
Network Working Group S. Friedl
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track A. Popov
Expires: August 25, 2013 Microsoft Corp.
 February 21, 2013

Transport Layer Security (TLS) Application Layer Protocol Negotiation
Extension

draft-friedl-tls-applayerprotoneg-02

Abstract

 This document describes a Transport Layer Security (TLS) extension
 for application layer protocol negotiation within the TLS handshake.
 For instances in which the TLS connection is established over a well
 known TCP/IP port not associated with the desired application layer
 protocol, this extension allows the application layer to negotiate
 which protocol will be used within the TLS session.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 25, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 1. Introduction
 2. Requirements Language
 3. Application Layer Protocol Negotiation
 3.1. The Application Layer Protocol Negotiation Extension
 3.2. Protocol Selection
 4. Design Considerations
 5. Security Considerations
 6. IANA Considerations
 7. Acknowledgements
 8. References
 8.1. Normative References
 8.2. Informative References
 Authors' Addresses

1. Introduction

 Currently, the Next Protocol Negotiation extension (NPN) is used to
 establish a SPDY [spdy] protocol session within a TLS RFC 5246
 [RFC5246] session on port 443. NPN is not specific to SPDY and can
 be used to negotiate sessions for a wide variety of protocols within
 the TLS handshake.

 NPN seeks to provide a reliable mechanism for application developers
 to establish secure sessions for arbitrary protocols without
 interference from firewalls, HTTP proxies and MITM proxies. It
 addresses this goal by introducing a protocol negotiation process
 into the TLS handshake under the constraints that no additional
 roundtrips be added to the handshake and that the final protocol
 selection be opaque to the network carrying the TLS session. Within
 the NPN extension, it is the server that first generates and
 transmits an offer of supported protocols to the client. The offer
 is sent as part of the TLS ServerHello message before the
 [ChangeCipherSpec] subprotocol has been started, therefore the list
 of protocols supported by the server is transmitted in plaintext.
 The client chooses a protocol which may or may not appear in the
 offer from the server and then responds with the definitive protocol
 selection answer. The client response is sent after the
 [ChangeCipherSpec] subprotocol has been initiated, so the protocol
 selected is encrypted in the client response.

 In many other application layer protocol negotiation processes, it is
 the client that first sends an offer of protocols it supports to the
 server. The server then selects the protocol to be used in the
 session and includes this answer in the response. RFC 3264 [RFC3264]
 describes a SDP based offer/answer model which is not proscriptive in
 terms of which party generates the offer, however in practice it is
 typically the client generating the offer and the server replying
 with the answer. This permits the server to act as the definitive
 entity for selection of the application layer protocol.

 This draft proposes an alternative formulation of the NPN protocol
 which 1) brings the offer/answer negotiation into alignment with the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264

 majority of other application layer protocol negotiation standards,
 2) allows certificate selection based on the application protocol and
 3) makes the definitive protocol selection answer from the server
 visible to the network, when the parties so desire.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Application Layer Protocol Negotiation

3.1. The Application Layer Protocol Negotiation Extension

 A new extension type ("application_layer_protocol_negotiation(TBD)")
 is defined and MAY be included by the client in its "ClientHello"
 message.

 enum {
 application_layer_protocol_negotiation(TBD), (65535)
 } ExtensionType;

 The "extension_data" field of the
 ("application_layer_protocol_negotiation(TBD)") extension SHALL
 contain a "ProtocolNameList" value.

 opaque ProtocolName<1..2^8-1>;

 struct {
 ProtocolName protocol_name_list<2..2^16-1>
 } ProtocolNameList;

 "ProtocolNameList" contains the list of protocols advertised by the
 client, in descending order of preference. Protocols are named by
 IANA registered, opaque, non-empty byte strings. Implementations
 MUST ensure that an empty string is not included and that no byte
 strings are truncated.

 Experimental protocol names, which are not registered by IANA, will
 start with the following sequence of bytes: 0x65, 0x78, 0x70 ("exp").

 Servers that receive a client hello containing the
 "application_layer_protocol_negotiation" extension, MAY return a
 suitable protocol selection response to the client. The server will
 ignore any protocol name that it does not recognize. A new
 ServerHello extension type
 ("application_layer_protocol_negotiation(TBD)") MAY be returned to
 the client within the extended ServerHello message. The
 "extension_data" field of the
 ("application_layer_protocol_negotiation(TBD)") extension SHALL be
 structured the same as described above for the client

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

 "extension_data", except that the "ProtocolNameList" MUST contain
 exactly one "ProtocolName".

 The additional content associated with this extension MUST be
 included in the hash calculations associated with the "Finished"
 messages.

 Therefore, a full handshake with the
 "application_layer_protocol_negotiation" extension in the ClientHello
 and ServerHello messages has the following flow (contrast with

section 7.3 of RFC 5246 [RFC5246]):

 Client Server

 ClientHello --------> ServerHello
 (ALPN extension & (ALPN extension &
 list of protocols) selected protocol)
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Figure 1

 An abbreviated handshake with the
 "application_layer_protocol_negotiation" extension has the following
 flow:

 Client Server

 ClientHello --------> ServerHello
 (ALPN extension & (ALPN extension &
 list of protocols) selected protocol)
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 Figure 2

 Unlike many other TLS extensions, this extension does not establish
 properties of the session, only of the connection. When session
 resumption or session tickets RFC 5077 [RFC5077] are used, the
 previous contents of this extension are irrelevant and only the
 values in the new handshake messages are considered.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.3
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

3.2. Protocol Selection

 It is expected that a server will have a list of protocols that it
 supports, in preference order, and will only select a protocol if the
 client supports it. In that case, the server SHOULD select the most
 highly preferred protocol it supports which is also advertised by the
 client. In the event that the server supports no protocols that the
 client advertises, then the server SHALL respond with a fatal
 "no_application_protocol" alert.

 enum {
 no_application_protocol(120),
 (255)
 } AlertDescription;

 The "no_application_protocol" fatal alert is only defined for the
 "application_layer_protocol_negotiation" extension and MUST NOT be
 sent unless the server has received a ClientHello message containing
 this extension.

 The protocol identified in the
 "application_layer_protocol_negotiation" extension type in the
 ServerHello SHALL be definitive for the connection. The server SHALL
 NOT respond with a selected protocol and subsequently use a different
 protocol for application data exchange.

4. Design Considerations

 The ALPN extension is intended to follow the typical design of TLS
 protocol extensions. Specifically, the negotiation is performed
 entirely within the client/server hello exchange in accordance with
 established TLS architecture. The
 "application_layer_protocol_negotiation" ServerHello extension is
 intended to be definitive for the connection and is sent in plaintext
 to permit network elements to provide differentiated service for the
 connection when the TCP/IP port number is not definitive for the
 application layer protocol to be used in the connection. By placing
 ownership of protocol selection on the server, ALPN facilitates
 scenarios in which certificate selection or connection rerouting may
 be based on the negotiated protocol.

 Finally, by managing protocol selection in the clear as part of the
 handshake, ALPN avoids introducing false confidence with respect to
 the the ability to hide the negotiated protocol in advance of
 establishing the connection. If hiding the protocol is required,
 then renegotiation after connection establishment, which would
 provide true TLS security guarantees, would be a preferred
 methodology.

5. Security Considerations

 The ALPN extension does not impact the security of TLS session
 establishment or application data exchange. ALPN serves to provide
 an externally visible marker for the application layer protocol
 associated with the TLS connection. Historically, the application
 layer protocol associated with a connection could be ascertained from
 the TCP/IP port number in use.

 Encrypting the selected application protocol information and sending
 it before the Finished messages are exchanged, as done in NPN, does
 not provide confidentiality guarantees due to the possibility of man-
 in-the-middle attacks.

6. IANA Considerations

 This document requires the IANA to update its registry of TLS
 extensions to assign an entry referred to here as
 "application_layer_protocol_negotiation" for extended ClientHello and
 ServerHello messages.

 This document also requires the IANA to create a registry of
 Application Layer Protocol Negotiation protocol byte strings,
 initially containing the following entries:

 - "http/1.1": HTTP/1.1 [RFC2616];

 - "http/2.0": HTTP/2.0;

 - "spdy/1": (obsolete) SPDY version 1;

 - "spdy/2": SPDY version 2;

 - "spdy/3": SPDY version 3.

 A namespace will be assigned for experimental protocols, comprising
 byte strings which start with the following sequence of bytes: 0x65,
 0x78, 0x70 ("exp"). Assignments in this namespace do not need IANA
 registration.

7. Acknowledgements

 This document benefitted specifically from the NPN extension draft
 authored by Adam Langley of Google and from discussions with Tom
 Wesselman and Cullen Jennings both of Cisco.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

8.2. Informative References

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008.

 [spdy] Belshe, M. and R. Peon, "SPDY Protocol (Internet Draft)",
 2012.

Authors' Addresses

 Stephan Friedl
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Phone: (720)562-6785
 Email: sfriedl@cisco.com

 Andrei Popov
 Microsoft Corp.
 One Microsoft Way
 Redmond, WA 98052
 USA

 Email: andreipo@microsoft.com

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5077

