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Abstract

   Retransmission timeouts are detrimental to application latency,
   especially for short transfers such as Web transactions where
   timeouts can often take longer than all of the rest of a transaction.
   The primary cause of retransmission timeouts are lost segments at the
   tail of transactions.  This document describes an experimental
   algorithm for TCP to quickly recover lost segments at the end of
   transactions or when an entire window of data or acknowledgments are
   lost.  Tail Loss Probe (TLP) is a sender-only algorithm that allows
   the transport to recover tail losses through fast recovery as opposed
   to lengthy retransmission timeouts.  If a connection is not receiving
   any acknowledgments for a certain period of time, TLP transmits the
   last unacknowledged segment (loss probe).  In the event of a tail
   loss in the original transmissions, the acknowledgment from the loss
   probe triggers SACK/FACK based fast recovery.  TLP effectively avoids
   long timeouts and thereby improves TCP performance.
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1.  Introduction

   Retransmission timeouts are detrimental to application latency,
   especially for short transfers such as Web transactions where
   timeouts can often take longer than all of the rest of a transaction.
   This document describes an experimental algorithm, Tail Loss Probe
   (TLP), to invoke fast recovery for losses that would otherwise be
   only recoverable through timeouts.

   The Transmission Control Protocol (TCP) has two methods for
   recovering lost segments.  First, the fast retransmit algorithm
   relies on incoming duplicate acknowledgments (ACKs), which indicate
   that the receiver is missing some data.  After a required number of
   duplicate ACKs have arrived at the sender, it retransmits the first
   unacknowledged segment and continues with a loss recovery algorithm
   such as the SACK-based loss recovery [RFC6675].  If the fast
   retransmit algorithm fails for any reason, TCP uses a retransmission
   timeout as the last resort mechanism to recover lost segments.  If an
   ACK for a given segment is not received in a certain amount of time
   called retransmission timeout (RTO), the segment is resent [RFC6298].

   Timeouts can occur in a number of situations, such as the following:

   (1) Drop tail at the end of transactions.  Example: consider a
   transfer of five segments sent on a connection that has a congestion
   window of ten.  Any degree of loss in the tail, such as segments four
   and five, will only be recovered via a timeout.

   (2) Mid-transaction loss of an entire window of data or ACKs.  Unlike
   (1) there is more data waiting to be sent.  Example: consider a
   transfer of four segments to be sent on a connection that has a
   congestion window of two.  If the sender transmits two segments and
   both are lost then the loss will only be recovered via a timeout.

   (3) Insufficient number of duplicate ACKs to trigger fast recovery at
   sender.  The early retransmit mechanism [RFC5827] addresses this
   problem in certain special circumstances, by reducing the number of
   duplicate ACKs required to trigger a fast retransmission.

   (4) An unexpectedly long round-trip time (RTT), such that the ACKs
   arrive after the RTO timer expires.  The F-RTO algorithm [RFC5682] is
   designed to detect such spurious retransmission timeouts and at least
   partially undo the consequences of such events.

   Measurements on Google Web servers show that approximately 70% of
   retransmissions for Web transfers are sent after the RTO timer
   expires, while only 30% are handled by fast recovery.  Even on
   servers exclusively serving YouTube videos, RTO based retransmissions

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5682
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   account for about 46% of the retransmissions.  If the losses are
   detectable from the ACK stream (through duplicate ACKs or SACK
   blocks) then early retransmit, fast recovery and proportional rate
   reduction are effective in avoiding timeouts [IMC11PRR].  Timeout
   retransmissions that occur in recovery and disorder state (a state
   indicating that a connection has received some duplicate ACKs),
   account for just 4% of the timeout episodes.  On the other hand 96%
   of the timeout episodes occur without any preceding duplicate ACKs or
   other indication of losses at the sender [IMC11PRR].  Early
   retransmit and fast recovery have no hope of repairing losses without
   these indications.  Efficiently addressing situations that would
   cause timeouts without any prior indication of losses is a
   significant opportunity for additional improvements to loss recovery.

   To get a sense of just how long the RTOs are in relation to
   connection RTTs, following is the distribution of RTO/RTT values on
   Google Web servers. [percentile, RTO/RTT]: [50th percentile, 4.3];
   [75th percentile, 11.3]; [90th percentile, 28.9]; [95th percentile,
   53.9]; [99th percentile, 214].  Large RTOs, typically caused by
   variance in measured RTTs, can be a result of intermediate queuing,
   and service variability in mobile channels.  Such large RTOs make a
   huge contribution to the long tail on the latency statistics of short
   flows.  Note that simply reducing the length of RTO does not address
   the latency problem for two reasons: first, it increases the chances
   of spurious retransmissions.  Second and more importantly, an RTO
   reduces TCP's congestion window to one and forces a slow start.
   Recovery of losses without relying primarily on the RTO mechanism is
   beneficial for short TCP transfers.

   The question we address in this document is: Can a TCP sender recover
   tail losses of transactions through fast recovery and thereby avoid
   lengthy retransmission timeouts?  We specify an algorithm, Tail Loss
   Probe (TLP), which sends probe segments to trigger duplicate ACKs
   with the intent of invoking fast recovery more quickly than an RTO at
   the end of a transaction.  TLP is applicable only for connections in
   Open state, wherein a sender is receiving in-sequence ACKs and has
   not detected any lost segments.  TLP can be implemented by modifying
   only the TCP sender, and does not require any TCP options or changes
   to the receiver for its operation.  For convenience, this document
   mostly refers to TCP, but the algorithms and other discussion are
   valid for Stream Control Transmission Protocol (SCTP) as well.

   This document is organized as follows.  Section 2 describes the basic
   Loss Probe algorithm.  Section 3 outlines an algorithm to detect the
   cases when TLP plugs a hole in the sender.  The algorithm makes the
   sender aware that a loss had occurred so it performs the appropriate
   congestion window reduction.  Section 4 discusses the interaction of
   TLP with early retransmit in being able to recover any degree of tail
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   losses.  Section 5 discusses the experimental results with TLP on
   Google Web servers.  Section 6 discusses related work, and Section 7
   discusses the security considerations.

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Loss probe algorithm

   The Loss probe algorithm is designed for a sender to quickly detect
   tail losses without waiting for an RTO.  We will henceforth use tail
   loss to generally refer to either drops at the tail end of
   transactions or a loss of an entire window of data/ACKs.  TLP works
   for senders with SACK enabled and in Open state, i.e. the sender has
   so far received in-sequence ACKs with no SACK blocks.  The risk of a
   sender incurring a timeout is high when the sender has not received
   any ACKs for a certain portion of time but is unable to transmit any
   further data either because it is application limited (out of new
   data to send), receiver window (rwnd) limited, or congestion window
   (cwnd) limited.  For these circumstances, the basic idea of TLP is to
   transmit probe segments for the specific purpose of eliciting
   additional ACKs from the receiver.  The initial idea was to send some
   form of zero window probe (ZWP) with one byte of new or old data.
   The ACK from the ZWP would provide an additional opportunity for a
   SACK block to detect loss without an RTO.  Additional losses can be
   detected subsequently and repaired as SACK based fast recovery
   proceeds.  However, in practice sending a single byte of data turned
   out to be problematic to implement and more fragile than necessary.
   Instead we use a full segment to probe but have to add complexity to
   compensate for the probe itself masking losses.

   Define probe timeout (PTO) to be a timer event indicating that an ACK
   is overdue on a connection.  The PTO value is set to max(2 * SRTT,
   10ms), where SRTT is the smoothed round-trip time [RFC6298], and is
   adjusted to account for delayed ACK timer when there is only one
   outstanding segment.

   The basic version of the TLP algorithm transmits one probe segment
   after a probe timeout if the connection has outstanding
   unacknowledged data but is otherwise idle, i.e. not receiving any
   ACKs or is cwnd/rwnd/application limited.  The transmitted segment,
   aka loss probe, can be either a new segment if available and the
   receive window permits, or a retransmission of the most recently sent
   segment, i.e., the segment with the highest sequence number.  When

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6298
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   there is tail loss, the ACK from the probe triggers fast recovery.
   In the absence of loss, there is no change in the congestion control
   or loss recovery state of the connection, apart from any state
   related to TLP itself.

   TLP MUST NOT be used for non-SACK connections.  SACK feedback allows
   senders to use the algorithm described in section 3 to infer whether
   any segments were lost.

2.1.  Pseudocode

   We define the terminology used in specifying the TLP algorithm:

   FlightSize: amount of outstanding data in the network as defined in
   [RFC5681].

   RTO: The transport's retransmission timeout (RTO) is based on
   measured round-trip times (RTT) between the sender and receiver, as
   specified in [RFC6298] for TCP.

   PTO: Probe timeout is a timer event indicating that an ACK is
   overdue.  Its value is constrained to be smaller than or equal to an
   RTO.

   SRTT: smoothed round-trip time computed like in [RFC6298].

   Open state: the sender has so far received in-sequence ACKs with no
   SACK blocks, and no other indications (such as retransmission
   timeout) that a loss may have occurred.

   Consecutive PTOs: back-to-back PTOs all scheduled for the same tail
   packets in a flight.  The (N+1)st PTO is scheduled after transmitting
   the probe segment for Nth PTO.

   The TLP algorithm works as follows:

   (1) Schedule PTO after transmission of new data in Open state:

    Check for conditions to schedule PTO outlined in step 2 below.
    FlightSize > 1: schedule PTO in max(2*SRTT, 10ms).
    FlightSize == 1: schedule PTO in max(2*SRTT, 1.5*SRTT+WCDelAckT).
    If RTO is earlier, schedule PTO in its place: PTO = min(RTO, PTO).

   WCDelAckT stands for worst case delayed ACK timer.  When FlightSize
   is 1, PTO is inflated additionally by WCDelAckT time to compensate
   for a potential long delayed ACK timer at the receiver.  The
   RECOMMENDED value for WCDelAckT is 200ms.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
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   A PTO value of 2*SRTT allows a sender to wait long enough to know
   that an ACK is overdue.  Under normal circumstances, i.e. no losses,
   an ACK typically arrives in one RTT.  But choosing PTO to be exactly
   an RTT is likely to generate spurious probes given that even end-
   system timings can easily push an ACK to be above an RTT.  We chose
   PTO to be the next integral value of RTT.  If RTO is smaller than the
   computed value for PTO, then a probe is scheduled to be sent at the
   RTO time.  The RTO timer is rearmed at the time of sending the probe,
   as is shown in Step 3 below.  This ensures that a PTO is always sent
   prior to a connection experiencing an RTO.

   (2) Conditions for scheduling PTO:

   (a) Connection is in Open state.
   (b) Connection is either cwnd limited or application limited.
   (c) Number of consecutive PTOs <= 2.
   (d) Connection is SACK enabled.

   Implementations MAY use one or two consecutive PTOs.

   (3) When PTO fires:

   (a) If a new previously unsent segment exists:
         -> Transmit new segment.
         -> FlightSize += SMSS. cwnd remains unchanged.
   (b) If no new segment exists:
         -> Retransmit the last segment.
   (c) Increment statistics counter for loss probes.
   (d) If conditions in (2) are satisfied:
         -> Reschedule next PTO.
       Else:
         -> Rearm RTO to fire at epoch 'now+RTO'.

   The reason for retransmitting the last segment in Step (b) is so that
   the ACK will carry SACK blocks and trigger either SACK-based loss
   recovery [RFC6675] or FACK threshold based fast recovery [FACK].  On
   transmission of a TLP, a MIB counter is incremented to keep track of
   the total number of loss probes sent.

   (4) During ACK processing:

   Cancel any existing PTO.
   If conditions in (2) allow:
     -> Reschedule PTO relative to the ACK receipt time.

   Following is an example of TLP.  All events listed are at a TCP
   sender.

https://datatracker.ietf.org/doc/html/rfc6675
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   (1) Sender transmits segments 1-10: 1, 2, 3, ..., 8, 9, 10.  There is
   no more new data to transmit.  A PTO is scheduled to fire in 2 RTTs,
   after the transmission of the 10th segment.

   (2) Receives acknowledgements (ACKs) for segments 1-5; segments 6-10
   are lost and no ACKs are received.  Note that the sender
   (re)schedules its PTO timer relative to the last received ACK, which
   is the ACK for segment 5 in this case.  The sender sets the PTO
   interval using the calculation described in step (1) of the
   algorithm.

   (3) When PTO fires, sender retransmits segment 10.

   (4) After an RTT, SACK for packet 10 arrives.  The ACK also carries
   SACK holes for segments 6, 7, 8 and 9.  This triggers FACK threshold
   based recovery.

   (5) Connection enters fast recovery and retransmits remaining lost
   segments.

2.2.  FACK threshold based recovery

   At the core of TLP is its reliance on FACK threshold based algorithm
   to invoke Fast Recovery.  In this section we specify this algorithm.

Section 3.1 of the Forward Acknowledgement (FACK) Paper [FACK]
   describes an alternate algorithm for triggering fast retransmit,
   based on the extent of the SACK scoreboard.  Its goal is to trigger
   fast retransmit as soon as the receiver's reassembly queue is larger
   than the dupack threshold, as indicated by the difference between the
   forward most SACK block edge and SND.UNA.  This algorithm quickly and
   reliably triggers fast retransmit in the presence of burst losses --
   often on the first SACK following such a loss.  Such a threshold
   based algorithm also triggers fast retransmit immediately in the
   presence of any reordering with extent greater than the dupack
   threshold.

   FACK threshold based recovery works by introducing a new TCP state
   variable at the sender called SND.FACK.  SND.FACK reflects the
   forward-most data held by the receiver and is updated when a SACK
   block is received acknowledging data with a higher sequence number
   than the current value of SND.FACK.  SND.FACK reflects the highest
   sequence number known to have been received plus one.  Note that in
   non-recovery states, SND.FACK is the same as SND.UNA.  The following
   snippet is the pseudocode for FACK threshold based recovery.

   If (SND.FACK - SND.UNA) > dupack threshold:
     -> Invoke Fast Retransmit and Fast Recovery.
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3.  Detecting recovered losses

   If the only loss was the last segment, there is the risk that the
   loss probe itself might repair the loss, effectively masking it from
   congestion control.  To avoid interfering with mandatory congestion
   control [RFC5681] it is imperative that TLP include a mechanism to
   detect when the probe might have masked a loss and to properly reduce
   the congestion window (cwnd).  An algorithm to examine subsequent
   ACKs to determine whether the original segment was lost is described
   here.

   Since it is observed that a significant fraction of the hosts that
   support SACK do not support duplicate selective acknowledgments
   (D-SACKs) [RFC2883] the TLP algorithm for detecting such lost
   segments relies only on basic RFC 2018 SACK [RFC2018].

3.1.  TLP Loss Detection: The Basic Idea

   Consider a TLP retransmission "episode" where a sender retransmits N
   consecutive TLP packets, all for the same tail packet in a flight.
   Let us say that an episode ends when the sender receives an ACK above
   the SND.NXT at the time of the episode.  We want to make sure that
   before the episode ends the sender receives N "TLP dupacks",
   indicating that all N TLP probe segments were unnecessary, so there
   was no loss/hole that needed plugging.  If the sender gets less than
   N "TLP dupacks" before the end of the episode, then probably the
   first TLP packet to arrive at the receiver plugged a hole, and only
   the remaining TLP packets that arrived at the receiver generated
   dupacks.

   Note that delayed ACKs complicate the picture, since a delayed ACK
   will imply that the sender receives one fewer ACK than would normally
   be expected.  To mitigate this complication, before sending a TLP
   loss probe retransmission, the sender should attempt to wait long
   enough that the receiver has sent any delayed ACKs that it is
   withholding.  The sender algorithm, described in section 2.1 features
   such a delay.

   If there is ACK loss or a delayed ACK, then this algorithm is
   conservative, because the sender will reduce cwnd when in fact there
   was no packet loss.  In practice this is acceptable, and potentially
   even desirable: if there is reverse path congestion then reducing
   cwnd is prudent.

3.2.  TLP Loss Detection: Algorithm Details

   (1) State

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018


Dukkipati, et al.        Expires August 29, 2013                [Page 9]



Internet-Draft               TCP Loss Probe                February 2013

   TLPRtxOut: the number of unacknowledged TLP retransmissions in
   current TLP episode.  The connection maintains this integer counter
   that tracks the number of TLP retransmissions in the current episode
   for which we have not yet received a "TLP dupack".  The sender
   initializes the TLPRtxOut field to 0.

   TLPHighRxt: the value of SND.NXT at the time of TLP retransmission.
   The TLP sender uses TLPHighRxt to record SND.NXT at the time it
   starts doing TLP transmissions during a given TLP episode.

   (2) Initialization

   When a connection enters the ESTABLISHED state, or suffers a
   retransmission timeout, or enters fast recovery, it executes the
   following:

   TLPRtxOut = 0;
   TLPHighRxt = 0;

   (3) Upon sending a TLP retransmission:

   if (TLPRtxOut == 0)
         TLPHighRxt = SND.NXT;
   TLPRtxOut++;

   (4) Upon receiving an ACK:

   (a) Tracking ACKs

   We define a "TLP dupack" as a dupack that has all the regular
   properties of a dupack that can trigger fast retransmit, plus the ACK
   acknowledges TLPHighRxt, and the ACK carries no new SACK information
   (as noted earlier, TLP requires that the receiver supports SACK).
   This is the kind of ACK we expect to see for a TLP transmission if
   there were no losses.  More precisely, the TLP sender considers a TLP
   probe segment as acknowledged if all of the following conditions are
   met:

   (a) TLPRtxOut > 0
   (b) SEG.ACK == TLPHighRxt
   (c) the segment contains no SACK blocks for sequence ranges
       above TLPHighRxt
   (d) the ACK does not advance SND.UNA
   (e) the segment contains no data
   (f) the segment is not a window update

   If all of those conditions are met, then the sender executes the
   following:
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   TLPRtxOut--;

   (b) Marking the end of a TLP episode and detecting losses

   If an incoming ACK is after TLPHighRxt, then the sender deems the TLP
   episode over.  At that time, the TLP sender executes the following:

   isLoss = (TLPRtxOut > 0) &&
            (segment does not carry a DSACK for TLP retransmission);
   TLPRtxOut = 0
   if (isLoss)
    EnterRecovery();

   In other words, if the sender detects an ACK for data beyond the TLP
   loss probe retransmission then (in the absence of reordering on the
   return path of ACKs) it should have received any ACKs that will
   indicate whether the original or any loss probe retransmissions were
   lost.  An exception is the case when the segment carries a Duplicate
   SACK (DSACK) for the TLP retransmission.  If the TLPRtxOut count is
   still non-zero and thus indicates that some TLP probe segments remain
   unacknowledged, then the sender should presume that at least one
   segment was lost, so it should enter fast recovery using the
   proportional rate reduction algorithm [IMC11PRR].

   (5) Senders must only send a TLP loss probe retransmission if all the
   conditions from section 2.1 are met and the following condition also
   holds:

   (TLPRtxOut == 0) || (SND.NXT == TLPHighRxt)

   This ensures that there is at most one sequence range with
   outstanding TLP retransmissions.  The sender maintains this invariant
   so that there is at most one TLP retransmission "episode" happening
   at a time, so that the sender can use the algorithm described above
   in this section to determine when the episode is over, and thus when
   it can infer whether any data segments were lost.

   Note that this condition only limits the number of outstanding TLP
   loss probes that are retransmissions.  There may be an arbitrary
   number of outstanding unacknowledged TLP loss probes that consist of
   new, previously-unsent data, since the standard retransmission
   timeout and fast recovery algorithms are sufficient to detect losses
   of such probe segments.

4.  Discussion

   In this section we discuss two properties related to TLP.
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4.1.  Unifying loss recoveries

   The existing loss recovery algorithms in TCP have a discontinuity: A
   single segment loss in the middle of a packet train can be recovered
   via fast recovery while a loss at the end of the train causes an RTO.
   Example: consider a train of segments 1-10, loss of segment five can
   be recovered quickly through fast recovery, while loss of segment ten
   can only be recovered through a timeout.  In practice, the difference
   between losses that trigger RTO versus those invoking fast recovery
   has more to do with the position of the losses as opposed to the
   intensity or magnitude of congestion at the link.

   TLP unifies the loss recovery mechanisms regardless of the position
   of a loss, so now with TLP a segment loss in the middle of a train as
   well as at the tail end can now trigger the same fast recovery
   mechanisms.

4.2.  Recovery of any N-degree tail loss

   The TLP algorithm, when combined with a variant of the early
   retransmit mechanism described below, is capable of recovering any
   tail loss for any sized flow using fast recovery.

   We propose the following enhancement to the early retransmit
   algorithm described in [RFC5827]: in addition to allowing an early
   retransmit in the scenarios described in [RFC5827], we propose to
   allow a delayed early retransmit [IMC11PRR] in the case where there
   are three outstanding segments that have not been cumulatively
   acknowledged and one segment that has been fully SACKed.

   Consider the following scenario, which illustrates an example of how
   this enhancement allows quick loss recovery in a new scenario:

   (1) scoreboard reads: A _ _ _
   (2) TLP retransmission probe of the last (fourth) segment
   (3) the arrival of a SACK for the last segment changes
       scoreboard to: A _ _ S
   (4) early retransmit and fast recovery of the second and
       third segments

   With this enhancement to the early retransmit mechanism, then for any
   degree of N-segment tail loss we get a quick recovery mechanism
   instead of an RTO.

   Consider the following taxonomy of tail loss scenarios, and the
   ultimate outcome in each case:

https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
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       number of  scoreboard after
       losses     TLP retrans ACKed mechanism           final outcome
       --------   ----------------- -----------------   -------------
   (1) AAAL       AAAA              TLP loss detection  all repaired
   (2) AALL       AALS              early retransmit    all repaired
   (3) ALLL       ALLS              early retransmit    all repaired
   (4) LLLL       LLLS              FACK fast recovery  all repaired
   (5) >=5 L      ..LS              FACK fast recovery  all repaired

   key:
   A = ACKed segment
   L = lost segment
   S = SACKed segment

   Let us consider each tail loss scenario in more detail:

   (1) With one segment lost, the TLP loss probe itself will repair the
   loss.  In this case, the sender's TLP loss detection algorithm will
   notice that a segment was lost and repaired, and reduce its
   congestion window in response to the loss.

   (2) With two segments lost, the TLP loss probe itself is not enough
   to repair the loss.  However, when the SACK for the loss probe
   arrives at the sender, then the early retransmit mechanism described
   in [RFC5827] will note that with two segments outstanding and the
   second one SACKed, the sender should retransmit the first segment.
   This retransmit will repair the single remaining lost segment.

   (3) With three segments lost, the TLP loss probe itself is not enough
   to repair the loss.  However, when the SACK for the loss probe
   arrives at the sender, then the enhanced early retransmit mechanism
   described in this section will note that with three segments
   outstanding and the third one SACKed, the sender should retransmit
   the first segment and enter fast recovery.  The early retransmit and
   fast recovery phase will, together, repair the the remaining two lost
   segments.

   (4) With four segments lost, the TLP loss probe itself is not enough
   to repair the loss.  However, when the SACK for the loss probe
   arrives at the sender, then the FACK fast retransmit mechanism [FACK]
   will note that with four segments outstanding and the fourth one
   SACKed, the sender should retransmit the first segment and enter fast
   recovery.  The fast retransmit and fast recovery phase will,
   together, repair the the remaining two lost segments.

   (5) With five or more segments lost, events precede much as in case
   (4).  The TLP loss probe itself is not enough to repair the loss.

https://datatracker.ietf.org/doc/html/rfc5827
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   However, when the SACK for the loss probe arrives at the sender, then
   the FACK fast retransmit mechanism [FACK] will note that with five or
   more segments outstanding and the segment highest in sequence space
   SACKed, the sender should retransmit the first segment and enter fast
   recovery.  The fast retransmit and fast recovery phase will,
   together, repair the remaining lost segments.

   In summary, the TLP mechanism, in conjunction with the proposed
   enhancement to the early retransmit mechanism, is able to recover
   from a tail loss of any number of segments without resort to a costly
   RTO.

5.  Experiments with TLP

   In this section we describe experiments and measurements with TLP
   performed on Google Web servers using Linux 2.6.  The experiments
   were performed over several weeks and measurements were taken across
   a wide range of Google applications.  The main goal of the
   experiments is to instrument and measure TLP's performance relative
   to the baseline.  The experiment and baseline were using the same
   kernels with an on/off switch to enable TLP.

   Our experiments include both the basic TLP algorithm of Section 2 and
   its loss detection component in Section 3.  All other algorithms such
   as early retransmit and FACK threshold based recovery are present in
   the both the experiment and baseline.  There are three primary
   metrics we are interested in: impact on TCP latency (average and tail
   or 99th percentile latency), retransmission statistics, and the
   overhead of probe segments relative to the total number of
   transmitted segments.  TCP latency is the time elapsed between the
   server transmitting the first byte of the response to it receiving an
   ACK for the last byte.

   The table below shows the percentiles and average latency improvement
   of key Web applications, including even those responses without
   losses, measured over a period of one week.  The key takeaway is: the
   average response time improved up to 7% and the 99th percentile
   improved by 10%.  Nearly all of the improvement for TLP is in the
   tail latency (post-90th percentile).  The varied improvements across
   services are due to different response-size distributions and traffic
   patterns.  For example, TLP helps the most for Images, as these are
   served by multiple concurrently active TCP connections which increase
   the chances of tail segment losses.
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   Application        Average   99%

   Google Web Search  -3%       -5%

   Google Maps        -5%       -10%

   Google Images      -7%       -10%

   TLP also improved performance in mobile networks -- by 7.2% for Web
   search and Instant and 7.6% for Images transferred over Verizon
   network.  To see why and where the latency improvements are coming
   from, we measured the retransmission statistics.  We broke down the
   retransmission stats based on nature of retransmission -- timeout
   retransmission or fast recovery.  TLP reduced the number of timeouts
   by 15% compared to the baseline, i.e. (timeouts_tlp -
   timeouts_baseline) / timeouts_baseline = 15%.  Instead, these losses
   were either recovered via fast recovery or by the loss probe
   retransmission itself.  The largest reduction in timeouts is when the
   sender is in the Open state in which it receives only insequence ACKs
   and no duplicate ACKs, likely because of tail losses.
   Correspondingly, the retransmissions occurring in the slow start
   phase after RTO reduced by 46% relative to baseline.  Note that it is
   not always possible for TLP to convert 100% of the timeouts into fast
   recovery episodes because a probe itself may be lost.  Also notable
   in our experiments is a significant decrease in the number of
   spurious timeouts -- the experiment had 61% fewer congestion window
   undo events.  The Linux TCP sender uses either DSACK or timestamps to
   determine if retransmissions are spurious and employs techniques for
   undoing congestion window reductions.  We also note that the total
   number of retransmissions decreased 7% with TLP because of the
   decrease in spurious retransmissions, and because the TLP probe
   itself plugs a hole.

   We also quantified the overhead of probe packets.  The probes
   accounted for 0.48% of all outgoing segments, i.e. (number of probe
   segments / number of outgoing segments)*100 = 0.48%.  This is a
   reasonable overhead when contrasted with the overall retransmission
   rate of 3.2%. 10% of the probes sent are new segments and the rest
   are retransmissions, which is unsurprising given that short Web
   responses often don't have new data to send.  We also found that in
   about 33% of the cases, the probes themselves plugged the only hole
   at receiver and the loss detection algorithm reduced the congestion
   window. 37% of the probes were not necessary and resulted in a
   duplicate acknowledgment.

   Besides the macro level latency and retransmission statistics, we
   report some measurements from TCP's internal state variables at the
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   point when a probe segment is transmitted.  The following
   distribution shows the FlightSize and congestion window values when a
   PTO is scheduled.  We note that cwnd is not the limiting factor and
   that nearly all of the probe segments are sent within the congestion
   window.

   percentile   10%  25%  50%  75%  90%  99%

   FlightSize    1    1    2    3    10   20
   cwnd          5    10   10   10   17   44

   We have also experimented with a few variations of TLP: multiple
   probe segments versus single probe for the same tail loss episode,
   and several values for WCDelAckT.  Our experiments show that sending
   just one probe suffices to get most (~90%) of latency benefits.  The
   experiment results reported in this section and our current
   implementation limits number of probes to one, although the draft
   itself allows up to two consecutive probes.  We chose the worst case
   delayed ack timer to be 200ms.  When FlightSize equals 1 it is
   important to account for the delayed ACK timer in the PTO value, in
   order to bring down the number of unnecessary probe segments.  With
   delays of 0ms and 50ms, the probe overhead jumped from 0.48% to 3.1%
   and 2.2% respectively.  We have also experimented with transmitting
   1-byte probe retransmissions as opposed to an entire MSS
   retransmission probe.  While this scheme has the advantage of not
   requiring the loss detection algorithm outlined in Section 3, it
   turned out to be problematic to implement correctly in certain TCP
   stacks.  Additionally, retransmitting 1-byte probe costs one more RTT
   to recover single packet tail losses, which is detrimental for short
   transfer latency.

6.  Related work

   TCP's long and conservative RTO recovery has long been identified as
   the major performance bottleneck for latency-demanding applications.
   A well-studied example is online gaming that requires reliability and
   low latency but small bandwidth.  [GRIWODZ06] shows that repeated
   long RTO is the dominating performance bottleneck for game
   responsiveness.  The authors in [PETLUND08] propose to use linear RTO
   to improve the performance, which has been incorporated in the Linux
   kernel as a non-default socket option for such thin streams.
   [MONDAL08] further argues exponential RTO backoff should be removed
   because it is not necessary for the stability of Internet.  In
   contrast, TLP does not change the RTO timer calculation or the
   exponential back off.  TLP's approach is to keep the behavior after
   RTO conservative for stability but allows a few timely probes before
   concluding the network is badly congested and cwnd should fall to 1.
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   As noted earlier in the Introduction the F-RTO [RFC5682] algorithm
   reduces the number of spurious timeout retransmissions and the Early
   Retransmit [RFC5827] mechanism reduces timeouts when a connection has
   received a certain number of duplicate ACKs.  Both are complementary
   to TLP and can work alongside.  Rescue retransmission introduced in
   [RFC6675] deals with loss events such as AL*SL* (using the same
   notation as section 4).  TLP covers wider range of events such as
   AL*.  We experimented with rescue retransmission on Google Web
   servers, but did not observe much performance improvement.  When the
   last segment is lost, it is more likely that a number of contiguous
   segments preceding the segment are also lost, i.e.  AL* is common.
   Timeouts that occur in the fast recovery are rare.

   [HURTIG13] proposes to offset the elapsed time of the pending packet
   when re-arming the RTO timer.  It is possible to apply the same idea
   for the TLP timer as well.  We have not yet tested such a change to
   TLP.

   Tail Loss Probe is one of several algorithms designed to maximize the
   robustness of TCPs self clock in the presence of losses.  It follows
   the same principles as Proportional Rate Reduction [IMC11PRR] and TCP
   Laminar [Laminar].

   On a final note we note that Tail loss probe does not eliminate 100%
   of all RTOs.  RTOs still remain the dominant mode of loss recovery
   for short transfers.  More work in future should be done along the
   following lines: transmitting multiple loss probes prior to finally
   resorting to RTOs, maintaining ACK clocking for short transfers in
   the absence of new data by clocking out old data in response to
   incoming ACKs, taking cues from applications to indicate end of
   transactions and use it for smarter tail loss recovery.

7.  Security Considerations

   The security considerations outlined in [RFC5681] apply to this
   document.  At this time we did not find any additional security
   problems with Tail loss probe.

8.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.

https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5681
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