarily
 used as identity tokens, though, and are compared using Simple String
 Comparison (Section 5.1 of RFC 3987).

 The link context and the link target are both either by an IRI or
 (similarly to RDF) a literal. If the IRI scheme indicates a Web
 transfer protocol such as HTTP or CoAP, then an agent can dereference
 the IRI and navigate the browsing context to the referenced resource;
 this is called _following the link_. A literal directly identifies a
 value. This can be a Boolean value, an integer, a floating-point
 number, a date/time value, a byte string, or a text string.

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288
http://www.iana.org/assignments/relation/stylesheet
http://www.iana.org/assignments/relation/stylesheet
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://datatracker.ietf.org/doc/html/rfc3987#section-5.1

Hartke Expires August 10, 2019 [Page 5]

Internet-Draft Constrained RESTful Application Language February 2019

 A link can occur as a top-level element in a document or as a nested
 element within a link. When a link occurs as a top-level element,
 the link context implicitly is the document's retrieval context.
 When a link occurs nested within a link, the link context of the
 inner link is the link target of the outer link.

 There are no restrictions on the cardinality of links; there can be
 multiple links to and from a particular target, and multiple links of
 the same or different types between a given link context and target.
 However, the nested data structure constrains the description of a
 resource graph to a tree: Links between linked resources can only be
 described by further nesting links.

3.4. Forms

 A _form_ provides instructions to an agent for performing an
 operation on a Web resource. It consists of a _form context_, a
 form relation type, a _request method_, and a _submission target_.
 Additionally, a form may be accompanied by a list of _form fields_.

 A form can be viewed as an instruction of the form "To perform a
 {form relation type} operation on {form context}, make a {request
 method} request to {submission target}" where the payload of the
 request may be further described by any form fields.

 The form relation type identifies the semantics of the operation.
 Form relation types are denoted like link relation types by an IRI.

 The form context is the resource on which an operation is ultimately
 performed. To perform the operation, an agent needs to construct a
 request with the specified request method and submission target as
 the request IRI. The submission target typically is the same
 resource as the form context, but may be a different resource.
 Constructing and sending the request is called _submitting the form_.

 If a form is accompanied by a list of form fields, as described in
 the following section, then the agent also needs to construct a
 payload that matches the specifications of the form fields and
 include that in the request.

 A form can occur as a top-level element in a document or as a nested
 element within a link. When a form occurs as a top-level element,
 the form context implicitly is the document's retrieval context.
 When a form occurs nested within a link, the form context is the link
 target of the enclosing link.

Hartke Expires August 10, 2019 [Page 6]

Internet-Draft Constrained RESTful Application Language February 2019

3.5. Form Fields

 Form fields provide further instructions to agents for constructing a
 request payload.

 A form field can directly identify one or more data items that need
 to include in the request payload or can reference another resource
 (such as a schema) that describes the structure of the payload. Form
 fields may also provide other kinds of information, such as
 acceptable media types for the payload.

 A form field is a pair of a _form field name_ and a _form field
 value_. The form field name identifies the semantics of the form
 field. Form field names are denoted like link and form relation
 types by an IRI. The form field value can either be an IRI, a
 Boolean value, an integer, a floating-point number, a date/time
 value, a byte string, or a text string.

3.6. Embedded Representations

 When a document contains links to many resources and an agent needs a
 representation of each link target, it may be inefficient to retrieve
 each of these representations individually. To alleviate this,
 documents can directly embed representations of resources.

 An _embedded representation_ consists of a sequence of bytes, labeled
 with _representation metadata_.

 An embedded representation may be a full, partial, or inconsistent
 version of the representation served from the IRI of the resource.

 An embedded representation can occur as a top-level element in a
 document or as a nested element within a link. When it occurs as a
 top-level element, it provides an alternate representation of the
 document's retrieval context. When it occurs nested within a link,
 it provides a representation of link target of the enclosing link.

3.7. Navigation

 An agent begins interacting with an application by performing a GET
 request on an _entry point IRI_. The entry point IRI is the only IRI
 an agent is expected to know before interacting with an application.
 From there, the agent is expected to make all requests by following
 links and submitting forms provided by the server in responses. The
 entry point IRI can be obtained by manual configuration or through
 some discovery process.

Hartke Expires August 10, 2019 [Page 7]

Internet-Draft Constrained RESTful Application Language February 2019

 If dereferencing the entry point IRI yields a CoRAL document (or any
 other representation that implements the CoRAL data and interaction
 model), then the agent makes this document the active representation
 in the browsing context and proceeds as follows:

 1. The first step for the agent is to decide what to do next, i.e.,
 which type of link to follow or form to submit, based on the link
 and form relation types it understands.

 2. The agent then finds the link(s) or form(s) with the respective
 relation type in the active representation. This may yield one
 or more candidates, from which the agent will have to select the
 most appropriate one. The set of candidates may be empty, for
 example, when a transition is not supported or not allowed.

 3. The agent selects one of the candidates based on the metadata
 associated with each of these. Metadata includes the content
 type of the target resource representation, the IRI scheme, the
 request method, and other information that is provided as nested
 elements in a link or form fields in a form.

 If the selected candidate contains an embedded representation,
 the agent MAY skip the following steps and immediately proceed
 with step 8.

 4. The agent obtains the _request IRI_ from the link target or
 submission target. Fragment identifiers are not part of the
 request IRI and MUST be separated from the rest of the IRI prior
 to a dereference.

 5. The agent constructs a new request with the request IRI. If the
 agent is following a link, then the request method MUST be GET.
 If the agent is submitting a form, then the request method MUST
 be the one specified in the form. The request IRI may need to be
 converted to a URI (Section 3.1 of RFC 3987) for protocols that
 do not support IRIs.

 The agent SHOULD set HTTP header fields and CoAP request options
 according to metadata associated with the link or form (e.g., set
 the HTTP Accept header field or the CoAP Accept option when the
 media type of the target resource is provided). In the case of a
 form with one or more form fields, the agent also MUST include a
 request payload that matches the specifications of the form
 fields.

 6. The agent sends the request and receives the response.

https://datatracker.ietf.org/doc/html/rfc3987#section-3.1

Hartke Expires August 10, 2019 [Page 8]

Internet-Draft Constrained RESTful Application Language February 2019

 7. If a fragment identifier was separated from the request IRI, the
 agent dereferences the fragment identifier within the received
 representation.

 8. The agent _updates the browsing context_ by making the (embedded
 or received) representation the active representation.

 9. Finally, the agent processes the representation according to the
 semantics of the content type. If the representation is a CoRAL
 document (or any other representation that implements the CoRAL
 data and interaction model), this means the agent has the choice
 of what to do next again -- and the cycle repeats.

3.8. History Traversal

 A browsing context MAY entail a _session history_ that lists the
 resource representations that the agent has processed, is processing,
 or will process.

 An entry in the session history consists of a resource representation
 and the request IRI that was used to retrieve the representation.
 New entries are added to the session history as the agent navigates
 from resource to resource.

 An agent can navigate a browsing context by _traversing the session
 history_ in addition to following links and submitting forms. For
 example, if an agent received a representation that doesn't contain
 any further links or forms, it can revert the active representation
 back to one it has visited earlier.

 Traversing the history should take advantage of caches to avoid new
 requests. An agent MAY reissue a safe request (e.g., a GET request)
 if it doesn't have a fresh representation in its cache. An agent
 MUST NOT reissue an unsafe request (e.g., a PUT or POST request).

4. Binary Format

 This section defines the encoding of documents in the CoRAL binary
 format.

 A document in the binary format is a data item in Concise Binary
 Object Representation (CBOR) [RFC7049]. The structure of this data
 item is presented in the Concise Data Definition Language (CDDL)
 [I-D.ietf-cbor-cddl]. The media type is "application/coral+cbor".

https://datatracker.ietf.org/doc/html/rfc7049

Hartke Expires August 10, 2019 [Page 9]

Internet-Draft Constrained RESTful Application Language February 2019

4.1. Data Structure

 The data structure of a document in the binary format is made up of
 four kinds of elements: links, forms, embedded representations, and
 (as an extension to the CoRAL data model) base directives. Base
 directives provide a way to encode IRIs with a common base more
 efficiently.

 Elements are processed in the order they appear in the document.
 Document processors need to maintain an _environment_ while iterating
 an array of elements. The environment consists of two variables: the
 current context and the _current base_. Both the current context
 and the current base are initially set to the document's retrieval
 context.

4.1.1. Documents

 The body of a document in the binary format is encoded as an array of
 zero or more links, forms, embedded representations, and directives.

 body = [*(link / form / representation / directive)]

4.1.2. Links

 A link is encoded as an array that consists of the unsigned integer
 2, followed by the link relation type and the link target, optionally
 followed by a link body that contains nested elements.

 link = [link: 2, relation, link-target, ?body]

 The link relation type is encoded as a text string that conforms to
 the syntax of an IRI [RFC3987].

 relation = text

 The link target is denoted by an IRI reference or represented by a
 literal value. An IRI reference MUST be resolved against the current
 base. The encoding of and resolution process for IRI references in
 the binary format is described in RFC XXXX [I-D.hartke-t2trg-ciri].
 The link target may be null, which indicates that the link target is
 an unidentified resource.

 link-target = ciri / literal

 ciri = <Defined in Section X of RFC XXXX>

 literal = bool / int / float / time / bytes / text / null

Hartke Expires August 10, 2019 [Page 10]

https://datatracker.ietf.org/doc/html/rfc3987

Internet-Draft Constrained RESTful Application Language February 2019

 The array of elements in the link body, if any, MUST be processed in
 a fresh environment. Both the current context and the current base
 in the new environment are initially set to the link target of the
 enclosing link.

4.1.3. Forms

 A form is encoded as an array that consists of the unsigned integer
 3, followed by the form relation type, the request method, and the
 submission target, optionally followed by a list of form fields.

 form = [form: 3, relation, method, submission-target, ?form-
 fields]

 The form relation type is defined in the same way as a link relation
 type (Section 4.1.2).

 The method MUST refer to one of the request methods defined by the
 Web transfer protocol identified by the scheme of the submission
 target. It is encoded either as a text string or an unsigned
 integer.

 method = text / uint

 For HTTP [RFC7230], the method MUST be encoded as a text string in
 the format defined in Section 4.1 of RFC 7231 [RFC7231]; the set of
 possible values is maintained in the IANA HTTP Method Registry. For
 CoAP [RFC7252], the method MUST be encoded as an unsigned integer
 (e.g., the unsigned integer 2 for the POST method); the set of
 possible values is maintained in the IANA CoAP Method Codes Registry.

 The submission target is denoted by an IRI reference. This IRI
 reference MUST be resolved against the current base.

 submission-target = ciri

4.1.3.1. Form Fields

 A list of form fields is encoded as an array of zero or more name-
 value pairs.

 form-fields = [*(form-field-name, form-field-value)]

 The list, if any, MUST be processed in a fresh environment. Both the
 current context and the current base in the new environment are
 initially set to the submission target of the enclosing form.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires August 10, 2019 [Page 11]

Internet-Draft Constrained RESTful Application Language February 2019

 A form field name is defined in the same way as a link relation type
 (Section 4.1.2).

 form-field-name = text

 A form field value can be an IRI reference, a Boolean value, an
 integer, a floating-point number, a date/time value, a byte string, a
 text string, or null. An IRI reference MUST be resolved against the
 current base.

 form-field-value = ciri / literal

4.1.3.2. Short Forms

 [[NOTE TO READERS: This section used to describe special elements for
 compressing certain forms that were assumed to occur frequently. The
 topic of encoding frequently occurring elements more efficiently will
 be revisited when more real-world examples are available.]]

4.1.4. Embedded Representations

 An embedded representation is encoded as an array that consists of
 the unsigned integer 0, followed by the HTTP content type or CoAP
 content format of the representation and a byte string containing the
 representation data.

 representation = [representation: 0, text / uint, bytes]

 For HTTP, the content type MUST be specified as a text string in the
 format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of
 possible values is maintained in the IANA Media Types Registry. For
 CoAP, the content format MUST be specified as an unsigned integer;
 the set of possible values is maintained in the IANA CoAP Content-
 Formats Registry.

4.1.5. Directives

 Directives provide the ability to manipulate the environment when
 processing a list of elements. There is one type of directives
 available: the Base directive.

 directive = base-directive

4.1.5.1. Base Directives

 A Base directive is encoded as an array that consists of the negative
 integer -1, followed by a base.

Hartke Expires August 10, 2019 [Page 12]

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231

Internet-Draft Constrained RESTful Application Language February 2019

 base-directive = [base: -1, base]

 The base is denoted by an IRI reference. This IRI reference MUST be
 resolved against the current context (not the current base).

 base = ciri

 The directive is processed by resolving the IRI reference against the
 current context and assigning the result to the current base.

4.2. Dictionaries

 The binary format can reference values from a dictionary to reduce
 representation size and processing cost. Dictionary references can
 used in place of link relation types, link targets, form relation
 types, submission targets, form field names, and form field values.

4.2.1. Dictionary References

 A dictionary reference is encoded as an unsigned integer. Where a
 dictionary reference cannot be expressed unambiguously, the unsigned
 integer is tagged with CBOR tag TBD6.

 relation /= uint

 link-target /= #6.TBD6(uint)

 submission-target /= #6.TBD6(uint)

 form-field-name /= uint

 form-field-value /= #6.TBD6(uint)

4.2.2. Media Type Parameter

 The "application/coral+cbor" media type is defined to have a
 "dictionary" parameter that specifies the dictionary in use. The
 dictionary is identified by a URI [RFC3986]. For example, a CoRAL
 document that uses the dictionary identified by the URI
 <http://example.com/dictionary> can use the following content type:

 application/coral+cbor; dictionary="http://example.com/dictionary"

 The URI serves only as an identifier; it does not necessarily have to
 be dereferencable (or even use a dereferencable URI scheme). It is
 permissible, though, to use a dereferencable URI and to serve a
 representation that provides information about the dictionary in a

Hartke Expires August 10, 2019 [Page 13]

https://datatracker.ietf.org/doc/html/rfc3986

Internet-Draft Constrained RESTful Application Language February 2019

 human- or machine-readable way. (The format of such a representation
 is outside the scope of this document.)

 For simplicity, a CoRAL document can reference values only from one
 dictionary; the value of the "dictionary" parameter MUST be a single
 URI. If the "dictionary" parameter is absent, the default dictionary
 specified in Appendix B of this document is assumed.

 Once a dictionary has made an assignment, the assignment MUST NOT be
 changed or removed. A dictionary, however, may contain additional
 information about an assignment, which may change over time.

 In CoAP [RFC7252], media types (including specific values for media
 type parameters) are encoded as an unsigned integer called "content
 format". For use with CoAP, each new CoRAL dictionary MUST register
 a new content format in the IANA CoAP Content-Formats Registry.

5. Textual Format

 This section defines the syntax of documents in the CoRAL textual
 format using two grammars: The lexical grammar defines how Unicode
 characters are combined to form line terminators, white space,
 comments, and tokens. The syntactic grammar defines how tokens are
 combined to form documents. Both grammars are presented in Augmented
 Backus-Naur Form (ABNF) [RFC5234].

 A document in the textual format is a Unicode string in a Unicode
 encoding form [UNICODE]. The media type for such documents is "text/
 coral". The "charset" parameter is not used; charset information is
 transported inside the document in the form of an OPTIONAL Byte Order
 Mark (BOM). The use of the UTF-8 encoding scheme [RFC3629], without
 a BOM, is RECOMMENDED.

5.1. Lexical Structure

 The lexical structure of a document in the textual format is made up
 of four basic elements: line terminators, white space, comments, and
 tokens. Of these, only tokens are significant in the syntactic
 grammar. There are five kinds of tokens: identifiers, IRIs, IRI
 references, literals, and punctuators.

 token = identifier / iri / iriref / literal / punctuator

 When several lexical grammar rules match a sequence of characters in
 a document, the longest match takes priority.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3629

Hartke Expires August 10, 2019 [Page 14]

Internet-Draft Constrained RESTful Application Language February 2019

5.1.1. Line Terminators

 Line terminators divide text into lines. A line terminator is any
 Unicode character with Line_Break class BK, CR, LF, or NL. However,
 any CR character that immediately precedes a LF character is ignored.
 (This affects only the numbering of lines in error messages.)

5.1.2. White Space

 White space is a sequence of one or more white space characters. A
 white space character is any Unicode character with the White_Space
 property.

5.1.3. Comments

 Comments are sequences of characters that are ignored when parsing
 text into tokens. Single-line comments begin with the characters
 "//" and extend to the end of the line. Delimited comments begin
 with the characters "/*" and end with the characters "*/". Delimited
 comments can occupy a portion of a line, a single line, or multiple
 lines.

 Comments do not nest. The character sequences "/*" and "*/" have no
 special meaning within a single-line comment; the character sequences
 "//" and "/*" have no special meaning within a delimited comment.

5.1.4. Identifiers

 An identifier token is a user-defined symbolic name. The rules for
 identifiers correspond to those recommended by the Unicode Standard
 Annex #31 [UNICODE-UAX31] using the following profile:

 identifier = START *CONTINUE *(MEDIAL 1*CONTINUE)

 START = <Any character with the XID_Start property>

 CONTINUE = <Any character with the XID_Continue property>

 MEDIAL = "-" / "." / "~" / %x58A / %xF0B

 MEDIAL =/ %x2010 / %x2027 / %x30A0 / %x30FB

 All identifiers MUST be converted into Unicode Normalization Form C
 (NFC), as defined by the Unicode Standard Annex #15 [UNICODE-UAX15].
 Comparison of identifiers is based on NFC and is case-sensitive
 (unless otherwise noted).

Hartke Expires August 10, 2019 [Page 15]

Internet-Draft Constrained RESTful Application Language February 2019

5.1.5. IRIs and IRI References

 IRIs and IRI references are Unicode strings that conform to the
 syntax defined in RFC 3987 [RFC3987]. An IRI reference can be either
 an IRI or a relative reference. Both IRIs and IRI references are
 enclosed in angle brackets ("<" and ">").

 iri = "<" IRI ">"

 iriref = "<" IRI-reference ">"

 IRI = <Defined in Section 2.2 of RFC 3987>

 IRI-reference = <Defined in Section 2.2 of RFC 3987>

5.1.6. Literals

 A literal is a textual representation of a value. There are seven
 types of literals: Boolean, integer, floating-point, date/time, byte
 string, text string, and null.

 literal = boolean / integer / float / datetime / bytes / text

 literal =/ null

5.1.6.1. Boolean Literals

 The case-insensitive tokens "true" and "false" denote the Boolean
 values true and false, respectively.

 boolean = "true" / "false"

5.1.6.2. Integer Literals

 Integer literals denote an integer value of unspecified precision.
 By default, integer literals are expressed in decimal, but they can
 also be specified in an alternate base using a prefix: Binary
 literals begin with "0b", octal literals begin with "0o", and
 hexadecimal literals begin with "0x".

 Decimal literals contain the digits "0" through "9". Binary literals
 contain "0" and "1", octal literals contain "0" through "7", and
 hexadecimal literals contain "0" through "9" as well as "A" through
 "F" in upper- or lowercase.

 Negative integers are expressed by prepending a minus sign ("-").

 integer = ["+" / "-"] (decimal / binary / octal / hexadecimal)

Hartke Expires August 10, 2019 [Page 16]

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987#section-2.2
https://datatracker.ietf.org/doc/html/rfc3987#section-2.2

Internet-Draft Constrained RESTful Application Language February 2019

 decimal = 1*DIGIT

 binary = %x30 (%x42 / %x62) 1*BINDIG

 octal = %x30 (%x4F / %x6F) 1*OCTDIG

 hexadecimal = %x30 (%x58 / %x78) 1*HEXDIG

 DIGIT = %x30-39

 BINDIG = %x30-31

 OCTDIG = %x30-37

 HEXDIG = %x30-39 / %x41-46 / %x61-66

5.1.6.3. Floating-point Literals

 Floating-point literals denote a floating-point number of unspecified
 precision.

 Floating-point literals consist of a sequence of decimal digits
 followed by a fraction, an exponent, or both. The fraction consists
 of a decimal point (".") followed by a sequence of decimal digits.
 The exponent consists of the letter "e" in upper- or lowercase,
 followed by an optional sign and a sequence of decimal digits that
 indicate a power of 10 by which the value preceding the "e" is
 multiplied.

 Negative floating-point values are expressed by prepending a minus
 sign ("-").

 float = ["+" / "-"] 1*DIGIT [fraction] [exponent]

 fraction = "." 1*DIGIT

 exponent = (%x45 / %x65) ["+" / "-"] 1*DIGIT

 A floating-point literal can additionally denote either the special
 "Not-a-Number" (NaN) value, positive infinity, or negative infinity.
 The NaN value is produced by the case-insensitive token "NaN". The
 two infinite values are produced by the case-insensitive tokens
 "+Infinity" (or simply "Infinity") and "-Infinity".

 float =/ "NaN"

 float =/ ["+" / "-"] "Infinity"

Hartke Expires August 10, 2019 [Page 17]

Internet-Draft Constrained RESTful Application Language February 2019

5.1.6.4. Date/Time Literals

 Date/time literals denote an instant in time.

 A date/time literal consists of a sequence of characters in Internet
 date/time format [RFC3339], enclosed in dollar signs.

 datetime = DOLLAR date-time DOLLAR

 date-time = <Defined in Section 5.6 of RFC 3339>

 DOLLAR = %x24

5.1.6.5. Byte String Literals

 Byte string literals denote an ordered sequence of bytes.

 A byte string literal consists of a prefix and zero or more bytes
 encoded in Base16, Base32, or Base64 [RFC4648] and enclosed in single
 quotes. Byte string literals encoded in Base16 begin with "h" or
 "b16", byte string literals encoded in Base32 begin with "b32", and
 byte string literals encoded in Base64 begin with "b64".

 bytes = base16 / base32 / base64

 base16 = (%x68 / %x62.31.36) SQUOTE <Base16 encoded data> SQUOTE

 base32 = %x62.33.32 SQUOTE <Base32 encoded data> SQUOTE

 base64 = %x62.36.34 SQUOTE <Base64 encoded data> SQUOTE

 SQUOTE = %x27

5.1.6.6. Text String Literals

 Text string literals denote a Unicode string.

 A text string literal consists of zero or more Unicode characters
 enclosed in double quotes. It can include simple escape sequences
 (such as \t for the tab character) as well as hexadecimal and Unicode
 escape sequences.

 text = DQUOTE *(char / %x5C escape) DQUOTE

 char = <Any character except %x22, %x5C, and line terminators>

 escape = simple-escape / hexadecimal-escape / unicode-escape

Hartke Expires August 10, 2019 [Page 18]

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc4648

Internet-Draft Constrained RESTful Application Language February 2019

 simple-escape = %x30 / %x62 / %x74 / %x6E / %x76

 simple-escape =/ %x66 / %x72 / %x22 / %x27 / %x5C

 hexadecimal-escape = (%x78 / %x58) 2HEXDIG

 unicode-escape = %x75 4HEXDIG / %x55 8HEXDIG

 DQUOTE = %x22

 An escape sequence denotes a single Unicode code point. For
 hexadecimal and Unicode escape sequences, the code point is expressed
 by the hexadecimal number following the "\x", "\X", "\u", or "\U"
 prefix. Simple escape sequences indicate the code points listed in
 Table 1.

 +-----------------+------------+----------------------+
 | Escape Sequence | Code Point | Character Name |
 +-----------------+------------+----------------------+
 | \0 | U+0000 | Null |
 | \b | U+0008 | Backspace |
 | \t | U+0009 | Character Tabulation |
 | \n | U+000A | Line Feed |
 | \v | U+000B | Line Tabulation |
 | \f | U+000C | Form Feed |
 | \r | U+000D | Carriage Return |
 | \" | U+0022 | Quotation Mark |
 | \' | U+0027 | Apostrophe |
 | \\ | U+005C | Reverse Solidus |
 +-----------------+------------+----------------------+

 Table 1: Simple Escape Sequences

5.1.6.7. Null Literal

 The case-insensitive tokens "null" and "_" denote the intentional
 absence of any value.

 null = "null" / "_"

5.1.7. Punctuators

 Punctuator tokens are used for grouping and separating.

 punctuator = "#" / ":" / "*" / "[" / "]" / "{" / "}" / "=" / "->"

Hartke Expires August 10, 2019 [Page 19]

Internet-Draft Constrained RESTful Application Language February 2019

5.2. Syntactic Structure

 The syntactic structure of a document in the textual format is made
 up of four kinds of elements: links, forms, embedded representations,
 and (as an extension to the CoRAL data model) directives. Directives
 provide a way to make documents easier to read and write by setting a
 base for relative IRI references and introducing shorthands for IRIs.

 Elements are processed in the order they appear in the document.
 Document processors need to maintain an _environment_ while iterating
 a list of elements. The environment consists of three variables: the
 current context, the _current base_, and the _current mapping from
 identifiers to IRIs_. Both the current context and the current base
 are initially set to the document's retrieval context. The current
 mapping from identifiers to IRIs is initially empty.

5.2.1. Documents

 The body of a document in the textual format consists of zero or more
 links, forms, embedded representations, and directives.

 body = *(link / form / representation / directive)

5.2.2. Links

 A link consists of the link relation type, followed by the link
 target, optionally followed by a link body enclosed in curly brackets
 ("{" and "}").

 link = relation link-target ["{" body "}"]

 The link relation type is denoted by either an IRI, a simple name, or
 a qualified name.

 relation = iri / simple-name / qualified-name

 A simple name consists of an identifier. It is resolved to an IRI by
 looking up the empty string in the current mapping from identifiers
 to IRIs and appending the specified identifier to the result. It is
 an error if the empty string is not present in the current mapping.

 simple-name = identifier

 A qualified name consists of two identifiers separated by a colon
 (":"). It is resolved to an IRI by looking up the identifier on the
 left hand side in the current mapping from identifiers to IRIs and
 appending the identifier on the right hand side to the result. It is

Hartke Expires August 10, 2019 [Page 20]

Internet-Draft Constrained RESTful Application Language February 2019

 an error if the identifier on the left hand side is not present in
 the current mapping.

 qualified-name = identifier ":" identifier

 The link target is denoted by an IRI reference or represented by a
 value literal. An IRI reference MUST be resolved against the current
 base. If the link target is null, the link target is an unidentified
 resource.

 link-target = iriref / literal

 The list of elements in the link body, if any, MUST be processed in a
 fresh environment. Both the current context and current base in this
 environment are initially set to the link target of the enclosing
 link. The mapping from identifiers to IRIs is initially set to a
 copy of the mapping from identifiers to IRIs in the current
 environment.

5.2.3. Forms

 A form consists of the form relation type, followed by a "->" token,
 the request method, and the submission target, optionally followed by
 a list of form fields enclosed in square brackets ("[" and "]").

 form = relation "->" method submission-target ["[" form-fields
 "]"]

 The form relation type is defined in the same way as a link relation
 type (Section 5.2.2).

 The method identifier MUST refer to one of the request methods
 defined by the Web transfer protocol identified by the scheme of the
 submission target. Method identifiers are case-insensitive and
 constrained to Unicode characters in the Basic Latin block.

 method = identifier

 For HTTP [RFC7230], the set of possible method identifiers is
 maintained in the IANA HTTP Method Registry. For CoAP [RFC7252], the
 set of possible method identifiers is maintained in the IANA CoAP
 Method Codes Registry.

 The submission target is denoted by an IRI reference. This IRI
 reference MUST be resolved against the current base.

 submission-target = iriref

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires August 10, 2019 [Page 21]

Internet-Draft Constrained RESTful Application Language February 2019

5.2.3.1. Form Fields

 A list of form fields consists of zero or more name-value pairs.

 form-fields = *(form-field-name form-field-value)

 The list, if any, MUST be processed in a fresh environment. Both the
 current context and the current base in this environment are
 initially set to the submission target of the enclosing form. The
 mapping from identifiers to IRIs is initially set to a copy of the
 mapping from identifiers to IRIs in the current environment.

 The form field name is defined in the same way as a link relation
 type (Section 5.2.2).

 form-field-name = iri / simple-name / qualified-name

 The form field value can be an IRI reference, Boolean literal,
 integer literal, floating-point literal, byte string literal, text
 string literal, or null. An IRI reference MUST be resolved against
 the current base.

 form-field-value = iriref / literal

5.2.4. Embedded Representations

 An embedded representation consists of a "*" token, followed by the
 representation data, optionally followed by representation metadata
 enclosed in square brackets ("[" and "]").

 representation = "*" bytes ["[" representation-metadata "]"]

 Representation metadata consists of zero or more name-value pairs.

 representation-metadata = *(metadata-name metadata-value)

 This document specifies only one kind of metadata item, labeled with
 the name "type": the HTTP content type or CoAP content format of the
 representation.

 metadata-name = "type"

 metadata-value = text / integer

 For HTTP, the content type MUST be specified as a text string in the
 format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of
 possible values is maintained in the IANA Media Types Registry. For
 CoAP, the content format MUST be specified as an integer; the set of

Hartke Expires August 10, 2019 [Page 22]

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231

Internet-Draft Constrained RESTful Application Language February 2019

 possible values is maintained in the IANA CoAP Content-Formats
 Registry.

 A metadata item with the name "type" MUST NOT occur more than once.
 If absent, its value defaults to content type "application/octet-
 stream" or content format 42.

5.2.5. Directives

 Directives provide the ability to manipulate the environment when
 processing a list of elements. All directives start with a number
 sign ("#") followed by a directive identifier. Directive identifiers
 are case-insensitive and constrained to Unicode characters in the
 Basic Latin block.

 The following two types of directives are available: the Base
 directive and the Using directive.

 directive = base-directive / using-directive

5.2.5.1. Base Directives

 A Base directive consists of a number sign ("#"), followed by the
 case-insensitive identifier "base", followed by a base.

 base-directive = "#" "base" base

 The base is denoted by an IRI reference. The IRI reference MUST be
 resolved against the current context (not the current base).

 base = iriref

 The directive is processed by resolving the IRI reference against the
 current context and assigning the result to the current base.

5.2.5.2. Using Directives

 A Using directive consists of a number sign ("#"), followed by the
 case-insensitive identifier "using", optionally followed by an
 identifier and an equals sign ("="), finally followed by an IRI. If
 the identifier is not specified, it is assumed to be the empty
 string.

 using-directive = "#" "using" [identifier "="] iri

 The directive is processed by adding the specified identifier and IRI
 to the current mapping from identifiers to IRIs. It is an error if
 the identifier is already present in the mapping.

Hartke Expires August 10, 2019 [Page 23]

Internet-Draft Constrained RESTful Application Language February 2019

6. Usage Considerations

 This section discusses some considerations in creating CoRAL-based
 applications and managing link and form relation types.

6.1. Specifying CoRAL-based Applications

 CoRAL-based applications naturally implement the Web architecture
 [W3C.REC-webarch-20041215] and thus are centered around orthogonal
 specifications for identification, interaction, and representation:

 o Resources are identified by IRIs or represented by value literals.

 o Interactions are based on the hypermedia interaction model of the
 Web and the methods provided by the Web transfer protocol. The
 semantics of possible interactions are identified by link and form
 relation types.

 o Representations are CoRAL documents encoded in the binary format
 defined in Section 4 or the textual format defined in Section 5.
 Depending on the application, additional representation formats
 may be used.

6.1.1. Application Interfaces

 Specifications for CoRAL-based applications need to list the specific
 components used in the application interface and their identifiers.
 This should include the following items:

 o IRI schemes that identify the Web transfer protocol(s) used in the
 application.

 o Internet media types that identify the representation format(s)
 used in the application, including the media type(s) of the CoRAL
 serialization format(s).

 o Link relation types that identify the semantics of links.

 o Form relation types that identify the semantics of forms.
 Additionally, for each form relation type, the permissible request
 method(s).

 o Form field names that identify the semantics of form fields.
 Additionally, for each form field name, the permissible form field
 value(s) and/or type(s).

Hartke Expires August 10, 2019 [Page 24]

Internet-Draft Constrained RESTful Application Language February 2019

6.1.2. Resource Names

 Resource names -- i.e., URIs [RFC3986] and IRIs [RFC3987] -- are a
 cornerstone of Web-based applications. They enable the uniform
 identification of resources and are used every time a client
 interacts with a server or a resource representation needs to refer
 to another resource.

 URIs and IRIs often include structured application data in the path
 and query components, such as paths in a filesystem or keys in a
 database. It is a common practice in many HTTP-based application
 programming interfaces (APIs) to make this part of the application
 specification, i.e., to prescribe fixed URI templates that are hard-
 coded in implementations. There are a number of problems with this
 practice [RFC7320], though.

 In CoRAL-based applications, resource names are therefore not part of
 the application specification -- they are an implementation detail.
 The specification of a CoRAL-based application MUST NOT mandate any
 particular form of resource name structure. BCP 190 [RFC7320]
 describes the problematic practice of fixed URI structures in more
 detail and provides some acceptable alternatives.

6.1.3. Implementation Limits

 This document places no restrictions on the number of elements in a
 CoRAL document or the depth of nested elements. Applications using
 CoRAL (in particular those running in constrained environments) may
 wish to limit these numbers and specify implementation limits that an
 application implementation must at least support to be interoperable.

 Applications may also mandate the following and other restrictions:

 o use of only either the binary format or the text format;

 o use of only either HTTP or CoAP as supported Web transfer
 protocol;

 o use of only dictionary references in the binary format for certain
 link relation types, link targets, form relation types, submission
 targets, form field names, and form field values;

 o use of only either content type strings or content format IDs;

 o use of IRI references only up to a specific string length;

 o use of CBOR in a canonical format (see Section 3.9 of RFC 7049).

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/bcp190
https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Hartke Expires August 10, 2019 [Page 25]

Internet-Draft Constrained RESTful Application Language February 2019

6.2. Minting New Relation Types

 New link relation types, form relation types, and form field names
 can be minted by defining an IRI [RFC3987] that uniquely identifies
 the item. Although the IRI can point to a resource that contains a
 definition of the semantics of the relation type, clients SHOULD NOT
 automatically access that resource to avoid overburdening its server.
 The IRI SHOULD be under the control of the person or party defining
 it, or be delegated to them.

 To avoid interoperability problems, it is RECOMMENDED that only IRIs
 are minted thare normalized according to Section 5.3 of RFC 3987.
 Non-normalized forms that are best avoided include:

 o Uppercase characters in scheme names and domain names

 o Percent-encoding of characters where it is not required by the IRI
 syntax

 o Explicitly stated HTTP default port (e.g., <http://example.com/>
 is preferable over <http://example.com:80/>)

 o Completely empty path in HTTP IRIs (e.g., <http://example.com/> is
 preferable over <http://example.com>)

 o Dot segments ("/./" or "/../") in the path component of an IRI

 o Lowercase hexadecimal letters within percent-encoding triplets
 (e.g., "%3F" is preferable over "%3f")

 o Punycode-encoding of Internationalized Domain Names in IRIs

 o IRIs that are not in Unicode Normalization Form C [UNICODE-UAX15]

 IRIs that identify link relation types, form relation types, and form
 field names do not need to be registered. The inclusion of domain
 names in IRIs allows for the decentralized creation of new IRIs
 without the risk of collisions. However, IRIs can be relatively
 verbose and impose a high overhead on a representation. This can be
 a problem in constrained environments [RFC7228]. Therefore, CoRAL
 alternatively allows the use of unsigned integers to reference CBOR
 data items from a dictionary, as specified in Section 4.2. These
 impose a much smaller overhead but instead need to be assigned by an
 authority to avoid collisions.

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987#section-5.3
http://example.com:80/
https://datatracker.ietf.org/doc/html/rfc7228

Hartke Expires August 10, 2019 [Page 26]

Internet-Draft Constrained RESTful Application Language February 2019

6.3. Expressing Registered Link Relation Types

 Link relation types registered in the IANA Link Relations Registry,
 such as "collection" [RFC6573] or "icon" [W3C.REC-html52-20171214],
 can be used in CoRAL by appending the registered name to the IRI
 <http://www.iana.org/assignments/relation/>:

 #using iana = <http://www.iana.org/assignments/relation/>

 iana:collection </items>
 iana:icon </favicon.png>

 Note that registered link relation types are required to be
 lowercased as per Section 3.3 of RFC 8288 [RFC8288].

 (The convention of appending the link relation type to the prefix
 "http://www.iana.org/assignments/relation/" to form an IRI is adopted
 from Atom [RFC4287]. See also Appendix A.2 of RFC 8288 [RFC8288].)

6.4. Expressing Link Target Attributes

 [[NOTE TO READERS: This section describes a mechanism to convert any
 link target attributes to CoRAL in a way that allows a conversion
 back without loss of information (round-trip conversion). It is
 likely that this will be replaced by a specific set of unique link
 relation types that match the known RFC 6690 attributes semantically
 but do not round-trip in the presence of unknown attributes.]]

 Link target attributes defined for use with CoRE Link Format
 [RFC6690] (such as "hreflang", "media", "title", "title*", "type",
 "ct", "rt", "if", "sz", and "obs") can be expressed in CoRAL by
 nesting links under the respective link. The link relation type of
 each such nested link is the lowercased attribute name appended to
 the IRI <http://TBD2/>.

 If the expressed link target attribute has a value, the target of the
 nested link MUST be a text string; otherwise, the target MUST be the
 Boolean value "true".

Hartke Expires August 10, 2019 [Page 27]

https://datatracker.ietf.org/doc/html/rfc6573
http://www.iana.org/assignments/relation/
http://www.iana.org/assignments/relation/
https://datatracker.ietf.org/doc/html/rfc8288#section-3.3
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc4287
https://datatracker.ietf.org/doc/html/rfc8288#appendix-A.2
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690
http://TBD2/

Internet-Draft Constrained RESTful Application Language February 2019

 #using iana = <http://www.iana.org/assignments/relation/>
 #using attr = <http://TBD2/>

 iana:item </patches/1> {
 attr:type "application/json-patch+json"
 attr:ct "51"
 attr:sz "247"
 attr:obs true
 }

 <=>

 </patches/1>; rel=item; type="application/json-patch+json";
 ct=51; sz=247; obs

 Language information in attributes as per RFC 8187 [RFC8187], such as
 in "title*" attributes, is expressed by nesting an additional link of
 type <http://TBD2/hreflang> under the link representing the
 attribute. The target of the nested link MUST be a text string
 containing a language tag [RFC5646]. The attribute name is expressed
 without the "*" character.

 #using iana = <http://www.iana.org/assignments/relation/>
 #using attr = <http://TBD2/>

 iana:terms-of-service </tos> {
 attr:title "Nutzungsbedingungen" { attr:hreflang "de" }
 attr:title "Terms of use" { attr:hreflang "en" }
 }

 <=>

 </tos>; rel=terms-of-service;
 title*=UTF-8'de'Nutzungsbedingungen;
 title*=UTF-8'en'Terms%20of%20use

 Link target attributes that actually do not describe the link target
 but the link itself (such as "rel", "anchor", and "rev") are excluded
 from this provision and MUST NOT occur in a CoRAL document.

6.5. Expressing Simple RDF Statements

 An RDF statement [W3C.REC-rdf11-concepts-20140225] says that some
 relationship, indicated by a predicate, holds between two resources.
 RDF predicates can therefore be good source for vocabulary to provide
 resource metadata. For example, a CoRAL document could use the FOAF
 vocabulary [FOAF] to describe the person or software that made it:

http://www.iana.org/assignments/relation/
http://TBD2/
https://datatracker.ietf.org/doc/html/rfc8187
https://datatracker.ietf.org/doc/html/rfc8187
http://TBD2/hreflang
https://datatracker.ietf.org/doc/html/rfc5646
http://www.iana.org/assignments/relation/
http://TBD2/

Hartke Expires August 10, 2019 [Page 28]

Internet-Draft Constrained RESTful Application Language February 2019

 #using rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 #using foaf = <http://xmlns.com/foaf/0.1/>

 foaf:maker null {
 rdf:type <http://xmlns.com/foaf/0.1/Person>
 foaf:familyName "Hartke"
 foaf:givenName "Klaus"
 foaf:mbox <mailto:klaus.hartke@ericsson.com>
 }

6.6. Embedding CoRAL in CBOR Structures

 Data items in the CoRAL binary format (Section 4) may be embedded in
 other CBOR [RFC7049] data structures. Specifications using CDDL
 [I-D.ietf-cbor-cddl] SHOULD reference the following CDDL definitions
 for this purpose:

 CoRAL-Document = body

 CoRAL-Link = link

 CoRAL-Form = form

7. Security Considerations

 Parsers of CoRAL documents must operate on input that is assumed to
 be untrusted. This means that parsers MUST fail gracefully in the
 face of malicious inputs. Additionally, parsers MUST be prepared to
 deal with resource exhaustion (e.g., resulting from the allocation of
 big data items) or exhaustion of the call stack (stack overflow).
 See Section 8 of RFC 7049 [RFC7049] for security considerations
 relating to CBOR.

 Implementers of the CoRAL textual format need to consider the
 security aspects of handling Unicode input. See the Unicode Standard
 Annex #36 [UNICODE-UAX36] for security considerations relating to
 visual spoofing and misuse of character encodings. See Section 10 of
 RFC 3629 [RFC3629] for security considerations relating to UTF-8.

 CoRAL makes extensive use of IRIs and URIs. See Section 8 of RFC
3987 [RFC3987] for security considerations relating to IRIs. See
Section 7 of RFC 3986 [RFC3986] for security considerations relating

 to URIs.

 The security of applications using CoRAL can depend on the proper
 preparation and comparison of internationalized strings. For
 example, such strings can be used to make authentication and
 authorization decisions, and the security of an application could be

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7049#section-8
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc3629#section-10
https://datatracker.ietf.org/doc/html/rfc3629#section-10
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3986#section-7
https://datatracker.ietf.org/doc/html/rfc3986

Hartke Expires August 10, 2019 [Page 29]

Internet-Draft Constrained RESTful Application Language February 2019

 compromised if an entity providing a given string is connected to the
 wrong account or online resource based on different interpretations
 of the string. See RFC 6943 [RFC6943] for security considerations
 relating to identifiers in IRIs and other places.

 CoRAL is intended to be used in conjunction with a Web transfer
 protocol like HTTP or CoAP. See Section 9 of RFC 7230 [RFC7230],

Section 9 of RFC 7231 [RFC7231], etc., for security considerations
 relating to HTTP. See Section 11 of RFC 7252 [RFC7252] for security
 considerations relating to CoAP.

 CoRAL does not define any specific mechanisms for protecting the
 confidentiality and integrity of CoRAL documents. It relies on
 application layer or transport layer mechanisms for this, such as
 Transport Layer Security (TLS) [RFC8446].

 CoRAL documents and the structure of a web of resources revealed from
 automatically following links can disclose personal information and
 other sensitive information. Implementations need to prevent the
 unintentional disclosure of such information. See Section of 9 of

RFC 7231 [RFC7231] for additional considerations.

 Applications using CoRAL ought to consider the attack vectors opened
 by automatically following, trusting, or otherwise using links and
 forms in CoRAL documents. Notably, a server that is authoritative
 for the CoRAL representation of a resource may not necessarily be
 authoritative for nested elements in the document. See Section 5 of
 RFC 8288 [RFC8288] for related considerations.

 Unless an application mitigates this risk by specifying more specific
 rules, any link or form in a document where the link or form context
 and the document's retrieval context don't share the same Web origin
 [RFC6454] MUST be discarded ("same-origin policy").

8. IANA Considerations

8.1. Media Type "application/coral+cbor"

 This document registers the media type "application/coral+cbor"
 according to the procedures of BCP 13 [RFC6838].

 Type name:
 application

 Subtype name:
 coral+cbor

 Required parameters:

https://datatracker.ietf.org/doc/html/rfc6943
https://datatracker.ietf.org/doc/html/rfc6943
https://datatracker.ietf.org/doc/html/rfc7230#section-9
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231#section-9
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252#section-11
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc8288#section-5
https://datatracker.ietf.org/doc/html/rfc8288#section-5
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838

Hartke Expires August 10, 2019 [Page 30]

Internet-Draft Constrained RESTful Application Language February 2019

 N/A

 Optional parameters:
 dictionary - See Section 4.2 of [I-D.hartke-t2trg-coral].

 Encoding considerations:
 binary - See Section 4 of [I-D.hartke-t2trg-coral].

 Security considerations:
 See Section 7 of [I-D.hartke-t2trg-coral].

 Interoperability considerations:
 N/A

 Published specification:
 [I-D.hartke-t2trg-coral]

 Applications that use this media type:
 See Section 1 of [I-D.hartke-t2trg-coral].

 Fragment identifier considerations:
 As specified for "application/cbor".

 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): .coral.cbor
 Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Intended usage:
 COMMON

 Restrictions on usage:
 N/A

 Author:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Change controller:
 IESG

 Provisional registration?
 No

Hartke Expires August 10, 2019 [Page 31]

Internet-Draft Constrained RESTful Application Language February 2019

8.2. Media Type "text/coral"

 This document registers the media type "text/coral" according to the
 procedures of BCP 13 [RFC6838] and guidelines in RFC 6657 [RFC6657].

 Type name:
 text

 Subtype name:
 coral

 Required parameters:
 N/A

 Optional parameters:
 N/A

 Encoding considerations:
 binary - See Section 5 of [I-D.hartke-t2trg-coral].

 Security considerations:
 See Section 7 of [I-D.hartke-t2trg-coral].

 Interoperability considerations:
 N/A

 Published specification:
 [I-D.hartke-t2trg-coral]

 Applications that use this media type:
 See Section 1 of [I-D.hartke-t2trg-coral].

 Fragment identifier considerations:
 N/A

 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): .coral
 Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Intended usage:
 COMMON

 Restrictions on usage:

https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc6657
https://datatracker.ietf.org/doc/html/rfc6657

Hartke Expires August 10, 2019 [Page 32]

Internet-Draft Constrained RESTful Application Language February 2019

 N/A

 Author:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Change controller:
 IESG

 Provisional registration?
 No

8.3. CoAP Content Formats

 This document registers CoAP content formats for the content types
 "application/coral+cbor" and "text/coral" according to the procedures
 of RFC 7252 [RFC7252].

 o Content Type: application/coral+cbor
 Content Coding: identity
 ID: TBD3
 Reference: [I-D.hartke-t2trg-coral]

 o Content Type: text/coral
 Content Coding: identity
 ID: TBD4
 Reference: [I-D.hartke-t2trg-coral]

 [[NOTE TO RFC EDITOR: Please replace all occurrences of "TBD3" and
 "TBD4" in this document with the code points assigned by IANA.]]

 [[NOTE TO IMPLEMENTERS: Experimental implementations can use content
 format ID 65087 for "application/coral+cbor" and content format ID
 65343 for "text/coral" until IANA has assigned code points.]]

8.4. CBOR Tag

 This document registers a CBOR tag for dictionary references
 according to the procedures of RFC 7049 [RFC7049].

 o Tag: TBD6
 Data Item: unsigned integer
 Semantics: Dictionary reference
 Reference: [I-D.hartke-t2trg-coral]

 [[NOTE TO RFC EDITOR: Please replace all occurrences of "TBD6" in
 this document with the code point assigned by IANA.]]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7049

Hartke Expires August 10, 2019 [Page 33]

Internet-Draft Constrained RESTful Application Language February 2019

9. References

9.1. Normative References

 [I-D.hartke-t2trg-ciri]
 Hartke, K., "Constrained Internationalized Resource
 Identifiers", draft-hartke-t2trg-ciri-01 (work in
 progress), February 2019.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-06 (work in progress), November 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
 January 2005, <https://www.rfc-editor.org/info/rfc3987>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

https://datatracker.ietf.org/doc/html/draft-hartke-t2trg-ciri-01
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-06
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-06
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234

Hartke Expires August 10, 2019 [Page 34]

Internet-Draft Constrained RESTful Application Language February 2019

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6657] Melnikov, A. and J. Reschke, "Update to MIME regarding
 "charset" Parameter Handling in Textual Media Types",

RFC 6657, DOI 10.17487/RFC6657, July 2012,
 <https://www.rfc-editor.org/info/rfc6657>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <https://www.rfc-editor.org/info/rfc6943>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

 Note that this reference is to the latest version of
 Unicode, rather than to a specific release. It is not
 expected that future changes in the Unicode specification
 will have any impact on this document.

 [UNICODE-UAX15]
 The Unicode Consortium, "Unicode Standard Annex #15:
 Unicode Normalization Forms",
 <http://unicode.org/reports/tr15/>.

 [UNICODE-UAX31]
 The Unicode Consortium, "Unicode Standard Annex #31:
 Unicode Identifier and Pattern Syntax",
 <http://unicode.org/reports/tr31/>.

https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc6657
https://www.rfc-editor.org/info/rfc6657
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc6943
https://www.rfc-editor.org/info/rfc6943
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
http://www.unicode.org/versions/latest/
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr31/

Hartke Expires August 10, 2019 [Page 35]

Internet-Draft Constrained RESTful Application Language February 2019

 [UNICODE-UAX36]
 The Unicode Consortium, "Unicode Standard Annex #36:
 Unicode Security Considerations",
 <http://unicode.org/reports/tr36/>.

9.2. Informative References

 [FOAF] Brickley, D. and L. Miller, "FOAF Vocabulary Specification
 0.99", January 2014,
 <http://xmlns.com/foaf/spec/20140114.html>.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <https://www.rfc-editor.org/info/rfc4287>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, DOI 10.17487/RFC5789, March 2010,

 <https://www.rfc-editor.org/info/rfc5789>.

 [RFC6573] Amundsen, M., "The Item and Collection Link Relations",
RFC 6573, DOI 10.17487/RFC6573, April 2012,

 <https://www.rfc-editor.org/info/rfc6573>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

http://unicode.org/reports/tr36/
http://xmlns.com/foaf/spec/20140114.html
https://datatracker.ietf.org/doc/html/rfc4287
https://www.rfc-editor.org/info/rfc4287
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://datatracker.ietf.org/doc/html/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://datatracker.ietf.org/doc/html/rfc6573
https://www.rfc-editor.org/info/rfc6573
https://datatracker.ietf.org/doc/html/rfc6690
https://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231

Hartke Expires August 10, 2019 [Page 36]

Internet-Draft Constrained RESTful Application Language February 2019

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190,
RFC 7320, DOI 10.17487/RFC7320, July 2014,

 <https://www.rfc-editor.org/info/rfc7320>.

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <https://www.rfc-editor.org/info/rfc8132>.

 [RFC8187] Reschke, J., "Indicating Character Encoding and Language
 for HTTP Header Field Parameters", RFC 8187,
 DOI 10.17487/RFC8187, September 2017,
 <https://www.rfc-editor.org/info/rfc8187>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [W3C.REC-html52-20171214]
 Faulkner, S., Eicholz, A., Leithead, T., Danilo, A., and
 S. Moon, "HTML 5.2", World Wide Web Consortium
 Recommendation REC-html52-20171214, December 2017,
 <https://www.w3.org/TR/2017/REC-html52-20171214>.

 [W3C.REC-rdf-schema-20140225]
 Brickley, D. and R. Guha, "RDF Schema 1.1", World Wide Web
 Consortium Recommendation REC-rdf-schema-20140225,
 February 2014,
 <http://www.w3.org/TR/2014/REC-rdf-schema-20140225>.

 [W3C.REC-rdf11-concepts-20140225]
 Cyganiak, R., Wood, D., and M. Lanthaler, "RDF 1.1
 Concepts and Abstract Syntax", World Wide Web Consortium
 Recommendation REC-rdf11-concepts-20140225, February 2014,
 <http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225>.

 [W3C.REC-turtle-20140225]
 Prud'hommeaux, E. and G. Carothers, "RDF 1.1 Turtle",
 World Wide Web Consortium Recommendation REC-turtle-
 20140225, February 2014,
 <http://www.w3.org/TR/2014/REC-turtle-20140225>.

https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/bcp190
https://datatracker.ietf.org/doc/html/rfc7320
https://www.rfc-editor.org/info/rfc7320
https://datatracker.ietf.org/doc/html/rfc8132
https://www.rfc-editor.org/info/rfc8132
https://datatracker.ietf.org/doc/html/rfc8187
https://www.rfc-editor.org/info/rfc8187
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.w3.org/TR/2017/REC-html52-20171214
http://www.w3.org/TR/2014/REC-rdf-schema-20140225
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-turtle-20140225

Hartke Expires August 10, 2019 [Page 37]

Internet-Draft Constrained RESTful Application Language February 2019

 [W3C.REC-webarch-20041215]
 Jacobs, I. and N. Walsh, "Architecture of the World Wide
 Web, Volume One", World Wide Web Consortium
 Recommendation REC-webarch-20041215, December 2004,
 <http://www.w3.org/TR/2004/REC-webarch-20041215>.

Appendix A. Core Vocabulary

 This section defines the core vocabulary for CoRAL: a set of link
 relation types, form relation types, and form field names.

 [[NOTE TO RFC EDITOR: Please replace all occurrences of "urn:TBD1" in
 this document with an IETF-controlled IRI, such as "urn:ietf:..." or
 "http://...ietf.org/...".]]

A.1. Link Relation Types

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 Indicates that the link's context is an instance of the class
 specified as the link's target, as defined by RDF Schema
 [W3C.REC-rdf-schema-20140225].

 <http://www.iana.org/assignments/relation/item>
 Indicates that the link's context is a collection and that the
 link's target is a member of that collection, as defined in

Section 2.1 of RFC 6573 [RFC6573].

 <http://www.iana.org/assignments/relation/collection>
 Indicates that the link's target is a collection and that the
 link's context is a member of that collection, as defined in

Section 2.2 of RFC 6573 [RFC6573].

A.2. Form Relation Types

 <urn:TBD1#create>
 Indicates that the form's context is a collection and that a new
 item can be created in that collection by submitting a suitable
 representation. This form relation type is typically used with
 the POST method [RFC7231] [RFC7252].

 <urn:TBD1#update>
 Indicates that the form's context can be updated by submitting a
 suitable representation. This form relation type is typically
 used with the PUT method [RFC7231] [RFC7252], PATCH method
 [RFC5789] [RFC8132], or iPATCH method [RFC8132].

 <urn:TBD1#delete>

http://www.w3.org/TR/2004/REC-webarch-20041215
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.iana.org/assignments/relation/item
https://datatracker.ietf.org/doc/html/rfc6573#section-2.1
https://datatracker.ietf.org/doc/html/rfc6573
http://www.iana.org/assignments/relation/collection
https://datatracker.ietf.org/doc/html/rfc6573#section-2.2
https://datatracker.ietf.org/doc/html/rfc6573
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc8132

Hartke Expires August 10, 2019 [Page 38]

Internet-Draft Constrained RESTful Application Language February 2019

 Indicates that the form's context can be deleted. This form
 relation type is typically used with the DELETE method [RFC7231]
 [RFC7252].

 <urn:TBD1#search>
 Indicates that the form's context can be searched by submitting a
 search query. This form relation type is typically used with the
 POST method [RFC7231] [RFC7252] or FETCH method [RFC8132].

A.3. Form Field Names

 <urn:TBD1#accept>
 Specifies an acceptable HTTP content type or CoAP content format
 for the request payload. There may be multiple form fields with
 this name. If a form does not include a form field with this
 name, the server accepts any or no request payload, depending on
 the form relation type.

 For HTTP, the content type MUST be specified as a text string in
 the format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the
 set of possible values is maintained in the IANA Media Types
 Registry. For CoAP, the content format MUST be specified as an
 unsigned integer; the set of possible values is maintained in the
 IANA CoAP Content-Formats Registry.

Appendix B. Default Dictionary

 This section defines a default dictionary that is assumed when the
 "application/coral+cbor" media type is used without a "dictionary"
 parameter.

 0 = <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 1 = <http://www.iana.org/assignments/relation/item>

 2 = <http://www.iana.org/assignments/relation/collection>

 3 = <urn:TBD1#create>

 4 = <urn:TBD1#update>

 5 = <urn:TBD1#delete>

 6 = <urn:TBD1#search>

 7 = <urn:TBD1#accept>

Hartke Expires August 10, 2019 [Page 39]

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.iana.org/assignments/relation/item
http://www.iana.org/assignments/relation/collection

Internet-Draft Constrained RESTful Application Language February 2019

Acknowledgements

 Thanks to Christian Amsuess for helpful comments and discussions that
 have shaped the document.

Author's Address

 Klaus Hartke
 Ericsson
 Torshamnsgatan 23
 Stockholm SE-16483
 Sweden

 Email: klaus.hartke@ericsson.com

Hartke Expires August 10, 2019 [Page 40]

