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Abstract

The Mathematical Mesh 'The Mesh' is an infrastructure that
facilitates the exchange of configuration and credential data between
multiple user devices and provides end-to-end security. This document
describes the cryptographic algorithm suites used in the Mesh and the
implementation of Multi-Party Encryption and Multi-Party Key
Generation used in the Mesh.
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1. Introduction

This document describes the cryptographic algorithm suites used in
the Mesh and the implementation of Multi-Party Encryption and Multi-
Party Key Generation used in the Mesh.
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To allow use of Mesh capabilities on the least capable computing
devices currently in use, separate schedules of recommended and
required algorithms are specified for Standard Devices and
Constrained Devices.

The Constrained device class may be considered to include most 8-bit
CPUs equipped with sufficient memory to support the necessary
operations. For example an Ardunino Mega 2560 which can perform ECDH
key agreement and signature operations in times ranging from 3 to 8
seconds. While such a device is clearly not suited to perform such
operations routinely, a one-time connection process that takes
several minutes to complete need not be of major concern.

The Standard device class may be considered to include the vast
majority of general purpose and personal computing devices
manufactured since 2010. Even a Raspberry Pi Zero which currently
retails at $5 is capable of performing the cryptographic functions
required to implement the Mesh with negligible impact on the user.

2. Definitions

This section presents the related specifications and standard, the
terms that are used as terms of art within the documents and the
terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

The terms of art used in this document are described in the Mesh
Architecture Guide [draft-hallambaker-mesh-architecture].

2.3. Related Specifications

The architecture of the Mathematical Mesh is described in the Mesh
Architecture Guide [draft-hallambaker-mesh-architecture]. The Mesh
documentation set and related specifications are described in this
document.

2.4. Implementation Status

The implementation status of the reference code base is described in
the companion document [draft-hallambaker-mesh-developer].
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Administration Device

Mesh Device

Constrained Device

Bridge Device

3. Recommended and Required Algorithms

To allow implementation of Mesh capabilities on the widest possible
range of devices, separate algorithm requirements and recommendations
are specified for four classes of device:

A general-purpose computing device that is
used for Mesh administration functions.

A general-purpose computing device that is not used for
Mesh administration functions with sufficient memory and
processing power to perform public key cryptography operations
without paying particular attention to the impact on performance.

An embedded computing device with limited memory
and computing power that offers sufficient processing capabilities
to perform occasional public key operations (e.g. during device
initialization) but is not suited to repeated operations.

A trusted device that enables Mesh Devices to
interoperate with Constrained devices.

Since Administration Devices and Mesh Devices MUST support
communication with Mesh Devices and Constrained devices, they MUST
meet all the REQUIRED algorithms for both types of device.

3.1. Mesh Device

Support for the following algorithms is REQUIRED:

SHA-2-512 [SHA-2]

HMAC-SHA-2-512 [RFC2104]

HMAC-based Extract-and-Expand Key Derivation Function [RFC5869]

AES-CBC-256 Encryption [FIPS197]

Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394]

Montgomery Curve Diffie-Hellman Key Agreement X25519 and X448 
[RFC7748]

Edwards-Curve Digital Signature Algorithm Ed25519 and Ed448 
[RFC8032]

Support for the following algorithms is RECOMMENDED:

AES-GCM-256 Encryption [AES-GCM]

SHA-3-512 [SHA-3]
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KMAC SHA-3-512 [SHA-3-Derived]

While the use of GCM is generally preferred over CBC mode in IETF
security protocols, this mode is not currently supported by the
reference implementation platform.

3.2. Constrained Device

Support for the following algorithms is REQUIRED:

SHA-2-512 [SHA-2]

HMAC-SHA-2-512 [RFC2104]

HMAC-based Extract-and-Expand Key Derivation Function [RFC5869]

Poly1035 Authenticated Encryption [RFC8439]

ChaCha20 Encryption [RFC8439]

Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394]

Edwards-Curve Digital Signature Algorithm Ed25519 [RFC8032]

Edwards-Curve Diffie-Hellman Key Agreement Ed25519 [RFC8032]

Use of the Edwards Curves for Signature and Key Agreement allows both
functions to be supported by a single library with no reduction in
security.

4. Multi-Party Cryptography

The multi-party key generation and multi-party decryption mechanisms
used in the Mesh protocols are made possible by the fact that Diffie
Hellman key agreement and elliptic curve variants thereof support
properties we call the Key Combination Law and the Result Combination
Law.

Let {X, x}, {Y, y}, {E, e} be {public, private} key pairs.

The Key Combination law states that we can define an operator ? such
that there is a keypair {Z, z} such that:

Z = X ? Y and z = (x + y) mod o (where o is the order of the group)

The Result Combination Law states that we can define an operator ?
such that:

(x ? E) ? (y ? E) = (z ? E) = (e ? Z).
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4.1. Application to Diffie Hellman (not normative)

For the Diffie Hellman system in a modular field p, o = p-1 and a ? b
= a ? b = a.b mod p.

Proof:

By definition, X = e  mod p, Y = e  mod p, and Z = e mod p.

Therefore,

Z = e  mod p = e  mod p = (e e ) mod p = e mod p.e  mod p = X.Y

A similar proof may be constructed for the operator ?.

4.2. Multi-Party Key Generation

The Key Combination Law provides the basis for the Key Co-Generation
technique used to ensure that the cryptographic keys used in devices
connected to a Mesh profile are sufficiently random and have not been
compromised by malware or other 'backdoor' compromise to the machine
during or after manufacture.

For the Diffie Hellman system, the Key Combination law provides all
the mechanism needed to implement a Key Co-Generation mechanism. If
the Device key is {X, x}, the administration device can generate a
Co-Generation Key Pair {Y, y} and generate a Device Connection
Assertion for the final public key E calculated from knowledge of X
and Y alone. Passing the value y to the device (using a secure
channel) allows it to calculate the corresponding private key e
required to make use of the Device Connection Assertion.

This approach ensures that a party with knowledge of either x or y
but not both obtains no knowledge of e.

Section REF _Ref5309729 \w \h 5 describes the implementation of these
schemes in the Mesh

4.3. Multi-Party Decryption

The Key Combination Law and Result Combination Law provide the basis
for the Multi-Party Decryption technique used to support Mesh
Encryption Groups.

Section REF _Ref5309538 \w \h 6 describes the application of this
technique in the Mesh

4.4. Mutually Authenticated Key Exchange.

The Result Combination Law is used to provide a Key Exchange
mechanism that provides mutual authentication of the parties while
preserving forward secrecy.
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4.5. Implementation

For elliptic curve cryptosystems, the operators ? and ? are point
addition.

Implementing a robust Key Co-Generation for the Elliptic Curve
Cryptography schemes described in [RFC7748] and [RFC8032] requires
some additional considerations to be addressed.

The secret scalar used in the EdDSA algorithm is calculated from
the private key using a digest function. It is therefore necessary
to specify the Key Co-Generation mechanism by reference to
operations on the secret scalar values rather than operations on
the private keys.

The Montgomery Ladder traditionally used to perform X25519 and
X448 point multiplication does not require implementation of a
function to add two arbitrary points. While the steps required to
create such a function are fully constrained by the specification,
the means of satisfying the constraints is not.

4.5.1. Implementation for Ed25519 and Ed448

The data structures used to implement co-generation of public keys
are defined in the main Mesh Reference Guide. This document describes
only the additional implementation details.

Note that the 'private key' described in [RFC8032] is in fact a seed
used to generate a 'secret scalar' value that is the value that has
the function of being the private key in the ECDH algorithm.

To provision a new public key to a device, the provisioning device:

Obtains the device profile of the device(s) to be provisioned to
determine the type of key to perform co-generation for. Let the
device {public, private} key be {D, d}.

Generates a private key m with the specified number of bytes (32
or 57].

Calculates the corresponding public key M.

Calculates the Application public key A = D+M where + is point
addition.

Constructs the application device entry containing the private
key value m and encrypts under the device encryption key d.

On receipt, the device may at its option use its knowledge of the
secret scalar corresponding to d and m to calculate the application
secret scalar a or alternatively maintain the two secrets separately
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and make use of the result combination law to perform private key
operations.

4.5.2. Implementation for X25519 and X448

While the point addition function can be defined for any elliptic
curve system, it is not necessary to implement point addition to
support ECDH key agreement.

In particular, point multiplication using the Montgomery ladder
technique over Montgomery curves only operate on the x co-ordinate
and only require point doubling operations.

For expediency, the current implementation of the Mesh reference code
uses the Edwards curves for both signature and encryption pending
announcement of platform support for both algorithms.

5. Multi-Party Key Generation

Multi-Party Key Generation is a capability that is used in the Mesh
to enable provisioning of application specific private key pairs to
connected devices without revealing any information concerning the
application private key of the device.

For example, Alice provisions the confirmation service to her watch.
The provisioning device could generate a signature key for the device
and encrypt it under the encryption key of the device. But this means
that we cannot attribute signatures to the watch with absolute
certainty as the provisioning device has had knowledge of the watch
signature key. Nor do we wish to use the device signature key for the
confirmation service.

Multi-Party Key Generation allows an administration device to
provision a connected device with an application specific private key
that is specific to that application and no other such that the
application can determine the public key of the device but has no
knowledge of the private key.

Provisioning an application private key to a device requires the
administration device to:

Generate a new application public key for the device.

Construct and publish whatever application specific credentials
the device requires to use the application.

Providing the information required to make use of the private key
to the device.

Note that while the administration device needs to know the device
application public key, it does not require knowledge of the device
application private key.
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Administrator
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Recryption Service
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6. Multi-Party Decryption

A key limitation of most deployed messaging systems is that true end-
to-end confidentiality is only achieved for a limited set of
communication patterns. Specifically, bilateral communications (Alice
sends a message to Bob) or broadcast communications to a known set of
recipients (Alice sends a message to Bob, Carol and Doug). These
capabilities do not support communication patterns where the set of
recipients changes over time or is confidential. Yet such
requirements commonly occur in situations such as sending a message
to a mailing list whose membership isn't known to the sender, or
creating a spreadsheet whose readership is to be limited to
authorized members of the 'accounting' team.

The mathematical approach that makes key co-generation possible may
be applied to support a public key encryption mode in which
encryption is performed as usual but decryption requires the use of
multiple keys. This approach is variously described in the literature
as distributed key generation and proxy re-encryption [Blaze98].

The approach specified in this document borrows aspects of both these
techniques. This combined approach is called 'recryption'. Using
recryption allows a sender to send a message to a group of users
whose membership is not known to the sender at the time the message
is sent and can change at any time.

Proxy re-encryption provides a technical capability that meets the
needs of such communication patterns. Conventional symmetric key
cryptography uses a single key to encrypt and decrypt data. Public
key cryptography uses two keys, the key used to encrypt data is
separate from the key used to decrypt. Proxy re-encryption introduces
a third key (the recryption key) that allows a party to permit an
encrypted data packet to be decrypted using a different key without
permitting the data to be decrypted.

The introduction of a recryption key permits end-to-end
confidentiality to be preserved when a communication pattern requires
that some part of the communication be supported by a service.

The introduction of a third type of key, the recryption key permits
two new roles to be established, that of an administrator and
recryption service. There are thus four parties:

Holder of Decryption Key, Creator of Recryption Keys

Holder of Encryption Key

Holder of Recryption keys

Holder of personal decryption key
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The information stored at the recryption service is necessary but not
sufficient to decrypt the message. Thus, no disclosure of the message
plaintext occurs even in the event that an attacker gains full
knowledge of all the information stored by the recryption service.

6.1. Mechanism

The mechanism used to support recryption is the same as the mechanism
used to support key co-generation except that this time, instead of
combining two keys to create one, the private component of a
decryption key (i.e. the private key) is split into two parts, a
recryption key and a decryption key.

Recall that the key combination law for Diffie Hellman crypto-systems
states that we can add two private keys to get a third. It follows
that we can split the private key portion of a keypair {G, g} into
two parts by choosing a random number that is less than the order of
the Diffie-Hellman group to be our first key x. Our second key is y =
g - r mod o, where o is the order of the group.

Having generated x, y, we can use these to perform private key
agreement operations on a public key E and then use the result
combination law to obtain the same result that we would have obtained
using g.

One means of applying this mechanism to recryption would be to
generate a different random value x for each member of the group and
store it at the recryption service and communicate the value y to the
member via a secure channel. Applying this approach, we can clearly
see that the recryption service gains no information about the value
of the private key since the only information it holds is a random
number which could have been generated without any knowledge of the
group private key.

[RFC8032] requires that implementations derive the scalar secret by
taking a cryptographic digest of the private key. This means that
either the client or the service must use a non-compliant
implementation. Given this choice, it is preferable to require that
the non-standard implementation be required at the service rather
than the client. This limits the scope of the non-conformant key
derivation approach to the specialist recryption service and ensures
that the client enforce the requirement to generate the private key
component by means of a digest.

6.2. Implementation

Implementation of recryption in the Mesh has four parts:

Creation and management of the recryption group.

Provisioning of members to a recryption group.
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Message encryption.

Message decryption.

These operations are all performed using the same catalog and
messaging infrastructure provided by the Mesh for other purposes.

Each recryption group has its own independent Mesh account. This has
many advantages:

Administration of the recryption group may be spread across
multiple Mesh users or transferred from one user to another
without requiring specification of a separate management protocol
to support these operations.

The recryption account address can be used by Mesh applications
such as group messaging, conferencing, etc. as a contact address.

The contact request service can be used to notify members that
they have been granted membership in the group.

6.2.1. Group Creation

Creation of a Recryption group requires the steps of:

Generating the recryption group key pair

Creating the recryption group account

Generating administrator record for each administrator.

Publishing the administrator records to the recryption catalog.

Note that in principle, we could make use of the key combination law
to enable separation of duties controls on administrators so that
provisioning of members required multiple administrators to
participate in the process. This is left to future versions.

6.2.2. Provisioning a Member

To provision a user as a member of the recryption group, the
administrator requires their current recryption profile. The
administrator MAY obtain this by means of a contact service request.
As with any contact service request, this request is subject to
access control and MAY require authorization by the intended user
before the provisioning can proceed.

Having obtained the user's recryption profile, the administration
tool generates a decryption private key for the user and encrypts it
under the member's key to create the encrypted decryption key entry.
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The administration tool then computes the secret scalar from the
private key and uses this together with the secret scalar of the
recryption group to compute the recryption key for the member. This
value and the encrypted decryption key entry are combined to form the
recryption group membership record which is published to the catalog.

6.2.3. Message Encryption and Decryption

Encryption of a messages makes use of DARE Message in exactly the
same manner as any other encryption. The sole difference being that
the recipient entry for the recryption operation MUST specify the
recryption group address an not just the key fingerprint. This allows
the recipient to determine which recryption service to contact to
perform the recryption operation.

To decrypt a message, the recipient makes an authenticated recryption
request to the specified recryption service specifying:

The recipient entry to be used for decryption

The fingerprint of the decryption key(s) the device would like to
make use of.

Whether or not the encrypted decryption key entry should be
returned.

The recryption service searches the catalog for the corresponding
recryption group to find a matching entry. If found and if the
recipient and proposed decryption key are dully authorized for the
purpose, the service performs the key agreement operation using the
recryption key specified in the entry and returns the result to the
recipient.

The recipient then decrypts the recryption data entry using its
device decryption key and uses the group decryption key to calculate
the other half of the result. The two halves of the result are then
added to obtain the key agreement value that is then used to decrypt
the message.

7. Mutually Authenticated Key Agreement

Diffie Hellman key agreement using the authenticated public keys of
the principals provides mutual authentication of those principals.

For example, if Alice's key pair is {a, A} and Bob's key pair is {b, 
B}, the Diffie Hellman key agreement value DH (a, B) = DH (b, A) can
only be generated from the public information if a or b is known.

The chief disadvantage of this approach is that it only allows Alice
and Bob to establish a single shared secret that will never vary and
does not provide forward secrecy. To avoid this, cryptographic
protocols usually perform the key agreement against an ephemeral key
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Client ephemeral

Dual ephemeral

and either accept that the client key is not authenticated or perform
multiple key agreements and combine the results.

Using the Result Combination Law allows a key agreement mechanism to
combine the benefits of mutual authentication with the use of
ephemeral keys without the need for multiple private key operations
or additional round trips.

In its simplest form, the key exchange has two parties which we refer
to as the client and the server. The client being the party that
initiates the protocol exchange and the server being the party that
responds. Let the public key pair of the client be {a, A} and that of
the server {b, B}.

Two versions of the key agreement mechanism are specified:

The client contributes an ephemeral key pair {n , 
N }. The effective public key of the client is A ? N .

The server uses its public key B.

The key agreement value is DH (a + n , B) = DH (b, A ? N )

The client contributes an ephemeral key pair {n , 
N }. The effective public key of the client is A ? N .

The server contributes an ephemeral key pair {n , N }. The
effective public key of the client is B ? N .

The key agreement value is DH (a + n , B ? N ) = DH (b + n , A ? 
N )

The function of the ephemeral key is effectively that of a nonce but
it is shared with the counter-party as a public key value.

The dual ephemeral approach has the advantage that it limits the
scope for side channel attacks as both sides have contributed unknown
information to the key agreement value. The disadvantage of this
approach is that the key agreement value can only be calculated after
the server has provided its ephemeral.

Implementations MAY take advantage of the result combination law to
enable private key operations involving the authenticated key (or a
contribution to it) to be performed in trustworthy hardware.

An advantage of this key exchange mechanism over the traditional TLS
key exchange approach is that no signature operation is involved,
thus ensuring that either party can repudiate the exchange and thus
the claim that they were in communication.

The master secret is calculated from the key agreement value in the
usual fashion. For ECDH algorithms, this comprises the steps of
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[AES-GCM]

[draft-hallambaker-mesh-architecture]

[draft-hallambaker-mesh-security]

converting the key agreement value to an octet string which forms the
input to a Key Derivation Function.

8. Security Considerations

The security considerations for use and implementation of Mesh
services and applications are described in the Mesh Security
Considerations guide [draft-hallambaker-mesh-security].

9. IANA Considerations

This document requires no IANA actions.
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