
Network Working Group Patrik Faltstrom
Internet Draft Bunyip Information Systems Inc.
Expiration: 6/96 Dave Crocker
 Brandenburg Consulting
 Erik E. Fair
 Apple Computer Inc.
 December 1, 1995

MIME Encapsulation of Macintosh files - MacMIME
<draft-faltstrom-macmime1-v2-01.txt>

1. Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents at any timne. It is not appropriate to use
 Internet Drafts as reference material or to cite them other than as
 a "working draft" or "work in progress". Please check the
 1idabstracts.txt listing contained in the internet-drafts Shadow
 Directories on nic.ddn.mil, nnsc.nsf.net, nic.nordu.net,
 ftp.nisc.sri.com, or munnari.oz.au to learn the current status of
 any Internet Draft.

2. Abstract

 This memo describes the format to use when sending Apple Macintosh
 files via MIME [BORE93]. The format is compatible with existing
 mechanisms for distributing Macintosh files, while allowing
 non-Macintosh systems access to data in standardized formats.

3. Introduction

 Files on the Macintosh consists of two parts, called forks:

 Data fork: The actual data included in the file. The Data
 fork is typically the only meaningful part of a
 Macintosh file on a non-Macintosh computer system.
 For example, if a Macintosh user wants to send a
 file of data to a user on an IBM-PC, she would only
 send the Data fork.

 Resource fork: Contains a collection of arbitrary attribute/value
 pairs, including program segments, icon bitmaps,
 and parametric values.

 Additional information regarding Macintosh files is stored by the
 Finder in a hidden file, called the "Desktop Database".

 Because of the complications in storing different parts of a
 Macintosh file in a non-Macintosh filesystem that only handles
 consecutive data in one part, it is common to convert the Macintosh

https://datatracker.ietf.org/doc/html/draft-faltstrom-macmime1-v2-01.txt

 file into some other format before transferring it over the network.

Faltstrom, Crocker & Fair [Page 1]

Internet Draft MIME-based Mac files December 1, 1995

 The two styles of use are [APPL90]:

 AppleSingle: Apple's standard format for encoding Macintosh files
 as one byte stream.
 AppleDouble: Similar to AppleSingle except that the Data fork is
 separated from the Macintosh-specific parts by the
 AppleDouble encoding.

 AppleDouble is the preferred format for a Macintosh file that is to
 be included in an Internet mail message, because it provides
 recipients with Macintosh computers the entire document, including
 Icons and other Macintosh specific information, while other users
 easily can extract the Data fork (the actual data) as it is
 separated from the AppleDouble encoding.

4. MIME format for Apple/Macintosh-specific file information

 4a. APPLICATION/APPLEFILE

 MIME type-name: APPLICATION
 MIME subtype name: APPLEFILE
 Required parameters: none
 Optional parameters: NAME, which must be a "value" as
 defined in RFC-1521 [BORE93].
 Encoding considerations: The presence of binary data will
 typically require use of
 Content-Transfer-Encoding: BASE64
 Security considerations: See separate section in the document
 Published specification: Apple-single & Apple-double [APPL90]
 Rationale: Permits MIME-based transmission of
 data with Apple/Macintosh specific
 information, while allowing general
 access to non-specific user data.

Faltstrom, Crocker & Fair [Page 2]

https://datatracker.ietf.org/doc/html/rfc1521

Internet Draft MIME-based Mac files December 1, 1995

 4b. MULTIPART/APPLEDOUBLE

 MIME type-name: MULTIPART
 MIME subtype name: APPLEDOUBLE
 Required parameters: none
 Optional parameters: NAME, which must be a "value" as
 defined in RFC-1521 [BORE93].
 Encoding considerations: The first of the two parts must be the
 application/applefile part (the
 resource fork), and the second one the
 data fork.
 Security considerations: See separate section in the document
 Published specification: Apple-single & Apple-double [APPL90]
 Rationale: Permits MIME-based transmission of
 data with Apple/Macintosh specific
 information, while allowing general
 access to non-specific user data.

 4c. Detail specific to MIME-based usage

 Macintosh documents do not always need to be sent in a special
 format. Those documents with well-known MIME types and
 non-existent or trivial resource forks can be sent as regular
 MIME body parts, without use of AppleSingle or AppleDouble.

 Documents which lack a data fork must be sent as AppleSingle.

 All other documents should be sent as AppleDouble.

5. AppleSingle

 An AppleSingle, version 2 file, is sent as one consecutive stream of
 bytes. The format is described in [APPL90] with a brief summary in

Appendix A. The one and only part of the file is sent in an
 application/applefile message.

 The first four bytes of an AppleSingle header are, in hexadecimal:
 00, 05, 16, 00.

 The AppleSingle file is binary data. Hence, it may be necessary to
 perform a Content-Transfer-Encoding for transmission, depending on
 the underlying email transport environment. The safest encoding is
 Base64, since it permits transfer over the most restricted channels.

 Even though an AppleSingle file includes the original Macintosh
 filename, it is recommended that a name parameter be included on the
 Content-Type header to give the recipient a hint as to what file is
 attached. The value of the name parameter must be a "value" as
 defined by RFC-1521 [BORE93]. Note that this restricts the value to
 seven-bit US-ASCII characters.

https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc1521

Faltstrom, Crocker & Fair [Page 3]

Internet Draft MIME-based Mac files December 1, 1995

 5a. AppleSingle example

 Content-Type: application/applefile; name="Computers-1/2-93"

 [The AppleSingle file goes here]

6. AppleDouble

 An AppleDouble, version 2, file is divided in two parts:

 Header: including the Macintosh resource fork and desktop
 information and
 Data fork: containing the Macintosh data fork.

 The AppleDouble format is described in [APPL90] with a brief summary
 in Appendix B.

 The AppleDouble file itself is sent as a multipart/appledouble MIME
 body-part, which may have only two sub-parts. The header is sent as
 application/applefile and the data fork as whatever best describes
 it. For example, is the data for is actually a GIF image, it should
 be sent as image/gif. If no appropriate Content-Type has been
 registered for the data type, it should be sent as an
 application/octet-stream.

 The application/applefile should always be the first of the two
 parts in the multipart/appledouble.

 The first four bytes of an AppleDouble header are, in hexadecimal:
 00, 05, 16, 07.

 The AppleDouble header is binary data. Hence, it may be necessary
 to perform a Content-Transfer-Encoding for transmission, depending
 on the underlying email transport environment. The safest encoding
 is Base64, since it permits transfer over the most restrictive
 channels.

 Even though an AppleDouble file includes the original Macintosh
 filename, it is recommended that a name parameter be included on the
 Content-Type header of both the header and data parts of the
 AppleDouble file to give the recipient a hint as to what file is
 attached. The value of the name parameter must be a "value" as
 defined by RFC-1521 [BORE93]. Note that this restricts the value to
 seven-bit US-ASCII characters. The value of the name parameter
 should be different in the two parts.

https://datatracker.ietf.org/doc/html/rfc1521

Faltstrom, Crocker & Fair [Page 4]

Internet Draft MIME-based Mac files December 1, 1995

 6a. AppleDouble example

 Content-Type: multipart/appledouble; boundary=mac-part

 --mac-part
 Content-Type: application/applefile; name="%My-new-car"

 [The AppleDouble header goes here]

 --mac-part
 Content-Type: image/gif; name="My-new-car"

 [The data fork goes here]

 --mac-part--

7. References

 BORE93 Borenstein N., and N. Freed, MIME (Multipurpose Internet
 Mail Extensions): Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies, RFC 1521, Bellcore,
 Innosoft, September 1993.

 APPL90 AppleSingle/AppleDouble Formats for Foreign Files
 Developer's Note, Apple Computer, Inc., 1990

8. Security Considerations

 To the extent that application/applefile facilitates the
 transmission of operating-system sensitive data, it may open a door
 for easier relaxation of security rules than is intended either by
 the sender of the administrator of the sender's system.

9. Changes

 The following are the changes from RFC-1740 to this document:

 9a. MIME-specific usage

 This new version says that documents which lack resource fork
 must be sent in AppleSingle format. All other documents should
 be sent as AppleDouble.

https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc1740

Faltstrom, Crocker & Fair [Page 5]

Internet Draft MIME-based Mac files December 1, 1995

 9b. The parameter "name" when using AppleDouble

 The "name" parameter should be different in the two parts of an
 AppleDouble MIME construction, i.e. not the same for the
 resource and data forks.

 9c. Encoding considerations when using AppleDouble

 When sending a multipart/appledouble part, the order of the two
 parts should be so the application/applefile is the first of the
 two parts.

10. Acknowledgements

 Thanks to all of the people on the ietf-822 list who have provided
 much meaningful input for this document. Some of them must though
 be remembered by name, because they have almost crushed my mailbox
 with a very nice and interesting debate:

 Johan Berglund, Steve Dorner, David Gelhar, David Herron, Lee
 Jones, Raymond Lau, Jamey Maze, John B. Melby, Jan Michael
 Rynning, Rens Troost and Peter Svanberg

11. Authors Addresses
 Patrik Faltstrom
 Bunyip Information Systems inc.
 Suite 300
 310 Ste-Catherine St. West
 Montreal, Quebec
 CANADA H2X 2A1

 Email: paf@bunyip.com

 Dave Crocker
 Brandenburg Consulting
 675 Spruce. Dr.
 Sunnyvale, CA 94086
 USA

 Email: dcrocker@mordor.stanford.edu

 Erik E. Fair
 Engineering Computer Operations
 Apple Computer Inc.

 Email: fair@apple.com

Faltstrom, Crocker & Fair [Page 6]

Internet Draft MIME-based Mac files December 1, 1995

Appendix A. The AppleSingle format

 In the AppleSingle format, a file's contents and attributes are
 stored in a single file in the foreign file system. For example,
 both forks of a Macintosh file, the Finder information, and an
 associated comment are arranged in a single file with a simple
 structure.

 An AppleSingle file consists of a header followed by one or more
 data entries. The header consists of several fixed fields and a
 list of entry descriptors, each pointing to a data entry. Each
 entry is optional and may or may not appear in the file.
 AppleSingle file header:

 Field Length

 Magic number 4 bytes
 Version number 4 bytes
 Filler 16 bytes
 Number of entries 2 bytes

 Entry descriptor for each entry:

 Entry ID 4 bytes
 Offset 4 bytes
 Length 4 bytes

 Byte ordering in the file fields follows MC68000 conventions, most
 significant byte first. The fields in the header file follow the
 conventions described in the following sections.

 Magic number
 This field, modelled after the UNIX magic number feature,
 specifies the file's format. Apple has defined the magic number
 for the AppleSingle format as $00051600 or 0x00051600.

 Version number
 This field denotes the version of AppleSingle format in the event
 the format evolves (more fields may be added to the header). The
 version described in this note is version $00020000 or
 0x00020000.

 Filler
 This field is all zeros ($00 or 0x00).

 Number of entries
 This field specifies how many different entries are included in
 the file. It is an unsigned 16-bit number. If the number of
 entries is any number other than 0, then that number of entry
 descriptors immediately follows the number of entries field.

 Entry descriptors

Faltstrom, Crocker & Fair [Page 7]

Internet Draft MIME-based Mac files December 1, 1995

 The entry descriptor is made up of the following three fields:
 Entry ID: an unsigned 32-bit number, defines what the entry is.
 Entry IDs range from 1 to $FFFFFFFF. Entry ID 0 is
 invalid.
 Offset: an unsigned 32-bit number, shows the offset from the
 beginning of the file to the beginning of the entry's
 data.
 Length: an unsigned 32-bit number, shows the length of the
 data in bytes. The length can be 0.

 Predefined entry ID's
 Apple has defined a set of entry IDs and their values as follows:
 Data Fork 1 Data fork
 Resource Fork 2 Resource fork
 Real Name 3 File's name as created on home file
 system
 Comment 4 Standard Macintosh comment
 Icon, B&W 5 Standard Macintosh black and white icon
 Icon, Colour 6 Macintosh colour icon
 File Dates Info 8 File creation date, modification date,
 and so on
 Finder Info 9 Standard Macintosh Finder information
 Macintosh File Info 10 Macintosh file information, attributes
 and so on
 ProDOS File Info 11 ProDOS file information, attributes and
 so on
 MS-DOS File Info 12 MS-DOS file information, attributes and
 so on
 Short Name 13 AFP short name
 AFP File Info 14 AFP file, information, attributes and so
 on
 Directory ID 15 AFP directory ID
 Apple reserves the range of entry IDs from 1 to $7FFFFFFF. The
 rest of the range is available for applications to define their
 own entries. Apple does not arbitrate the use of the rest of the
 range.

Faltstrom, Crocker & Fair [Page 8]

Internet Draft MIME-based Mac files December 1, 1995

Appendix B. The AppleDouble format

 The AppleDouble format uses two files to store data, resources and
 attributes. The AppleDouble Data file contains the data fork and
 the AppleDouble Header file contains the resource fork.

 The AppleDouble Data file contains the standard Macintosh data fork
 with no additional header. The AppleDouble Header file has exactly
 the same format as the AppleSingle file, except that it does not
 contain a Data fork entry. The magic number in the AppleDouble
 Header file differs from the magic number in the AppleSingle Header
 file so that an application can tell whether it needs to look in
 another file for the data fork. The magic number for the
 AppleDouble format is $00051607 or 0x00051607.

 The entries in the AppleDouble Header file can appear in any order;
 however, since the resource fork is the entry that is most commonly
 extended (after the data fork), Apple recommends that the resource
 fork entry to be placed last in the file. The data fork is easily
 extended because it resides by itself in the AppleDouble Data file.

Faltstrom, Crocker & Fair [Page 9]

Internet Draft MIME-based Mac files December 1, 1995

Appendix C. applefile.h

 This is an example of a header file for the language C which can be
 used when parsing the data in either an AppleSingle file or
 AppleDouble header.

 The file is written by Lee Jones. Distribution is unlimited.

 /* applefile.h - Data structures used by AppleSingle/AppleDouble
 * file format
 *
 * Written by Lee Jones, 22-Oct-1993
 *
 * For definitive information, see "AppleSingle/AppleDouble
 * Formats for Foreign Files Developer's Note"; Apple Computer
 * Inc.; (c) 1990.
 *
 * Other details were added from:
 * Inside Macintosh [old version], volumes II to VI,
 * Apple include files supplied with Think C 5.0.1,
 * Microsoft MS-DOS Programmer's Reference, version 5, and
 * Microsoft C 6.00a's dos.h include file.
 *
 * I don't have ProDOS or AFP Server documentation so related
 * entries may be a bit skimpy.
 *
 * Edit history:
 *
 * when who why
 * --------- --- --
 * 22-Oct-93 LMJ Pull together from Inside Macintosh,
 * Developer's Note, etc
 * 26-Oct-93 LMJ Finish writing first version and list
 * references
 * 06-Feb-94 EEF Very minor cleanup
 */

 /* Following items define machine specific size (for porting). */

 typedef char xchar8; /* 8-bit field */
 typedef char schar8; /* signed 8-bit field */
 typedef unsigned char uchar8; /* unsigned 8-bit field */
 typedef short xint16; /* 16-bit field */
 typedef unsigned short uint16; /* unsigned 16-bit field */
 typedef long xint32; /* 32-bit field */
 typedef long sint32; /* signed 32-bit field */
 typedef unsigned long uint32; /* unsigned 32-bit field */

 /* REMINDER: the Motorola 680x0 is a big-endian architecture! */

 typedef uint32 OSType; /* 32 bit field */

 /* In the QuickDraw coordinate plane, each coordinate is
 * -32767..32767. Each point is at the intersection of a

Faltstrom, Crocker & Fair [Page 10]

Internet Draft MIME-based Mac files December 1, 1995

 * horizontal grid line and a vertical grid line. Horizontal
 * coordinates increase from left to right. Vertical
 * coordinates increase from top to bottom. This is the way
 * both a TV screen and page of English text are scanned:
 * from top left to bottom right.
 */

 struct Point /* spot in QuickDraw 2-D grid */
 {
 xint16 v; /* vertical coordinate */
 xint16 h; /* horizontal coordinate */
 }; /* Point */

 typedef struct Point Point;

 /* See older Inside Macintosh, Volume II page 84 or Volume IV
 * page 104.
 */

 struct FInfo /* Finder information */
 {
 OSType fdType; /* File type, 4 ASCII chars */
 OSType fdCreator; /* File's creator, 4 ASCII chars */
 uint16 fdFlags; /* Finder flag bits */
 Point fdLocation; /* file's location in folder */
 xint16 fdFldr; /* file 's folder (aka window) */
 }; /* FInfo */

 typedef struct FInfo FInfo;

 /*
 * Masks for finder flag bits (field fdFlags in struct
 * FInfo).
 */

 #define F_fOnDesk 0x0001 /* file is on desktop (HFS only) */
 #define F_maskColor 0x000E /* color coding (3 bits) */
 /* 0x0010 /* reserved (System 7) */
 #define F_fSwitchLaunch 0x0020 /* reserved (System 7) */
 #define F_fShared 0x0040 /* appl available to multiple users */
 #define F_fNoINITs 0x0080 /* file contains no INIT resources */
 #define F_fBeenInited 0x0100 /* Finder has loaded bundle res. */
 /* 0x0200 /* reserved (System 7) */
 #define F_fCustomIcom 0x0400 /* file contains custom icon */
 #define F_fStationary 0x0800 /* file is a stationary pad */
 #define F_fNameLocked 0x1000 /* file can't be renamed by Finder */
 #define F_fHasBundle 0x2000 /* file has a bundle */
 #define F_fInvisible 0x4000 /* file's icon is invisible */
 #define F_fAlias 0x8000 /* file is an alias file (System 7) */

 /* See older Inside Macintosh, Volume IV, page 105.
 */

 struct FXInfo /* Extended finder information */

Faltstrom, Crocker & Fair [Page 11]

Internet Draft MIME-based Mac files December 1, 1995

 {
 xint16 fdIconID; /* icon ID number */
 xint16 fdUnused[3]; /* spare */
 schar8 fdScript; /* scrip flag and code */
 schar8 fdXFlags; /* reserved */
 xint16 fdComment; /* comment ID number */
 xint32 fdPutAway; /* home directory ID */
 }; /* FXInfo */

 typedef struct FXInfo FXInfo;

 /* Pieces used by AppleSingle & AppleDouble (defined later). */

 struct ASHeader /* header portion of AppleSingle */
 {
 /* AppleSingle = 0x00051600; AppleDouble = 0x00051607 */
 uint32 magicNum; /* internal file type tag */
 uint32 versionNum; /* format version: 2 = 0x00020000 */
 uchar8 filler[16]; /* filler, currently all bits 0 */
 uint16 numEntries; /* number of entries which follow */
 }; /* ASHeader */

 typedef struct ASHeader ASHeader;

 struct ASEntry /* one AppleSingle entry descriptor */
 {
 uint32 entryID; /* entry type: see list, 0 invalid */
 uint32 entryOffset; /* offset, in octets, from beginning */
 /* of file to this entry's data */
 uint32 entryLength; /* length of data in octets */
 }; /* ASEntry */

 typedef struct ASEntry ASEntry;

 /* Apple reserves the range of entry IDs from 1 to 0x7FFFFFFF.
 * Entry ID 0 is invalid. The rest of the range is available
 * for applications to define their own entry types. "Apple does
 * not arbitrate the use of the rest of the range."
 */

 #define AS_DATA 1 /* data fork */
 #define AS_RESOURCE 2 /* resource fork */
 #define AS_REALNAME 3 /* File's name on home file system */
 #define AS_COMMENT 4 /* standard Mac comment */
 #define AS_ICONBW 5 /* Mac black & white icon */
 #define AS_ICONCOLOR 6 /* Mac color icon */
 /* 7 /* not used */
 #define AS_FILEDATES 8 /* file dates; create, modify, etc */
 #define AS_FINDERINFO 9 /* Mac Finder info & extended info */
 #define AS_MACINFO 10 /* Mac file info, attributes, etc */
 #define AS_PRODOSINFO 11 /* Pro-DOS file info, attrib., etc */
 #define AS_MSDOSINFO 12 /* MS-DOS file info, attributes, etc */

 #define AS_AFPNAME 13 /* Short name on AFP server */
 #define AS_AFPINFO 14 /* AFP file info, attrib., etc */

Faltstrom, Crocker & Fair [Page 12]

Internet Draft MIME-based Mac files December 1, 1995

 #define AS_AFPDIRID 15 /* AFP directory ID */

 /* matrix of entry types and their usage:
 *
 * Macintosh Pro-DOS MS-DOS AFP server
 * --------- ------- ------ ----------
 * 1 AS_DATA xxx xxx xxx xxx
 * 2 AS_RESOURCE xxx xxx
 * 3 AS_REALNAME xxx xxx xxx xxx
 *
 * 4 AS_COMMENT xxx
 * 5 AS_ICONBW xxx
 * 6 AS_ICONCOLOR xxx
 *
 * 8 AS_FILEDATES xxx xxx xxx xxx
 * 9 AS_FINDERINFO xxx
 * 10 AS_MACINFO xxx
 *
 * 11 AS_PRODOSINFO xxx
 * 12 AS_MSDOSINFO xxx
 *
 * 13 AS_AFPNAME xxx
 * 14 AS_AFPINFO xxx
 * 15 AS_AFPDIRID xxx
 */

 /* entry ID 1, data fork of file - arbitrary length octet string */

 /* entry ID 2, resource fork - arbitrary length opaque octet string;
 * as created and managed by Mac O.S. resoure manager
 */

 /* entry ID 3, file's name as created on home file system - arbitrary
 * length octet string; usually short, printable ASCII
 */

 /* entry ID 4, standard Macintosh comment - arbitrary length octet
 * string; printable ASCII, claimed 200 chars or less
 */

 /* This is probably a simple duplicate of the 128 octet bitmap
 * stored as the 'ICON' resource or the icon element from an 'ICN#'
 * resource.
 */

 struct ASIconBW /* entry ID 5, standard Mac black and white icon */
 {
 uint32 bitrow[32]; /* 32 rows of 32 1-bit pixels */
 }; /* ASIconBW */

 typedef struct ASIconBW ASIconBW;

 /* entry ID 6, "standard" Macintosh color icon - several competing
 * color icons are defined. Given the copyright dates

Faltstrom, Crocker & Fair [Page 13]

Internet Draft MIME-based Mac files December 1, 1995

 * of the Inside Macintosh volumes, the 'cicn' resource predominated
 * when the AppleSingle Developer's Note was written (most probable
 * candidate). See Inside Macintosh, Volume V, pages 64 & 80-81 for
 * a description of 'cicn' resources.
 *
 * With System 7, Apple introduced icon families. They consist of:
 * large (32x32) B&W icon, 1-bit/pixel, type 'ICN#',
 * small (16x16) B&W icon, 1-bit/pixel, type 'ics#',
 * large (32x32) color icon, 4-bits/pixel, type 'icl4',
 * small (16x16) color icon, 4-bits/pixel, type 'ics4',
 * large (32x32) color icon, 8-bits/pixel, type 'icl8', and
 * small (16x16) color icon, 8-bits/pixel, type 'ics8'.
 * If entry ID 6 is one of these, take your pick. See Inside
 * Macintosh, Volume VI, pages 2-18 to 2-22 and 9-9 to 9-13, for
 * descriptions.
 */

 /* entry ID 7, not used */

 /* Times are stored as a "signed number of seconds before of after
 * 12:00 a.m. (midnight), January 1, 2000 Greenwich Mean Time (GMT).
 * Applications must convert to their native date and time
 * conventions." Any unknown entries are set to 0x80000000
 * (earliest reasonable time).
 */

 struct ASFileDates /* entry ID 8, file dates info */
 {
 sint32 create; /* file creation date/time */
 sint32 modify; /* last modification date/time */
 sint32 backup; /* last backup date/time */
 sint32 access; /* last access date/time */
 }; /* ASFileDates */

 typedef struct ASFileDates ASFileDates;

 /* See older Inside Macintosh, Volume II, page 115 for
 * PBGetFileInfo(), and Volume IV, page 155, for PBGetCatInfo().
 */

 /* entry ID 9, Macintosh Finder info & extended info */
 struct ASFinderInfo
 {
 FInfo ioFlFndrInfo; /* PBGetFileInfo() or PBGetCatInfo() */
 FXInfo ioFlXFndrInfo; /* PBGetCatInfo() (HFS only) */
 }; /* ASFinderInfo */

 typedef struct ASFinderInfo ASFinderInfo;

 struct ASMacInfo /* entry ID 10, Macintosh file information */
 {
 uchar8 filler[3]; /* filler, currently all bits 0 */

 uchar8 ioFlAttrib; /* PBGetFileInfo() or PBGetCatInfo() */
 }; /* ASMacInfo */

Faltstrom, Crocker & Fair [Page 14]

Internet Draft MIME-based Mac files December 1, 1995

 typedef struct ASMacInfo ASMacInfo;

 #define AS_PROTECTED 0x0002 /* protected bit */
 #define AS_LOCKED 0x0001 /* locked bit */

 /* NOTE: ProDOS-16 and GS/OS use entire fields. ProDOS-8 uses low
 * order half of each item (low byte in access & filetype, low word
 * in auxtype); remainder of each field should be zero filled.
 */

 struct ASProdosInfo /* entry ID 11, ProDOS file information */
 {
 uint16 access; /* access word */
 uint16 filetype; /* file type of original file */
 uint32 auxtype; /* auxiliary type of the orig file */
 }; /* ASProDosInfo */

 typedef struct ASProdosInfo ASProdosInfo;

 /* MS-DOS file attributes occupy 1 octet; since the Developer Note
 * is unspecific, I've placed them in the low order portion of the
 * field (based on example of other ASMacInfo & ASProdosInfo).
 */

 struct ASMsdosInfo /* entry ID 12, MS-DOS file information */
 {
 uchar8 filler; /* filler, currently all bits 0 */
 uchar8 attr; /* _dos_getfileattr(), MS-DOS */
 /* interrupt 21h function 4300h */
 }; /* ASMsdosInfo */

 typedef struct ASMsdosInfo ASMsdosInfo;

 #define AS_DOS_NORMAL 0x00 /* normal file (all bits clear) */
 #define AS_DOS_READONLY 0x01 /* file is read-only */
 #define AS_DOS_HIDDEN 0x02 /* hidden file (not shown by DIR) */
 #define AS_DOS_SYSTEM 0x04 /* system file (not shown by DIR) */
 #define AS_DOS_VOLID 0x08 /* volume label (only in root dir) */
 #define AS_DOS_SUBDIR 0x10 /* file is a subdirectory */
 #define AS_DOS_ARCHIVE 0x20 /* new or modified (needs backup) */

 /* entry ID 13, short file name on AFP server - arbitrary length
 * octet string; usualy printable ASCII starting with
 * '!' (0x21)
 */

 struct ASAfpInfo /* entry ID 12, AFP server file information */
 {
 uchar8 filler[3]; /* filler, currently all bits 0 */
 uchar8 attr; /* file attributes */
 }; /* ASAfpInfo */

 typedef struct ASAfpInfo ASAfpInfo;

Faltstrom, Crocker & Fair [Page 15]

Internet Draft MIME-based Mac files December 1, 1995

 #define AS_AFP_Invisible 0x01 /* file is invisible */
 #define AS_AFP_MultiUser 0x02 /* simultaneous access allowed */
 #define AS_AFP_System 0x04 /* system file */
 #define AS_AFP_BackupNeeded 0x40 /* new or modified (needs backup) */

 struct ASAfpDirId /* entry ID 15, AFP server directory ID */
 {
 uint32 dirid; /* file's directory ID on AFP server */
 }; /* ASAfpDirId */

 typedef struct ASAfpDirId ASAfpDirId;

 /*
 * The format of an AppleSingle/AppleDouble header
 */
 struct AppleSingle /* format of disk file */
 {
 ASHeader header; /* AppleSingle header part */
 ASEntry entry[1]; /* array of entry descriptors */
 /* uchar8 filedata[]; /* followed by rest of file */
 }; /* AppleSingle */

 typedef struct AppleSingle AppleSingle;

 /*
 * FINAL REMINDER: the Motorola 680x0 is a big-endian architecture!
 */

 /* End of applefile.h */

Faltstrom, Crocker & Fair [Page 16]

