
TCP Maintenance and Minor Extensions F. Gont
(tcpm) UTN-FRH / SI6 Networks
Internet-Draft D. Borman
Updates: 793 (if approved) Quantum Corporation
Intended status: Standards Track February 16, 2013
Expires: August 20, 2013

On the Validation of TCP Sequence Numbers
draft-gont-tcpm-tcp-seq-validation-00.txt

Abstract

 When TCP receives packets that lie outside of the receive window, the
 corresponding packets are dropped and either an ACK, RST or no
 response is generated due to the out-of-window packet, with no
 further processing of the packet. Most of the time, this works just
 fine and TCP remains stable, especially when a TCP connection has
 unidirectional data flow. However, there are three scenarios in
 which packets that are outside of the receive window should still
 have their ACK field processed, or else a packet war will take place.
 The aforementioned issues have affected a number of popular TCP
 implementations, typically leading to connection failures, system
 crashes, or other undesirable behaviors. This document describes the
 three scenarios in which the aforementioned issues might arise, and
 formally updates RFC 793 such that these potential problems are
 mitigated.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 20, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the

Gont & Borman Expires August 20, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Sequence Number Validation February 2013

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. TCP Sequence Number Validation 3
3. Scenarios in which Undesirable Behaviors Might Arise 4
3.1. TCP simultaneous open 4
3.2. TCP self connects . 5
3.3. TCP simultaneous close 6
3.4. Simultaneous Window Probes 8

4. Updating RFC 793 . 9
4.1. TCP sequence number validation 9
4.2. TCP self connects . 14

5. IANA Considerations . 14
6. Security Considerations 14
7. Acknowledgements . 14
8. References . 14
8.1. Normative References 14
8.2. Informative References 15

 Authors' Addresses . 15

Gont & Borman Expires August 20, 2013 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc793

Internet-Draft TCP Sequence Number Validation February 2013

1. Introduction

 TCP processes incoming packets in in-sequence order. Packets that
 are not in-sequence but have data that lies in the receive window are
 queued for later processing. Packets that lie outside of the receive
 window are dropped and either an ACK, RST or no response is generated
 due to the out-of-window packet, with no further processing of the
 packet. Most of the time, this works just fine and TCP remains
 stable, especially when a TCP connection has unidirectional data
 flow.

 However, there are three situations in which packets that are outside
 of the receive window should still have their ACK field processed.
 These situations arise during a simultaneous open, simultaneous
 window probes and a simultaneous close. In all three of these cases,
 a packet will arrive with a sequence number that is one to the left
 of the window, but the acknowledgement field has updated information
 that needs to be processed to avoid entering a packet war, in which
 both sides of the connection generate a response to the received
 packet, which just causes the other side to do the same thing. This
 issue has affected a number of popular TCP implementations, typically
 leading to connection failures, system crashes, or other undesirable
 behaviors.

Section 2 provides an overview of the TCP sequence number validation
 checks specified in RFC 793. Section 3 describes the three scenarios
 in which the current TCP sequence number validation checks can lead
 to undesirable behaviors. Section 4 formally updates RFC 793 such
 that these issues are mitigated.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. TCP Sequence Number Validation

Section 3.3 of RFC 793 [RFC0793] specifies (in pp. 25-26) how the TCP
 sequence number of incoming segments is to be validated. It
 summarizes the validation of the TCP sequence number with the
 following table:

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793#section-3.3
https://datatracker.ietf.org/doc/html/rfc0793

Gont & Borman Expires August 20, 2013 [Page 3]

Internet-Draft TCP Sequence Number Validation February 2013

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

RFC 793 states that if an incoming segment is not acceptable, an
 acknowledgment should be sent in reply (unless the RST bit is set),
 and that after sending the acknowledgment, the unacceptable segment
 should be dropped.

Section 3.9 of RFC 793 repeats (in pp. 69-76) the same validation
 checks when describing the processing of incoming TCP segments meant
 for connections that are in the SYN-RECEIVED, ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, or TIME-WAIT
 states (i.e., any state other than CLOSED, LISTEN, or SYN-SENT).

 A key problem with the aforementioned checks is that it assumes that
 a segment must be processed only if a portion of it overlaps with the
 receive window. However, there are some cases in which the
 Acknowledgement information in an incoming segment needs to be
 processed by TCP even if the contents of the segment does not overlap
 with the receive window. Otherwise, the TCP state machine may become
 dead-locked, and this situation may result in undesirable behaviors
 such as system crashes.

3. Scenarios in which Undesirable Behaviors Might Arise

 The following subsections describe the three scenarios in which the
 TCP Sequence Number validation specified n RFC 793 (and described in

Section 2 of this document) could result in undesirable behaviors.

3.1. TCP simultaneous open

 The following figure illustrates a typical "simultaneous open"
 attempt.

Gont & Borman Expires August 20, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793#section-3.9
https://datatracker.ietf.org/doc/html/rfc793

Internet-Draft TCP Sequence Number Validation February 2013

 TCP A TCP B

 1. CLOSED CLOSED

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

 4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 5. --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 6. <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <--

 7. ... <SEQ=100><ACK=301><CTL=SYN,ACK> -->

 8. --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 9. <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <--

 10. ... <SEQ=100><ACK=301><CTL=ACK> -->

 (Failed) Simultaneous Connection Synchronization

 In line 2, TCP A performs an "active open" by sending a SYN segment
 to TCP B, and enters the SYN-SENT state. In line 3, TCP B performs
 an "active open" by sending a SYN segment to TCP A, and enters the
 "SYN-SENT" state; when TCP A receives this SYN segment sent by TCP B,
 it enters the SYN-RECEIVED state, and its RCV.NXT becomes 301. In
 line 4, similarly, when TCP B receives the SYN segment sent by TCP A,
 it enters the SYN-RECEIVED STATE and its RCV.NXT becomes 101. In
 line 5, TCP A sends a SYN/ACK in response to the received SYN segment
 from line 3. In line 6, TCP B sends a SYN/ACK in response to the
 received SYN segment from line 4. In line 7, TCP B receives the SYN/
 ACK from line 5. In line 8, TCP A receives the SYN/ACK from line 6,
 which fails the TCP Sequence Number validation check. As a result,
 the received packet is dropped, and a SYN/ACK is sent in response.
 In line 9, TCP B processes the SYN/ACK from line 7, which fails the
 TCP Sequence Number validation check. As a result, the received
 packet is dropped, and a SYN/ACK is sent in response. In line 10,
 the SYN/ACK from line 9 arrives at TCP B. The segment exchange from
 lines 8-10 will continue forever (with both TCP end-points will be
 stuck in the SYN-RECEIVED state), thus leading to a SYN/ACK war.

3.2. TCP self connects

 Some systems have been found to be unable to process TCP connection
 requests in which the source endpoint {Source Address, Source Port}

Gont & Borman Expires August 20, 2013 [Page 5]

Internet-Draft TCP Sequence Number Validation February 2013

 is the same as the destination end-point {Destination Address,
 Destination Port}. Such a scenario might arise e.g. if a process
 creates a socket, bind()s a local end-point (IP address and TCP
 port), and then issues a connect() to the same end-point as that
 specified to bind().

 While not widely employed in existing applications, such a socket
 could be employed as a "full-duplex pipe" for Inter-Process
 Communication (IPC).

 This scenario is described in detail in pp. 960-962 of
 [Wright1994].

 The aforementioned scenario has been reported to cause malfunction of
 a number of implementations [CERT1996], and has been exploited in the
 past to perform Denial of Service (DoS) attacks [Meltman1997]
 [CPNI-TCP].

 While this scenario is not common in the real world, TCP should
 nevertheless be able to process them without the need of any "extra"
 code: a SYN segment in which the source end-point {Source Address,
 Source Port} is the same as the destination end-point {Destination
 Address, Destination Port} should result in a "simultaneous open"
 scenario, such as the one described in page 32 of RFC 793 [RFC0793].
 Therefore, those TCP implementations that correctly handle
 simultaneous opens should already be prepared to handle these unusual
 TCP segments.

3.3. TCP simultaneous close

 The following figure illustrates a typical "simultaneous close"
 attempt, in which the FIN segments sent by each TCP end-point cross
 each other in the network.

Gont & Borman Expires August 20, 2013 [Page 6]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793

Internet-Draft TCP Sequence Number Validation February 2013

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> ...

 3. CLOSING <-- <SEQ=300><ACK=100><CTL=FIN,ACK> <-- FIN-WAIT-1

 4. ... <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSING

 5. --> <SEQ=100><ACK=301><CTL=FIN,ACK> ...

 6. <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <--

 7. ... <SEQ=100><ACK=301><CTL=FIN,ACK> -->

 8. --> <SEQ=100><ACK=301><CTL=FIN,ACK> ...

 9. <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <--

 10. ... <SEQ=100><ACK=301><CTL=FIN,ACK> -->

 (Failed) Simultaneous Connection Termination

 In line 1, we assume that both end-points of the connection are in
 the ESTABLISHED state. In line 2, TCP A performs an "active close"
 by sending a FIN segment to TCP B, thus entering the FIN-WAIT-1
 state. In line 3, TCP B performs an active close sending a FIN
 segment to TCP A, thus entering the FIN-WAIT-1 state; when this
 segment is processed by TCP A, it enters the CLOSING state (and its
 RCV.NXT becomes 301).

 Both FIN segments cross each other on the network, thus resulting
 in a "simultaneous connection termination" (or "simultaneous
 close") scenario.

 In line 4, the FIN segment sent by TCP A arrives to TCP B, causing it
 to transition to the CLOSING state (at this point, TCP B's RCV.NXT
 becomes 101). In line 5, TCP A acknowledges the receipt of the TCP
 B's FIN segment, and also sets the FIN bit in the outgoing segment
 (since it has not yet been acknowledged). In line 6, TCP B
 acknowledges the receipt of TCP A's FIN segment, and also sets the
 FIN bit in the outgoing segment (since it has not yet been
 acknowledged). In line 7, the FIN/ACK from line 5 arrives at TCP B.
 In line 8, the FIN/ACK from line 6 fails the TCP sequence number
 validation check, and thus elicits a ACK segment (the segment also
 contains the FIN bit set, since it had not yet been acknowledged).
 In line 9, the FIN/ACK from line 7 fails the TCP sequence number

Gont & Borman Expires August 20, 2013 [Page 7]

Internet-Draft TCP Sequence Number Validation February 2013

 validation check, and hence elicits an ACK segment (the segment also
 contains the FIN bit set, since it had not yet been acknowledged).
 In line 10, the FIN/ACK from line 8 finally arrives at TCP B.

 The packet exchange from lines 8-10 will repeat indefinitely, with
 both TCP end-points stuck in the CLOSING state, thus leading to a
 "FIN war": each FIN/ACK segment sent by a TCP will elicit a FIN/ACK
 from the other TCP, and each of these FIN/ACKs will in turn elicit
 more FIN/ACKs.

3.4. Simultaneous Window Probes

 The following figure illustrates a scenario in which the "persist
 timer" at both TCP end-points expires, and both TCP end-points send a
 "window probes" that cross each other in the network.

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (both TCP windows open)

 3. --> <SEQ=100><DATA=1><ACK=300><CTL=ACK> ...

 4. <-- <SEQ=300><DATA=1><ACK=100><CTL=ACK> <--

 5. ... <SEQ=100><DATA=1><ACK=300><CTL=ACK> -->

 6. --> <SEQ=100><ACK=301><CTL=ACK> ...

 7. <-- <SEQ=300><ACK=101><CTL=ACK> <--

 8. ... <SEQ=100><ACK=301><CTL=ACK> -->

 9. --> <SEQ=100><ACK=301><CTL=ACK> ...

 10. <-- <SEQ=300><ACK=101><CTL=ACK> <--

 11. ... <SEQ=100><ACK=301><CTL=ACK> -->

 (Failed) Simultaneous Connection Termination

 In line 1, we assume that both end-points of the connection are in
 the ESTABLISHED state; additionally, TCP A's RCV.NXT is 300, while
 TCP B's RCV.NXT is 100, and the receive window (RCV.WND) at both TCP
 end-points is 0. In line 2, both TCP windows open. In line 3, the
 "persist timer" at TCP A expires, and hence TCP A sends a "Window
 Probe". In line 4, the "persist timer" at TCP B expires, and hence

Gont & Borman Expires August 20, 2013 [Page 8]

Internet-Draft TCP Sequence Number Validation February 2013

 TCP B sends a "Window Probe".

 Both Window Probes cross each other in the network.

 When this probe arrives at TCP A, TCP a's RCV.NXT becomes 301, and an
 ACK segment is sent to advertise the new window (this ACK is shown in
 line 6). In line 5, TCP A's Window Probe from line 3 arrives at TCP
 B. TCP B's RCV-WND becomes 101. In line 6, TCP A sends the ACK to
 advertise the new window. In line 7, TCP B sends an ACK to advertise
 the new Window. When this ACK arrives at TCP A, the TCP Sequence
 Number validation fails, since SEG.SEQ=300 and RCV.NXT=301.
 Therefore, this segment elicits a new ACK (meant to re-synchronize
 the sequence numbers). In line 8, the ACK from line 6 arrives at TCP
 B. The TCP sequence number validation for this segment fails, since
 SEG.SEQ=100 AND RCV.NXT=101. Therefore, this segment elicits a new
 ACK (meant to re-synchronize the sequence numbers).

 Line 9 and line 11 shows the ACK elicited by the segment from line 7,
 while line 10 shows the ACK elicited by the segment from line 8. The
 sequence numbers of these ACK segments will be considered invalid,
 and hence will elicit further ACKs. Therefore, the segment exchange
 from lines 9-11 will repeat indefinitely, thus leading to an "ACK
 war".

4. Updating RFC 793

4.1. TCP sequence number validation

 The following text from Section 3.3 (pp. 25-26) of [RFC0793]:

Gont & Borman Expires August 20, 2013 [Page 9]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793

Internet-Draft TCP Sequence Number Validation February 2013

 A segment is judged to occupy a portion of valid receive sequence
 space if

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 The first part of this test checks to see if the beginning of the
 segment falls in the window, the second part of the test checks to see
 if the end of the segment falls in the window; if the segment passes
 either part of the test it contains data in the window.

 Actually, it is a little more complicated than this. Due to zero
 windows and zero length segments, we have four cases for the
 acceptability of an incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 is replaced with:

Gont & Borman Expires August 20, 2013 [Page 10]

Internet-Draft TCP Sequence Number Validation February 2013

 A segment is judged to occupy a portion of valid receive sequence
 space if

 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT-1 =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 The first part of this test checks to see if the beginning of the
 segment falls in the window (or one byte to the left to the window),
 the second part of the test checks to see if the end of the segment
 falls in the window (or one byte to the left of the window); if the
 segment passes either part of the test it contains data in the
 window or control information that needs to be processed by TCP.

 Actually, it is a little more complicated than this. Due to zero
 windows and zero length segments, we have four cases for the
 acceptability of an incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 RCV.NXT-1 =< SEG.SEQ <= RCV.NXT

 0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT-1 =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 Additionally, the following text from Section 3.9 (pp.69-70) of
 [RFC0793]:

Gont & Borman Expires August 20, 2013 [Page 11]

https://datatracker.ietf.org/doc/html/rfc0793

Internet-Draft TCP Sequence Number Validation February 2013

 Segments are processed in sequence. Initial tests on arrival
 are used to discard old duplicates, but further processing is
 done in SEG.SEQ order. If a segment's contents straddle the
 boundary between old and new, only the new parts should be
 processed.

 There are four cases for the acceptability test for an incoming
 segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but
 special allowance should be made to accept valid ACKs, URGs and
 RSTs.

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so drop
 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable segment
 and return.

 In the following it is assumed that the segment is the idealized
 segment that begins at RCV.NXT and does not exceed the window.
 One could tailor actual segments to fit this assumption by
 trimming off any portions that lie outside the window (including
 SYN and FIN), and only processing further if the segment then
 begins at RCV.NXT. Segments with higher beginning sequence
 numbers may be held for later processing.

 is replaced with:

Gont & Borman Expires August 20, 2013 [Page 12]

Internet-Draft TCP Sequence Number Validation February 2013

 Segments are processed in sequence. Initial tests on arrival
 are used to discard old duplicates, but further processing is
 done in SEG.SEQ order. If a segment's contents straddle the
 boundary between old and new, only the new parts should be
 processed. Acknowledgement information must still be processed
 when the contents of the incoming segment are one byte to the
 left of the receive window.

 This is to handle simultaneous opens, simultaneous closes,
 and simultaneous window probes.

 There are four cases for the acceptability test for an incoming
 segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 RCV.NXT-1 =< SEG.SEQ <= RCV.NXT

 0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT-1 =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT-1 =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but
 special allowance should be made to accept valid ACKs, URGs and
 RSTs.

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so drop
 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable segment
 and return.

 In the following it is assumed that the segment is the idealized
 segment that begins at RCV.NXT and does not exceed the window.
 One could tailor actual segments to fit this assumption by
 trimming off any portions that lie outside the window (including
 SYN and FIN). Segments with higher beginning sequence numbers may
 be held for later processing. Acknowledgement information must
 still be processed when the contents of the incoming segment are
 one byte to the left of the receive window.

Gont & Borman Expires August 20, 2013 [Page 13]

Internet-Draft TCP Sequence Number Validation February 2013

4.2. TCP self connects

 TCP MUST be able to gracefully handle connection requests (i.e., SYN
 segments) in which the source end-point (IP Source Address, TCP
 Source Port) is the same as the destination end-point (IP Destination
 Address, TCP Destination Port). Such segments MUST result in a TCP
 "simultaneous open", such as the one described in page 32 of RFC 793
 [RFC0793].

 Those TCP implementations that correctly handle simultaneous opens
 are expected to gracefully handle this scenario.

5. IANA Considerations

 This document has no IANA actions. The RFC Editor is requested to
 remove this section before publishing this document as an RFC.

6. Security Considerations

 This document describes a problem found in the current validation
 rules for TCP sequence numbers. The aforementioned problem has
 affected some popular TCP implementations, typically leads to
 connection failures, system crashes, or other undesirable behaviors.
 This document formally updates RFC 793, such that the aforementioned
 issues are eliminated.

7. Acknowledgements

 This document originated from a discussion about this topic (at IETF
 73, Minneapolis) between both co-authors of this document.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Gont & Borman Expires August 20, 2013 [Page 14]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft TCP Sequence Number Validation February 2013

8.2. Informative References

 [CERT1996]
 CERT, "CERT Advisory CA-1996-21: TCP SYN Flooding and IP
 Spoofing Attacks", 1996,
 <http://www.cert.org/advisories/CA-1996-21.html>.

 [CPNI-TCP]
 Gont, F., "CPNI Technical Note 3/2009: Security Assessment
 of the Transmission Control Protocol (TCP)", 2009, <http:/
 /www.gont.com.ar/papers/
 tn-03-09-security-assessment-TCP.pdf>.

 [Meltman1997]
 Meltman, "new TCP/IP bug in win95. Post to the bugtraq
 mailing-list", 1996,
 <http://insecure.org/sploits/land.ip.DOS.html>.

 [Wright1994]
 Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:
 The Implementation", Addison-Wesley, 1994.

Authors' Addresses

 Fernando Gont
 UTN-FRH / SI6 Networks
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fgont@si6networks.com
 URI: http://www.si6networks.com

 David Borman
 Quantum Corporation
 1155 Centre Pointe Drive, Suite 1
 Mendota Heights, MN 55120
 U.S.A.

 Phone: 651-688-4394
 Email: david.borman@quantum.com

http://www.cert.org/advisories/CA-1996-21.html
http://insecure.org/sploits/land.ip.DOS.html
http://www.si6networks.com

Gont & Borman Expires August 20, 2013 [Page 15]

