
Network Working Group P. Hallam-Baker
Internet-Draft Comodo Group Inc.
Intended status: Informational August 31, 2018
Expires: March 4, 2019

Mathematical Mesh Part III: Advanced Cryptographic Services
draft-hallambaker-mesh-advanced-00

Abstract

 The Mathematical Mesh ?The Mesh? is an infrastructure that
 facilitates the exchange of configuration and credential data between
 multiple user devices and provides end-to-end security. This
 document describes the advanced encryption services supported by the
 Mesh.

 This document is also available online at
http://mathmesh.com/Documents/draft-hallambaker-mesh-advanced.html

 [1] .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 4, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hallam-Baker Expires March 4, 2019 [Page 1]

http://mathmesh.com/Documents/draft-hallambaker-mesh-advanced.html
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Mathematical Mesh Reference August 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Definitions . 3
2.1. Requirements Language 3
2.2. Defined Terms . 3
2.3. Related Specifications 3
2.4. Implementation Status 3

3. Secret Splitting . 3
3.1. Example: Securing a recovery record 4

4. Key Co-Generation . 5
4.1. Mechanism . 6
4.1.1. Application to Elliptic Curve systems 7

4.2. Implementation for Ed25519 and Ed 448 7
4.3. Example: Provisioning the Confirmation Service 8

5. Recryption . 9
5.1. Mechanism . 10
5.2. Implementation . 11
5.2.1. Group Creation 12
5.2.2. Provisioning a Member 12
5.2.3. Message Encryption and Decryption 13

5.3. Example: Messaging group 13
6. Quantum Resistant Signatures. 15

 6.1. Example: Creating a Quantum Resistant Signature
 Fingerprint . 16

7. Security Considerations 17
8. IANA Considerations . 17
9. Acknowledgements . 17
10. Appendix A: Prime Values for Secret Sharing 17
11. References . 18
11.1. Normative References 18
11.2. Informative References 18
11.3. URIs . 19

 Author's Address . 19

1. Introduction

 One of the core goals of the Mesh is to move the state of the art in
 commercial cryptography beyond that achieved in the 1990s when PKIX,
 S/MIME and OpenPGP were first developed. While each of these
 infrastructures and protocols has been subject to incremental
 improvement, none has seen widespread adoption of new cryptographic
 approaches.

Hallam-Baker Expires March 4, 2019 [Page 2]

Internet-Draft Mathematical Mesh Reference August 2018

 This document describes the application of four technologies which
 have been discussed in the cryptographic literature for many decades
 but have not (yet) been applied to standards-based network protocols:

 o Secret Splitting

 o Recryption

 o Key Co-Generation

 o Quantum Resistant Signatures.

2. Definitions

 This section presents the related specifications and standard, the
 terms that are used as terms of art within the documents and the
 terms used as requirements language.

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

2.2. Defined Terms

 The terms of art used in this document are described in the Mesh
 Architecture Guide [draft-hallambaker-mesh-architecture] .

2.3. Related Specifications

 The architecture of the Mathematical Mesh is described in the Mesh
 Architecture Guide [draft-hallambaker-mesh-architecture] . The Mesh
 documentation set and related specifications are described in this
 document.

2.4. Implementation Status

 The implementation status of the reference code base is described in
 the companion document [draft-hallambaker-mesh-developer] .

3. Secret Splitting

 The secret sharing mechanism used is based on the method of Shamir
 [Shamir79] .

 The mechanism described allows creation of up to 16 shares with a
 threshold of between 1 and 16 shares.

Hallam-Baker Expires March 4, 2019 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer

Internet-Draft Mathematical Mesh Reference August 2018

 To share a secret of L bits with a threshold of n we first construct
 f(x) a polynomial of degree n in the modular field p:

 f(x) = a0 + a1.x + a2.x2 + ? an.xn

 where:

 L Is the length of the secret in bits rounded up to the nearest
 multiple of 32.

 n Is the threshold, the number of shares required to reconstitute
 the secret.

 a0 Is the integer representation of the secret to be shared.

 a1 ? an Are randomly chosen integers less than p

 p Is the largest prime that is smaller than 2(L+1).

 For L=128, p = 2^129-25.

 The values of the key shares are the values f(1), f(2),? f(n).

 Conversion of octet sequences to integer representation uses network
 byte order (i.e. big-endian). The first byte of the octet stream is
 the most significant 8 bits of the integer representation and the
 last byte is the least significant 8 bits.

 Key shares are encoded as an octet sequence:

 o Bits 4-7 of the first byte specify the threshold value.

 o Bits 0-3 of the first byte specify the x value

 o The remaining bytes specify the key share value in network byte
 order.

 For an explanation of how to recover the master secret from the key
 shares, look up Lagrange basis polynomials on the Web.

3.1. Example: Securing a recovery record

 Alice decides to protect her recovery record using a set of five key
 shares, three of which will be required to recover the key.

 Alice's master secret is

Hallam-Baker Expires March 4, 2019 [Page 4]

Internet-Draft Mathematical Mesh Reference August 2018

 {Alice.RecoveryMaster}

 Figure 1

 The master secret is converted to an integer applying network byte
 order conventions. Since the master secret is 128 bits, it is
 guaranteed to be smaller than the modulus. The resulting value
 becomes the polynomial value a0.

 Since a threshold of three shares is required, we will need a third
 order polynomial. The co-efficients of the polynomial a1, a2, a3 are
 random numbers smaller than the modulus:

 {Alice.RecoveryPolynomial}

 Figure 2

 The master secret is the value f(0). The key shares are the values
 f(1), f(2)...f(5):

 {Alice.RecoverySharesHex}

 Figure 3

 The key shares in user (Base32) encoding are:

 {Alice.RecoveryShare0Hex}

 Figure 4

 To recover the value f(0) from any three shares, we need to fit a
 polynomial curve to the three points and use it to calculate the
 value at x=0.

 We use the Lagrange polynomial basis method:

 {Alice.RecoveryLagrange}

 Figure 5

4. Key Co-Generation

 Public Key Co-Generation is a capability that is used in the Mesh to
 enable provisioning of application specific private key pairs to
 connected devices without revealing any information concerning the
 application private key of the device.

Hallam-Baker Expires March 4, 2019 [Page 5]

Internet-Draft Mathematical Mesh Reference August 2018

 For example, Alice provisions the confirmation service to her watch.
 The provisioning device could generate a signature key for the device
 and encrypt it under the encryption key of the device. But this
 means that we cannot attribute signatures to the watch with absolute
 certainty as the provisioning device has had knowledge of the watch
 signature key. Nor do we wish to use the device signature key for
 the confirmation

 service.

 Public Key Co-Generation allows an administration device to provision
 a connected device with an application specific private key that is
 specific to that application and no other such that the application
 can determine the public key of the device but has no knowledge of
 the private key.

 Provisioning an application private key to a device requires the
 administration device to:

 o Generate a new application public key for the device.

 o Construct and publish whatever application specific credentials
 the device requires to use the application.

 o Providing the information required to make use of the private key
 to the device.

 Note that while the administration device needs to know the device
 application public key, it does not require knowledge of the device
 application private key.

4.1. Mechanism

 The Diffie Hellman key agreement and elliptic curve variants thereof
 support properties we call the Key Combination Law and the Result
 Combination Law.

 Let {X, x}, {Y, y}, {E, e} be {public, private} key pairs.

 The Key Combination law states that we can define an operator ? such
 that there is a keypair {Z, z} such that:

 Z = X ? Y and z = (x + y) mod o (where o is the order of the group)

 The Result Combination Law states that we can define an operator ?
 such that:

 (x ? E) ? (y ? E) = (z ? E) = (e ? Z).

Hallam-Baker Expires March 4, 2019 [Page 6]

Internet-Draft Mathematical Mesh Reference August 2018

 For the Diffie Hellman system in a modular field p, o = p-1 and a ? b
 = a ? b = a.b

 Proof,

 By definition, X = ex mod p, Y = ey mod p, Z = ez mod p.

 Therefore,

 Z = ez mod p = ex+y mod p = (exey) mod p = ex mod p.ey mod p = X.Y

 A similar proof may be constructed for the operator ?.

4.1.1. Application to Elliptic Curve systems

 For elliptic curve cryptosystems, the operators ? and ? are point
 addition.

 While the point addition function can be defined for any elliptic
 curve system, it is not necessary to implement point addition to
 support ECDH key agreement.

 In particular, point multiplication using the Montgomery ladder
 technique over Montgomery curves only operate on the x co-ordinate
 and only require point doubling operations. For this reason, Ed448
 and Ed25519 are the preferred algorithms for key agreement even
 though this is not their intended purpose.

4.2. Implementation for Ed25519 and Ed 448

 The data structures used to implement co-generation of public keys
 are defined in the main Mesh Reference Guide. This document
 describes only the additional implementation details.

 Note that the 'private key' described in [RFC8032] is in fact a seed
 used to generate a 'secret scalar' value that is the value that has
 the function of being the private key in the ECDH algorithm.

 To provision a new public key to a device, the provisioning device:

 1. Obtains the device profile of the device(s) to be provisioned to
 determine the type of key to perform co-generation for. Let the
 device {public, private} key be {D, d}.

 2. Generates a private key m with the specified number of bytes (32
 or 57].

 3. Calculates the corresponding public key M.

Hallam-Baker Expires March 4, 2019 [Page 7]

https://datatracker.ietf.org/doc/html/rfc8032

Internet-Draft Mathematical Mesh Reference August 2018

 4. Calculates the Application public key A = D+M where + is point
 addition.

 5. Constructs the application device entry containing the private
 key value m and encrypts under the device encryption key d.

 On receipt, the device may at its option use its knowledge of the
 secret scalar corresponding to d and m to calculate the application
 secret scalar a or alternatively maintain the two secrets separately
 and make use of the result combination law to perform private key
 operations.

4.3. Example: Provisioning the Confirmation Service

 For example, Alice provisions the confirmation service to her watch.
 The device profile of the watch specifies an Ed448 signature key:

 {Alice.CogenDeviceProfile}

 Figure 6

 The provisioning device could generate a signature key for the device
 and encrypt it under the encryption key of the device. But this
 means that we cannot attribute signatures to the watch with absolute
 certainty as the provisioning device has had knowledge of the watch
 signature key. Nor do we wish to use the device signature key for
 the confirmation service.

 Instead, the provisioning device generates a companion keypair. A
 random seed is generated.

 {Alice.CoGenerationPrivateSeed}

 Figure 7

 A key derrivation function (HKDF) is used to derrive a 256 bit key.

 {Alice.CoGenerationPrivate2}

 Figure 8

 The provisioning device can calculate the public key of the composite
 keypair by adding the public keys of the device profile and the
 companion public key:

 {Alice.CoGenerationPublicComp}

 Figure 9

Hallam-Baker Expires March 4, 2019 [Page 8]

Internet-Draft Mathematical Mesh Reference August 2018

 The provisioning device encrypts the private key of the comanion
 keypair under the encryption key of the device.

 {Alice.CoGenerationPrivateEncrypted}

 Figure 10

 The provisioning device calculates the private key of the composite
 keypair by adding the two private key values and verifies that scalar
 multiplication of the base point returns the composite public key
 value.

5. Recryption

 A key limitation of most deployed messaging systems is that true end-
 to-end confidentiality is only achieved for a limited set of
 communication patterns. Specifically, bilateral communications
 (Alice sends a message to Bob) or broadcast communications to a known
 set of recipients (Alice sends a message to Bob, Carol and Doug).
 These capabilities do not support communication patterns where the
 set of recipients changes over time or is confidential. Yet such
 requirements commonly occur in situations such as sending a message
 to a mailing list whose membership isn?t known to the sender, or
 creating a spreadsheet whose readership is to be limited to
 authorized members of the ?accounting? team.

 Traditional End-to-End Encryption is static.

 The mathematical approach that makes key co-generation possible may
 be applied to support a public key encryption mode in which
 encryption is performed as usual but decryption requires the use of
 multiple keys. This approach is variously described in the
 literature as distributed key generation and proxy re-
 encryption [Blaze98] .

 The approach specified in this document borrows aspects of both these
 techniques. This combined approach is called 'recryption'. Using
 recryption allows a sender to send a message to a group of users
 whose membership is not known to the sender at the time the message
 is sent and can change at any time.

 Recryption supports End-to-End Encryption in dynamic groups.

 Proxy re-encryption provides a technical capability that meets the
 needs of such communication patterns. Conventional symmetric key
 cryptography uses a single key to encrypt and decrypt data. Public
 key cryptography uses two keys, the key used to encrypt data is
 separate from the key used to decrypt. Proxy re-encryption

Hallam-Baker Expires March 4, 2019 [Page 9]

Internet-Draft Mathematical Mesh Reference August 2018

 introduces a third key (the recryption key) that allows a party to
 permit an encrypted data packet to be decrypted using a different key
 without permitting the data to be decrypted.

 The introduction of a recryption key permits end-to-end
 confidentiality to be preserved when a communication pattern requires
 that some part of the communication be supported by a service.

 The introduction of a third type of key, the recryption key permits
 two new roles to be established, that of an administrator and
 recryption service. There are thus four parties:

 Administrator

 Holder of Decryption Key, Creator of Recryption Keys

 Sender

 Holder of Encryption Key

 Recryption Service

 Holder of Recryption keys

 Receiver

 Holder of personal decryption key

 The communication between these parties is shown in Figure X below:

 Mesh/Recrypt Parties

 The information stored at the recryption service is necessary but not
 sufficient to decrypt the message. Thus, no disclosure of the
 message plaintext occurs even in the event that an attacker gains
 full knowledge of all the information stored by the recryption
 service.

5.1. Mechanism

 The mechanism used to support recryption is the same as the mechanism
 used to support key co-generation except that this time, instead of
 combining two keys to create one, the private component of a
 decryption key (i.e. the private key) is split into two parts, a
 recryption key and a decryption key.

 Recall that the key combination law for Diffie Hellman crypto-systems
 states that we can add two private keys to get a third. It follows

Hallam-Baker Expires March 4, 2019 [Page 10]

Internet-Draft Mathematical Mesh Reference August 2018

 that we can split the private key portion of a keypair {G, g} into
 two parts by choosing a random number that is less than the order of
 the Diffie-Hellman group to be our first key x. Our second key is y
 = g - r mod o, where o is the order of the group.

 Having generated x, y, we can use these to perform private key
 agreement operations on a public key E and then use the result
 combination law to obtain the same result that we would have obtained
 using g.

 One means of applying this mechanism to recryption would be to
 generate a different random value x for each member of the group and
 store it at the recryption service and communicate the value y to the
 member via a secure channel. Applying this approach we can clearly
 see that the recryption service gains no information about the value
 of the private key since the only information it holds is a random
 number which could have been generated without any knowledge of the
 group private key.

 [RFC8032] requires that implementations derive the scalar secret by
 taking a cryptographic digest of the private key. This means that
 either the client or the service must use a non-compliant
 implementation. Given this choice, it is preferable to require that
 the non-standard implementation be required at the service rather
 than the client. This limits the scope of the non-conformant key
 derivation approach to the specialist recryption service and ensures
 that the client enforce the requirement to generate the private key
 component by means of a digest.

5.2. Implementation

 Implementation of recryption in the Mesh has four parts:

 o Creation and management of the recryption group.

 o Provisioning of members to a recryption group.

 o Message encryption.

 o Message decryption.

 These operations are all performed using the same catalog and
 messaging infrastructure provided by the Mesh for other purposes.

 Each recryption group has its own independent Mesh account. This has
 many advantages:

Hallam-Baker Expires March 4, 2019 [Page 11]

Internet-Draft Mathematical Mesh Reference August 2018

 o Administration of the recryption group may be spread across
 multiple Mesh users or transferred from one user to another
 without requiring specification of a separate management protocol
 to support these operations.

 o The recryption account address can be used by Mesh applications
 such as group messaging, conferencing, etc. as a contact address.

 o The contact request service can be used to notify members that
 they have been granted membership in the group.

5.2.1. Group Creation

 Creation of a Recryption group requires the steps of:

 o Generating the recryption group key pair

 o Creating the recryption group account

 o Generating administrator record for each administrator.

 o Publishing the administrator records to the recryption catalog.

 Note that in principle, we could make use of the key combination law
 to enable separation of duties controls on administrators so that
 provisioning of members required multiple administrators to
 participate in the process. This is left to future versions.

5.2.2. Provisioning a Member

 To provision a user as a member of the recryption group, the
 administrator requires their current recryption profile. The
 administrator MAY obtain this by means of a contact service request.
 As with any contact service request, this request is subject to
 access control and MAY require authorization by the intended user
 before the provisioning can proceed.

 Having obtained the user's recryption profile, the administration
 tool generates a decryption private key for the user and encrypts it
 under the member's key to create the encrypted decryption key entry.

 The administration tool then computes the secret scalar from the
 private key and uses this together with the secret scalar of the
 recryption group to compute the recryption key for the member. This
 value and the encrypted decryption key entry are combined to form the
 recryption group membership record which is published to the catalog.

Hallam-Baker Expires March 4, 2019 [Page 12]

Internet-Draft Mathematical Mesh Reference August 2018

5.2.3. Message Encryption and Decryption

 Encryption of a messages makes use of DARE Message in exactly the
 same manner as any other encryption. The sole difference being that
 the recipient entry for the recryption operation MUST specify the
 recryption group address an not just the key fingerprint. This
 allows the recipient to determine which recryption service to contact
 to perform the recryption operation.

 To decrypt a message, the recipient makes an authenticated recryption
 request to the specified recryption service specifying:

 o The recipient entry to be used for decryption

 o The fingerprint of the decryption key(s) the device would like to
 make use of.

 o Whether or not the encrypted decryption key entry should be
 returned.

 The recryption service searches the catalog for the corresponding
 recryption group to find a matching entry. If found and if the
 recipient and proposed decryption key are dully authorized for the
 purpose, the service performs the key agreement operation using the
 recryption key specified in the entry and returns the result to the
 recipient.

 The recipient then decrypts the recryption data entry using its
 device decryption key and uses the group decryption key to calculate
 the other half of the result. The two halves of the result are then
 added to obtain the key agreement value that is then used to decrypt
 the message.

5.3. Example: Messaging group

 Alice creates a recryption group. The group encryption and signature
 key parameters are:

 {Alice.RecryptGroup}

 Figure 11

 To verify the proper function of the group, Alice creates a test
 message and encrypts it under the group key.

Hallam-Baker Expires March 4, 2019 [Page 13]

Internet-Draft Mathematical Mesh Reference August 2018

 {Alice.RecryptMessagePlaintext}
 {Alice.RecryptMessageCiphertext}

 Figure 12

 Alice decides to add Bob to the group. Bob's recryption profile is:

 {Bob.RecryptGroup}

 Figure 13

 Alice generates a recryption/decryption key entry. The recryption
 key is a random value smaller than the modulus:

 {bob.RecryptRecryptionKey}

 Figure 14

 The decryption key is group private encryption key minus the
 recryption key (mod p):

 {bob.RecryptDecryptionKey}

 Figure 15

 The Recryption entry consists of Bob's address, the recryption key
 and the decryption key encrypted under Bob's encryption key:

 {bob.RecryptRecryptionEntry}

 Figure 16

 Note that the only information available to the server is a random
 number and a encrypted value only Bob can read. It is therefore
 impossible for compromise of the service to cause disclosure of any
 information encrypted under the group key unless Bob's private key is
 also compromised.

 The group administration tool creates a notification request to tell
 Bob that he has been made a member of the new group and signs it
 using the group signature key. The recryption entry and the
 notification are then sent to the recryption service:

 {bob.RecryptRecryptionCreateEntry}

 Figure 17

Hallam-Baker Expires March 4, 2019 [Page 14]

Internet-Draft Mathematical Mesh Reference August 2018

 The notification message contains a link to the test message. When
 he accepts membership of the group, Bob clicks on the link to test
 that his membership has been fully provisioned. Providing an
 explicit test mechanism avoids the problem that might otherwise occur
 in which the message spool fills up with test messages being posted.

 Bob's Web browser requests the recryption data for the test message.
 The request is authenticated and encrypted under Bob's device keys.
 The plaintext of the message is:

 {bob.RecryptRecryptionRequest}

 Figure 18

 The plaintext of the response contains the additional information
 Bob's Web browser needs to complete the decryption process:

 {bob.RecryptRecryptionResponse}

 Figure 19

 The Web browser decrypts the private key and uses it to calculate the
 decryption value:

 {bob.RecryptDecryptionValue}

 Figure 20

 The key agreement value is obtained by point addition of the
 recryption and decryption values:

 {bob.RecryptKeyAgreementValue}

 Figure 21

 This value allows the test message to be decrypted.

6. Quantum Resistant Signatures.

 Quantum computing has made considerable advances over the past decade
 and the field has now reached the point where a machine weighing many
 tons can apply Shor's algorithm to factor numbers as large as 35
 before decoherence occurs.

 Should construction of a large-scale device prove practical, it will
 in principle be possible to break all of the public key cryptosystems
 currently in use. While public key cryptosystems that resist quantum
 cryptanalysis are currently in development, none has yet reached a

Hallam-Baker Expires March 4, 2019 [Page 15]

Internet-Draft Mathematical Mesh Reference August 2018

 sufficient state of maturity for the field to reach consensus that
 they are resistant to ordinary cryptanalysis, let alone offer a
 replacement.

 The consequence of successful quantum cryptanalysis for encryption
 systems is that all material encrypted under existing public key
 systems could be decrypted by a quantum capable attacker. Nor is
 mitigation of this consequence practical since it is not the adoption
 of new cryptographic algorithms that make a system more secure, it is
 the elimination of weak options that provides improvement.

 The Mesh does not currently provide an infrastructure that is Quantum
 Resistant but could in principle be used as the basis for deploying a
 Needham-Schroeder style symmetric key infrastructure or a future PKI
 based on an as yet undecided quantum cryptanalysis resistant public
 key algorithm.

 Mesh profiles MAY include a Quantum Resistant Signature Fingerprint
 (QRSF). This contains the UDF fingerprint of an XMSS signature
 public key [RFC8391] together with the parameters used to derive the
 private key set for the public key from a 256 bit master secret.

 Should it ever become necessary to make use of the QRSF, the user
 first recovers the master secret from whatever archival mechanism was
 used to protect it. The use of secret sharing to protect the secret
 is RECOMMENDED. The master secret is then used to reconstruct the
 set of private keys from which the public key set is reconstructed.
 The profile owner can now authenticate themselves by means of their
 XMSS public key.

6.1. Example: Creating a Quantum Resistant Signature Fingerprint

 Alice decides to add a QRSF to her Mesh Profile. She creates a 256
 bit master secret.

 {Alice.QuantumMaster}

 Figure 22

 To enable recovery of the master key, Alice creates five keyshares
 with a quorum of three:

 {Alice.QuantumShares}

 Figure 23

 Alice uses the master secret to derrive her private key values:

https://datatracker.ietf.org/doc/html/rfc8391

Hallam-Baker Expires March 4, 2019 [Page 16]

Internet-Draft Mathematical Mesh Reference August 2018

 {Alice.QuantumXMSSPrivate}

 Figure 24

 These values are used to generate the public key value:

 {Alice.QuantumXMSSPublic}

 Figure 25

 The QRSF contains the UDF fingerprint of the public key value plus
 the XMSS parameters:

 {Alice.QuantumXMSSUDF}

 Figure 26

 Alice adds the QRSF to her profile and publishes it to a Mesh Service
 that is enrolled in at least one multi-party notary scheme.

7. Security Considerations

 TBS

8. IANA Considerations

 All the IANA considerations for the Mesh documents are specified in
 this document

9. Acknowledgements

 Thanks are due to Viktor Dukhovni, Damian Weber and an anonymous
 member of the cryptography@metzdowd.com list for assisting in the
 compilation of the table of prime values.

10. Appendix A: Prime Values for Secret Sharing

 The following are the prime values to be used for sharing secrets of
 up to 512 bits.

 If it is necessary to share larger secrets, the corresponding prime
 may be found by applying the formula:

 2^(n+1) - (1 SHL (n+1)) - B(1 SHL (n+1))

Hallam-Baker Expires March 4, 2019 [Page 17]

Internet-Draft Mathematical Mesh Reference August 2018

 +----------------+--------------+
 | Number of bits | Prime |
 +----------------+--------------+
 | 32 | 2^33 - 9 |
 | 64 | 2^65 - 49 |
 | 96 | 2^97 - 141 |
 | 128 | 2^129 - 25 |
 | 160 | 2^161 - 159 |
 | 192 | 2^193 - 31 |
 | 224 | 2^225 - 49 |
 | 256 | 2^257 - 93 |
 | 288 | 2^289 - 493 |
 | 320 | 2^321 - 9 |
 | 352 | 2^353 - 139 |
 | 384 | 2^385 - 265 |
 | 416 | 2^417 - 1029 |
 | 448 | 2^449 - 241 |
 | 480 | 2^481 - 273 |
 | 512 | 2^513 - 445 |
 +----------------+--------------+

 Table 1

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017.

11.2. Informative References

 [Blaze98] "[Reference Not Found!]".

 [draft-hallambaker-mesh-architecture]
 Hallam-Baker, P., "Mathematical Mesh: Architecture",

draft-hallambaker-mesh-architecture-05 (work in progress),
 August 2018.

 [draft-hallambaker-mesh-developer]
 Hallam-Baker, P., "Mathematical Mesh: Reference
 Implementation", draft-hallambaker-mesh-developer-07 (work
 in progress), April 2018.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-architecture-05
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer
https://datatracker.ietf.org/doc/html/draft-hallambaker-mesh-developer-07

Hallam-Baker Expires March 4, 2019 [Page 18]

Internet-Draft Mathematical Mesh Reference August 2018

 [RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
 Mohaisen, "XMSS: eXtended Merkle Signature Scheme",

RFC 8391, DOI 10.17487/RFC8391, May 2018.

 [Shamir79]
 "[Reference Not Found!]".

11.3. URIs

 [1] http://mathmesh.com/Documents/draft-hallambaker-mesh-
advanced.html

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

 Email: philliph@comodo.com

Hallam-Baker Expires March 4, 2019 [Page 19]

https://datatracker.ietf.org/doc/html/rfc8391
http://mathmesh.com/Documents/draft-hallambaker-mesh-advanced.html
http://mathmesh.com/Documents/draft-hallambaker-mesh-advanced.html

