
TCP Maintenance Working Group N. Dukkipati
Internet-Draft N. Cardwell
Intended status: Experimental Y. Cheng
Expires: August 29, 2013 M. Mathis
 Google, Inc
 February 25, 2013

Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses
draft-dukkipati-tcpm-tcp-loss-probe-01.txt

Abstract

 Retransmission timeouts are detrimental to application latency,
 especially for short transfers such as Web transactions where
 timeouts can often take longer than all of the rest of a transaction.
 The primary cause of retransmission timeouts are lost segments at the
 tail of transactions. This document describes an experimental
 algorithm for TCP to quickly recover lost segments at the end of
 transactions or when an entire window of data or acknowledgments are
 lost. Tail Loss Probe (TLP) is a sender-only algorithm that allows
 the transport to recover tail losses through fast recovery as opposed
 to lengthy retransmission timeouts. If a connection is not receiving
 any acknowledgments for a certain period of time, TLP transmits the
 last unacknowledged segment (loss probe). In the event of a tail
 loss in the original transmissions, the acknowledgment from the loss
 probe triggers SACK/FACK based fast recovery. TLP effectively avoids
 long timeouts and thereby improves TCP performance.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

Dukkipati, et al. Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Loss Probe February 2013

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 5

2. Loss probe algorithm . 5
2.1. Pseudocode . 6
2.2. FACK threshold based recovery 8

3. Detecting recovered losses 9
3.1. TLP Loss Detection: The Basic Idea 9
3.2. TLP Loss Detection: Algorithm Details 9

4. Discussion . 11
4.1. Unifying loss recoveries 12
4.2. Recovery of any N-degree tail loss 12

5. Experiments with TLP . 14
6. Related work . 16
7. Security Considerations 17
8. IANA Considerations . 17
9. References . 18

 Authors' Addresses . 19

Dukkipati, et al. Expires August 29, 2013 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP Loss Probe February 2013

1. Introduction

 Retransmission timeouts are detrimental to application latency,
 especially for short transfers such as Web transactions where
 timeouts can often take longer than all of the rest of a transaction.
 This document describes an experimental algorithm, Tail Loss Probe
 (TLP), to invoke fast recovery for losses that would otherwise be
 only recoverable through timeouts.

 The Transmission Control Protocol (TCP) has two methods for
 recovering lost segments. First, the fast retransmit algorithm
 relies on incoming duplicate acknowledgments (ACKs), which indicate
 that the receiver is missing some data. After a required number of
 duplicate ACKs have arrived at the sender, it retransmits the first
 unacknowledged segment and continues with a loss recovery algorithm
 such as the SACK-based loss recovery [RFC6675]. If the fast
 retransmit algorithm fails for any reason, TCP uses a retransmission
 timeout as the last resort mechanism to recover lost segments. If an
 ACK for a given segment is not received in a certain amount of time
 called retransmission timeout (RTO), the segment is resent [RFC6298].

 Timeouts can occur in a number of situations, such as the following:

 (1) Drop tail at the end of transactions. Example: consider a
 transfer of five segments sent on a connection that has a congestion
 window of ten. Any degree of loss in the tail, such as segments four
 and five, will only be recovered via a timeout.

 (2) Mid-transaction loss of an entire window of data or ACKs. Unlike
 (1) there is more data waiting to be sent. Example: consider a
 transfer of four segments to be sent on a connection that has a
 congestion window of two. If the sender transmits two segments and
 both are lost then the loss will only be recovered via a timeout.

 (3) Insufficient number of duplicate ACKs to trigger fast recovery at
 sender. The early retransmit mechanism [RFC5827] addresses this
 problem in certain special circumstances, by reducing the number of
 duplicate ACKs required to trigger a fast retransmission.

 (4) An unexpectedly long round-trip time (RTT), such that the ACKs
 arrive after the RTO timer expires. The F-RTO algorithm [RFC5682] is
 designed to detect such spurious retransmission timeouts and at least
 partially undo the consequences of such events.

 Measurements on Google Web servers show that approximately 70% of
 retransmissions for Web transfers are sent after the RTO timer
 expires, while only 30% are handled by fast recovery. Even on
 servers exclusively serving YouTube videos, RTO based retransmissions

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5682

Dukkipati, et al. Expires August 29, 2013 [Page 3]

Internet-Draft TCP Loss Probe February 2013

 account for about 46% of the retransmissions. If the losses are
 detectable from the ACK stream (through duplicate ACKs or SACK
 blocks) then early retransmit, fast recovery and proportional rate
 reduction are effective in avoiding timeouts [IMC11PRR]. Timeout
 retransmissions that occur in recovery and disorder state (a state
 indicating that a connection has received some duplicate ACKs),
 account for just 4% of the timeout episodes. On the other hand 96%
 of the timeout episodes occur without any preceding duplicate ACKs or
 other indication of losses at the sender [IMC11PRR]. Early
 retransmit and fast recovery have no hope of repairing losses without
 these indications. Efficiently addressing situations that would
 cause timeouts without any prior indication of losses is a
 significant opportunity for additional improvements to loss recovery.

 To get a sense of just how long the RTOs are in relation to
 connection RTTs, following is the distribution of RTO/RTT values on
 Google Web servers. [percentile, RTO/RTT]: [50th percentile, 4.3];
 [75th percentile, 11.3]; [90th percentile, 28.9]; [95th percentile,
 53.9]; [99th percentile, 214]. Large RTOs, typically caused by
 variance in measured RTTs, can be a result of intermediate queuing,
 and service variability in mobile channels. Such large RTOs make a
 huge contribution to the long tail on the latency statistics of short
 flows. Note that simply reducing the length of RTO does not address
 the latency problem for two reasons: first, it increases the chances
 of spurious retransmissions. Second and more importantly, an RTO
 reduces TCP's congestion window to one and forces a slow start.
 Recovery of losses without relying primarily on the RTO mechanism is
 beneficial for short TCP transfers.

 The question we address in this document is: Can a TCP sender recover
 tail losses of transactions through fast recovery and thereby avoid
 lengthy retransmission timeouts? We specify an algorithm, Tail Loss
 Probe (TLP), which sends probe segments to trigger duplicate ACKs
 with the intent of invoking fast recovery more quickly than an RTO at
 the end of a transaction. TLP is applicable only for connections in
 Open state, wherein a sender is receiving in-sequence ACKs and has
 not detected any lost segments. TLP can be implemented by modifying
 only the TCP sender, and does not require any TCP options or changes
 to the receiver for its operation. For convenience, this document
 mostly refers to TCP, but the algorithms and other discussion are
 valid for Stream Control Transmission Protocol (SCTP) as well.

 This document is organized as follows. Section 2 describes the basic
 Loss Probe algorithm. Section 3 outlines an algorithm to detect the
 cases when TLP plugs a hole in the sender. The algorithm makes the
 sender aware that a loss had occurred so it performs the appropriate
 congestion window reduction. Section 4 discusses the interaction of
 TLP with early retransmit in being able to recover any degree of tail

Dukkipati, et al. Expires August 29, 2013 [Page 4]

Internet-Draft TCP Loss Probe February 2013

 losses. Section 5 discusses the experimental results with TLP on
 Google Web servers. Section 6 discusses related work, and Section 7
 discusses the security considerations.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Loss probe algorithm

 The Loss probe algorithm is designed for a sender to quickly detect
 tail losses without waiting for an RTO. We will henceforth use tail
 loss to generally refer to either drops at the tail end of
 transactions or a loss of an entire window of data/ACKs. TLP works
 for senders with SACK enabled and in Open state, i.e. the sender has
 so far received in-sequence ACKs with no SACK blocks. The risk of a
 sender incurring a timeout is high when the sender has not received
 any ACKs for a certain portion of time but is unable to transmit any
 further data either because it is application limited (out of new
 data to send), receiver window (rwnd) limited, or congestion window
 (cwnd) limited. For these circumstances, the basic idea of TLP is to
 transmit probe segments for the specific purpose of eliciting
 additional ACKs from the receiver. The initial idea was to send some
 form of zero window probe (ZWP) with one byte of new or old data.
 The ACK from the ZWP would provide an additional opportunity for a
 SACK block to detect loss without an RTO. Additional losses can be
 detected subsequently and repaired as SACK based fast recovery
 proceeds. However, in practice sending a single byte of data turned
 out to be problematic to implement and more fragile than necessary.
 Instead we use a full segment to probe but have to add complexity to
 compensate for the probe itself masking losses.

 Define probe timeout (PTO) to be a timer event indicating that an ACK
 is overdue on a connection. The PTO value is set to max(2 * SRTT,
 10ms), where SRTT is the smoothed round-trip time [RFC6298], and is
 adjusted to account for delayed ACK timer when there is only one
 outstanding segment.

 The basic version of the TLP algorithm transmits one probe segment
 after a probe timeout if the connection has outstanding
 unacknowledged data but is otherwise idle, i.e. not receiving any
 ACKs or is cwnd/rwnd/application limited. The transmitted segment,
 aka loss probe, can be either a new segment if available and the
 receive window permits, or a retransmission of the most recently sent
 segment, i.e., the segment with the highest sequence number. When

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6298

Dukkipati, et al. Expires August 29, 2013 [Page 5]

Internet-Draft TCP Loss Probe February 2013

 there is tail loss, the ACK from the probe triggers fast recovery.
 In the absence of loss, there is no change in the congestion control
 or loss recovery state of the connection, apart from any state
 related to TLP itself.

 TLP MUST NOT be used for non-SACK connections. SACK feedback allows
 senders to use the algorithm described in section 3 to infer whether
 any segments were lost.

2.1. Pseudocode

 We define the terminology used in specifying the TLP algorithm:

 FlightSize: amount of outstanding data in the network as defined in
 [RFC5681].

 RTO: The transport's retransmission timeout (RTO) is based on
 measured round-trip times (RTT) between the sender and receiver, as
 specified in [RFC6298] for TCP.

 PTO: Probe timeout is a timer event indicating that an ACK is
 overdue. Its value is constrained to be smaller than or equal to an
 RTO.

 SRTT: smoothed round-trip time computed like in [RFC6298].

 Open state: the sender has so far received in-sequence ACKs with no
 SACK blocks, and no other indications (such as retransmission
 timeout) that a loss may have occurred.

 Consecutive PTOs: back-to-back PTOs all scheduled for the same tail
 packets in a flight. The (N+1)st PTO is scheduled after transmitting
 the probe segment for Nth PTO.

 The TLP algorithm works as follows:

 (1) Schedule PTO after transmission of new data in Open state:

 Check for conditions to schedule PTO outlined in step 2 below.
 FlightSize > 1: schedule PTO in max(2*SRTT, 10ms).
 FlightSize == 1: schedule PTO in max(2*SRTT, 1.5*SRTT+WCDelAckT).
 If RTO is earlier, schedule PTO in its place: PTO = min(RTO, PTO).

 WCDelAckT stands for worst case delayed ACK timer. When FlightSize
 is 1, PTO is inflated additionally by WCDelAckT time to compensate
 for a potential long delayed ACK timer at the receiver. The
 RECOMMENDED value for WCDelAckT is 200ms.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Dukkipati, et al. Expires August 29, 2013 [Page 6]

Internet-Draft TCP Loss Probe February 2013

 A PTO value of 2*SRTT allows a sender to wait long enough to know
 that an ACK is overdue. Under normal circumstances, i.e. no losses,
 an ACK typically arrives in one RTT. But choosing PTO to be exactly
 an RTT is likely to generate spurious probes given that even end-
 system timings can easily push an ACK to be above an RTT. We chose
 PTO to be the next integral value of RTT. If RTO is smaller than the
 computed value for PTO, then a probe is scheduled to be sent at the
 RTO time. The RTO timer is rearmed at the time of sending the probe,
 as is shown in Step 3 below. This ensures that a PTO is always sent
 prior to a connection experiencing an RTO.

 (2) Conditions for scheduling PTO:

 (a) Connection is in Open state.
 (b) Connection is either cwnd limited or application limited.
 (c) Number of consecutive PTOs <= 2.
 (d) Connection is SACK enabled.

 Implementations MAY use one or two consecutive PTOs.

 (3) When PTO fires:

 (a) If a new previously unsent segment exists:
 -> Transmit new segment.
 -> FlightSize += SMSS. cwnd remains unchanged.
 (b) If no new segment exists:
 -> Retransmit the last segment.
 (c) Increment statistics counter for loss probes.
 (d) If conditions in (2) are satisfied:
 -> Reschedule next PTO.
 Else:
 -> Rearm RTO to fire at epoch 'now+RTO'.

 The reason for retransmitting the last segment in Step (b) is so that
 the ACK will carry SACK blocks and trigger either SACK-based loss
 recovery [RFC6675] or FACK threshold based fast recovery [FACK]. On
 transmission of a TLP, a MIB counter is incremented to keep track of
 the total number of loss probes sent.

 (4) During ACK processing:

 Cancel any existing PTO.
 If conditions in (2) allow:
 -> Reschedule PTO relative to the ACK receipt time.

 Following is an example of TLP. All events listed are at a TCP
 sender.

https://datatracker.ietf.org/doc/html/rfc6675

Dukkipati, et al. Expires August 29, 2013 [Page 7]

Internet-Draft TCP Loss Probe February 2013

 (1) Sender transmits segments 1-10: 1, 2, 3, ..., 8, 9, 10. There is
 no more new data to transmit. A PTO is scheduled to fire in 2 RTTs,
 after the transmission of the 10th segment.

 (2) Receives acknowledgements (ACKs) for segments 1-5; segments 6-10
 are lost and no ACKs are received. Note that the sender
 (re)schedules its PTO timer relative to the last received ACK, which
 is the ACK for segment 5 in this case. The sender sets the PTO
 interval using the calculation described in step (1) of the
 algorithm.

 (3) When PTO fires, sender retransmits segment 10.

 (4) After an RTT, SACK for packet 10 arrives. The ACK also carries
 SACK holes for segments 6, 7, 8 and 9. This triggers FACK threshold
 based recovery.

 (5) Connection enters fast recovery and retransmits remaining lost
 segments.

2.2. FACK threshold based recovery

 At the core of TLP is its reliance on FACK threshold based algorithm
 to invoke Fast Recovery. In this section we specify this algorithm.

Section 3.1 of the Forward Acknowledgement (FACK) Paper [FACK]
 describes an alternate algorithm for triggering fast retransmit,
 based on the extent of the SACK scoreboard. Its goal is to trigger
 fast retransmit as soon as the receiver's reassembly queue is larger
 than the dupack threshold, as indicated by the difference between the
 forward most SACK block edge and SND.UNA. This algorithm quickly and
 reliably triggers fast retransmit in the presence of burst losses --
 often on the first SACK following such a loss. Such a threshold
 based algorithm also triggers fast retransmit immediately in the
 presence of any reordering with extent greater than the dupack
 threshold.

 FACK threshold based recovery works by introducing a new TCP state
 variable at the sender called SND.FACK. SND.FACK reflects the
 forward-most data held by the receiver and is updated when a SACK
 block is received acknowledging data with a higher sequence number
 than the current value of SND.FACK. SND.FACK reflects the highest
 sequence number known to have been received plus one. Note that in
 non-recovery states, SND.FACK is the same as SND.UNA. The following
 snippet is the pseudocode for FACK threshold based recovery.

 If (SND.FACK - SND.UNA) > dupack threshold:
 -> Invoke Fast Retransmit and Fast Recovery.

Dukkipati, et al. Expires August 29, 2013 [Page 8]

Internet-Draft TCP Loss Probe February 2013

3. Detecting recovered losses

 If the only loss was the last segment, there is the risk that the
 loss probe itself might repair the loss, effectively masking it from
 congestion control. To avoid interfering with mandatory congestion
 control [RFC5681] it is imperative that TLP include a mechanism to
 detect when the probe might have masked a loss and to properly reduce
 the congestion window (cwnd). An algorithm to examine subsequent
 ACKs to determine whether the original segment was lost is described
 here.

 Since it is observed that a significant fraction of the hosts that
 support SACK do not support duplicate selective acknowledgments
 (D-SACKs) [RFC2883] the TLP algorithm for detecting such lost
 segments relies only on basic RFC 2018 SACK [RFC2018].

3.1. TLP Loss Detection: The Basic Idea

 Consider a TLP retransmission "episode" where a sender retransmits N
 consecutive TLP packets, all for the same tail packet in a flight.
 Let us say that an episode ends when the sender receives an ACK above
 the SND.NXT at the time of the episode. We want to make sure that
 before the episode ends the sender receives N "TLP dupacks",
 indicating that all N TLP probe segments were unnecessary, so there
 was no loss/hole that needed plugging. If the sender gets less than
 N "TLP dupacks" before the end of the episode, then probably the
 first TLP packet to arrive at the receiver plugged a hole, and only
 the remaining TLP packets that arrived at the receiver generated
 dupacks.

 Note that delayed ACKs complicate the picture, since a delayed ACK
 will imply that the sender receives one fewer ACK than would normally
 be expected. To mitigate this complication, before sending a TLP
 loss probe retransmission, the sender should attempt to wait long
 enough that the receiver has sent any delayed ACKs that it is
 withholding. The sender algorithm, described in section 2.1 features
 such a delay.

 If there is ACK loss or a delayed ACK, then this algorithm is
 conservative, because the sender will reduce cwnd when in fact there
 was no packet loss. In practice this is acceptable, and potentially
 even desirable: if there is reverse path congestion then reducing
 cwnd is prudent.

3.2. TLP Loss Detection: Algorithm Details

 (1) State

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018

Dukkipati, et al. Expires August 29, 2013 [Page 9]

Internet-Draft TCP Loss Probe February 2013

 TLPRtxOut: the number of unacknowledged TLP retransmissions in
 current TLP episode. The connection maintains this integer counter
 that tracks the number of TLP retransmissions in the current episode
 for which we have not yet received a "TLP dupack". The sender
 initializes the TLPRtxOut field to 0.

 TLPHighRxt: the value of SND.NXT at the time of TLP retransmission.
 The TLP sender uses TLPHighRxt to record SND.NXT at the time it
 starts doing TLP transmissions during a given TLP episode.

 (2) Initialization

 When a connection enters the ESTABLISHED state, or suffers a
 retransmission timeout, or enters fast recovery, it executes the
 following:

 TLPRtxOut = 0;
 TLPHighRxt = 0;

 (3) Upon sending a TLP retransmission:

 if (TLPRtxOut == 0)
 TLPHighRxt = SND.NXT;
 TLPRtxOut++;

 (4) Upon receiving an ACK:

 (a) Tracking ACKs

 We define a "TLP dupack" as a dupack that has all the regular
 properties of a dupack that can trigger fast retransmit, plus the ACK
 acknowledges TLPHighRxt, and the ACK carries no new SACK information
 (as noted earlier, TLP requires that the receiver supports SACK).
 This is the kind of ACK we expect to see for a TLP transmission if
 there were no losses. More precisely, the TLP sender considers a TLP
 probe segment as acknowledged if all of the following conditions are
 met:

 (a) TLPRtxOut > 0
 (b) SEG.ACK == TLPHighRxt
 (c) the segment contains no SACK blocks for sequence ranges
 above TLPHighRxt
 (d) the ACK does not advance SND.UNA
 (e) the segment contains no data
 (f) the segment is not a window update

 If all of those conditions are met, then the sender executes the
 following:

Dukkipati, et al. Expires August 29, 2013 [Page 10]

Internet-Draft TCP Loss Probe February 2013

 TLPRtxOut--;

 (b) Marking the end of a TLP episode and detecting losses

 If an incoming ACK is after TLPHighRxt, then the sender deems the TLP
 episode over. At that time, the TLP sender executes the following:

 isLoss = (TLPRtxOut > 0) &&
 (segment does not carry a DSACK for TLP retransmission);
 TLPRtxOut = 0
 if (isLoss)
 EnterRecovery();

 In other words, if the sender detects an ACK for data beyond the TLP
 loss probe retransmission then (in the absence of reordering on the
 return path of ACKs) it should have received any ACKs that will
 indicate whether the original or any loss probe retransmissions were
 lost. An exception is the case when the segment carries a Duplicate
 SACK (DSACK) for the TLP retransmission. If the TLPRtxOut count is
 still non-zero and thus indicates that some TLP probe segments remain
 unacknowledged, then the sender should presume that at least one
 segment was lost, so it should enter fast recovery using the
 proportional rate reduction algorithm [IMC11PRR].

 (5) Senders must only send a TLP loss probe retransmission if all the
 conditions from section 2.1 are met and the following condition also
 holds:

 (TLPRtxOut == 0) || (SND.NXT == TLPHighRxt)

 This ensures that there is at most one sequence range with
 outstanding TLP retransmissions. The sender maintains this invariant
 so that there is at most one TLP retransmission "episode" happening
 at a time, so that the sender can use the algorithm described above
 in this section to determine when the episode is over, and thus when
 it can infer whether any data segments were lost.

 Note that this condition only limits the number of outstanding TLP
 loss probes that are retransmissions. There may be an arbitrary
 number of outstanding unacknowledged TLP loss probes that consist of
 new, previously-unsent data, since the standard retransmission
 timeout and fast recovery algorithms are sufficient to detect losses
 of such probe segments.

4. Discussion

 In this section we discuss two properties related to TLP.

Dukkipati, et al. Expires August 29, 2013 [Page 11]

Internet-Draft TCP Loss Probe February 2013

4.1. Unifying loss recoveries

 The existing loss recovery algorithms in TCP have a discontinuity: A
 single segment loss in the middle of a packet train can be recovered
 via fast recovery while a loss at the end of the train causes an RTO.
 Example: consider a train of segments 1-10, loss of segment five can
 be recovered quickly through fast recovery, while loss of segment ten
 can only be recovered through a timeout. In practice, the difference
 between losses that trigger RTO versus those invoking fast recovery
 has more to do with the position of the losses as opposed to the
 intensity or magnitude of congestion at the link.

 TLP unifies the loss recovery mechanisms regardless of the position
 of a loss, so now with TLP a segment loss in the middle of a train as
 well as at the tail end can now trigger the same fast recovery
 mechanisms.

4.2. Recovery of any N-degree tail loss

 The TLP algorithm, when combined with a variant of the early
 retransmit mechanism described below, is capable of recovering any
 tail loss for any sized flow using fast recovery.

 We propose the following enhancement to the early retransmit
 algorithm described in [RFC5827]: in addition to allowing an early
 retransmit in the scenarios described in [RFC5827], we propose to
 allow a delayed early retransmit [IMC11PRR] in the case where there
 are three outstanding segments that have not been cumulatively
 acknowledged and one segment that has been fully SACKed.

 Consider the following scenario, which illustrates an example of how
 this enhancement allows quick loss recovery in a new scenario:

 (1) scoreboard reads: A _ _ _
 (2) TLP retransmission probe of the last (fourth) segment
 (3) the arrival of a SACK for the last segment changes
 scoreboard to: A _ _ S
 (4) early retransmit and fast recovery of the second and
 third segments

 With this enhancement to the early retransmit mechanism, then for any
 degree of N-segment tail loss we get a quick recovery mechanism
 instead of an RTO.

 Consider the following taxonomy of tail loss scenarios, and the
 ultimate outcome in each case:

https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827

Dukkipati, et al. Expires August 29, 2013 [Page 12]

Internet-Draft TCP Loss Probe February 2013

 number of scoreboard after
 losses TLP retrans ACKed mechanism final outcome
 -------- ----------------- ----------------- -------------
 (1) AAAL AAAA TLP loss detection all repaired
 (2) AALL AALS early retransmit all repaired
 (3) ALLL ALLS early retransmit all repaired
 (4) LLLL LLLS FACK fast recovery all repaired
 (5) >=5 L ..LS FACK fast recovery all repaired

 key:
 A = ACKed segment
 L = lost segment
 S = SACKed segment

 Let us consider each tail loss scenario in more detail:

 (1) With one segment lost, the TLP loss probe itself will repair the
 loss. In this case, the sender's TLP loss detection algorithm will
 notice that a segment was lost and repaired, and reduce its
 congestion window in response to the loss.

 (2) With two segments lost, the TLP loss probe itself is not enough
 to repair the loss. However, when the SACK for the loss probe
 arrives at the sender, then the early retransmit mechanism described
 in [RFC5827] will note that with two segments outstanding and the
 second one SACKed, the sender should retransmit the first segment.
 This retransmit will repair the single remaining lost segment.

 (3) With three segments lost, the TLP loss probe itself is not enough
 to repair the loss. However, when the SACK for the loss probe
 arrives at the sender, then the enhanced early retransmit mechanism
 described in this section will note that with three segments
 outstanding and the third one SACKed, the sender should retransmit
 the first segment and enter fast recovery. The early retransmit and
 fast recovery phase will, together, repair the the remaining two lost
 segments.

 (4) With four segments lost, the TLP loss probe itself is not enough
 to repair the loss. However, when the SACK for the loss probe
 arrives at the sender, then the FACK fast retransmit mechanism [FACK]
 will note that with four segments outstanding and the fourth one
 SACKed, the sender should retransmit the first segment and enter fast
 recovery. The fast retransmit and fast recovery phase will,
 together, repair the the remaining two lost segments.

 (5) With five or more segments lost, events precede much as in case
 (4). The TLP loss probe itself is not enough to repair the loss.

https://datatracker.ietf.org/doc/html/rfc5827

Dukkipati, et al. Expires August 29, 2013 [Page 13]

Internet-Draft TCP Loss Probe February 2013

 However, when the SACK for the loss probe arrives at the sender, then
 the FACK fast retransmit mechanism [FACK] will note that with five or
 more segments outstanding and the segment highest in sequence space
 SACKed, the sender should retransmit the first segment and enter fast
 recovery. The fast retransmit and fast recovery phase will,
 together, repair the remaining lost segments.

 In summary, the TLP mechanism, in conjunction with the proposed
 enhancement to the early retransmit mechanism, is able to recover
 from a tail loss of any number of segments without resort to a costly
 RTO.

5. Experiments with TLP

 In this section we describe experiments and measurements with TLP
 performed on Google Web servers using Linux 2.6. The experiments
 were performed over several weeks and measurements were taken across
 a wide range of Google applications. The main goal of the
 experiments is to instrument and measure TLP's performance relative
 to the baseline. The experiment and baseline were using the same
 kernels with an on/off switch to enable TLP.

 Our experiments include both the basic TLP algorithm of Section 2 and
 its loss detection component in Section 3. All other algorithms such
 as early retransmit and FACK threshold based recovery are present in
 the both the experiment and baseline. There are three primary
 metrics we are interested in: impact on TCP latency (average and tail
 or 99th percentile latency), retransmission statistics, and the
 overhead of probe segments relative to the total number of
 transmitted segments. TCP latency is the time elapsed between the
 server transmitting the first byte of the response to it receiving an
 ACK for the last byte.

 The table below shows the percentiles and average latency improvement
 of key Web applications, including even those responses without
 losses, measured over a period of one week. The key takeaway is: the
 average response time improved up to 7% and the 99th percentile
 improved by 10%. Nearly all of the improvement for TLP is in the
 tail latency (post-90th percentile). The varied improvements across
 services are due to different response-size distributions and traffic
 patterns. For example, TLP helps the most for Images, as these are
 served by multiple concurrently active TCP connections which increase
 the chances of tail segment losses.

Dukkipati, et al. Expires August 29, 2013 [Page 14]

Internet-Draft TCP Loss Probe February 2013

 Application Average 99%

 Google Web Search -3% -5%

 Google Maps -5% -10%

 Google Images -7% -10%

 TLP also improved performance in mobile networks -- by 7.2% for Web
 search and Instant and 7.6% for Images transferred over Verizon
 network. To see why and where the latency improvements are coming
 from, we measured the retransmission statistics. We broke down the
 retransmission stats based on nature of retransmission -- timeout
 retransmission or fast recovery. TLP reduced the number of timeouts
 by 15% compared to the baseline, i.e. (timeouts_tlp -
 timeouts_baseline) / timeouts_baseline = 15%. Instead, these losses
 were either recovered via fast recovery or by the loss probe
 retransmission itself. The largest reduction in timeouts is when the
 sender is in the Open state in which it receives only insequence ACKs
 and no duplicate ACKs, likely because of tail losses.
 Correspondingly, the retransmissions occurring in the slow start
 phase after RTO reduced by 46% relative to baseline. Note that it is
 not always possible for TLP to convert 100% of the timeouts into fast
 recovery episodes because a probe itself may be lost. Also notable
 in our experiments is a significant decrease in the number of
 spurious timeouts -- the experiment had 61% fewer congestion window
 undo events. The Linux TCP sender uses either DSACK or timestamps to
 determine if retransmissions are spurious and employs techniques for
 undoing congestion window reductions. We also note that the total
 number of retransmissions decreased 7% with TLP because of the
 decrease in spurious retransmissions, and because the TLP probe
 itself plugs a hole.

 We also quantified the overhead of probe packets. The probes
 accounted for 0.48% of all outgoing segments, i.e. (number of probe
 segments / number of outgoing segments)*100 = 0.48%. This is a
 reasonable overhead when contrasted with the overall retransmission
 rate of 3.2%. 10% of the probes sent are new segments and the rest
 are retransmissions, which is unsurprising given that short Web
 responses often don't have new data to send. We also found that in
 about 33% of the cases, the probes themselves plugged the only hole
 at receiver and the loss detection algorithm reduced the congestion
 window. 37% of the probes were not necessary and resulted in a
 duplicate acknowledgment.

 Besides the macro level latency and retransmission statistics, we
 report some measurements from TCP's internal state variables at the

Dukkipati, et al. Expires August 29, 2013 [Page 15]

Internet-Draft TCP Loss Probe February 2013

 point when a probe segment is transmitted. The following
 distribution shows the FlightSize and congestion window values when a
 PTO is scheduled. We note that cwnd is not the limiting factor and
 that nearly all of the probe segments are sent within the congestion
 window.

 percentile 10% 25% 50% 75% 90% 99%

 FlightSize 1 1 2 3 10 20
 cwnd 5 10 10 10 17 44

 We have also experimented with a few variations of TLP: multiple
 probe segments versus single probe for the same tail loss episode,
 and several values for WCDelAckT. Our experiments show that sending
 just one probe suffices to get most (~90%) of latency benefits. The
 experiment results reported in this section and our current
 implementation limits number of probes to one, although the draft
 itself allows up to two consecutive probes. We chose the worst case
 delayed ack timer to be 200ms. When FlightSize equals 1 it is
 important to account for the delayed ACK timer in the PTO value, in
 order to bring down the number of unnecessary probe segments. With
 delays of 0ms and 50ms, the probe overhead jumped from 0.48% to 3.1%
 and 2.2% respectively. We have also experimented with transmitting
 1-byte probe retransmissions as opposed to an entire MSS
 retransmission probe. While this scheme has the advantage of not
 requiring the loss detection algorithm outlined in Section 3, it
 turned out to be problematic to implement correctly in certain TCP
 stacks. Additionally, retransmitting 1-byte probe costs one more RTT
 to recover single packet tail losses, which is detrimental for short
 transfer latency.

6. Related work

 TCP's long and conservative RTO recovery has long been identified as
 the major performance bottleneck for latency-demanding applications.
 A well-studied example is online gaming that requires reliability and
 low latency but small bandwidth. [GRIWODZ06] shows that repeated
 long RTO is the dominating performance bottleneck for game
 responsiveness. The authors in [PETLUND08] propose to use linear RTO
 to improve the performance, which has been incorporated in the Linux
 kernel as a non-default socket option for such thin streams.
 [MONDAL08] further argues exponential RTO backoff should be removed
 because it is not necessary for the stability of Internet. In
 contrast, TLP does not change the RTO timer calculation or the
 exponential back off. TLP's approach is to keep the behavior after
 RTO conservative for stability but allows a few timely probes before
 concluding the network is badly congested and cwnd should fall to 1.

Dukkipati, et al. Expires August 29, 2013 [Page 16]

Internet-Draft TCP Loss Probe February 2013

 As noted earlier in the Introduction the F-RTO [RFC5682] algorithm
 reduces the number of spurious timeout retransmissions and the Early
 Retransmit [RFC5827] mechanism reduces timeouts when a connection has
 received a certain number of duplicate ACKs. Both are complementary
 to TLP and can work alongside. Rescue retransmission introduced in
 [RFC6675] deals with loss events such as AL*SL* (using the same
 notation as section 4). TLP covers wider range of events such as
 AL*. We experimented with rescue retransmission on Google Web
 servers, but did not observe much performance improvement. When the
 last segment is lost, it is more likely that a number of contiguous
 segments preceding the segment are also lost, i.e. AL* is common.
 Timeouts that occur in the fast recovery are rare.

 [HURTIG13] proposes to offset the elapsed time of the pending packet
 when re-arming the RTO timer. It is possible to apply the same idea
 for the TLP timer as well. We have not yet tested such a change to
 TLP.

 Tail Loss Probe is one of several algorithms designed to maximize the
 robustness of TCPs self clock in the presence of losses. It follows
 the same principles as Proportional Rate Reduction [IMC11PRR] and TCP
 Laminar [Laminar].

 On a final note we note that Tail loss probe does not eliminate 100%
 of all RTOs. RTOs still remain the dominant mode of loss recovery
 for short transfers. More work in future should be done along the
 following lines: transmitting multiple loss probes prior to finally
 resorting to RTOs, maintaining ACK clocking for short transfers in
 the absence of new data by clocking out old data in response to
 incoming ACKs, taking cues from applications to indicate end of
 transactions and use it for smarter tail loss recovery.

7. Security Considerations

 The security considerations outlined in [RFC5681] apply to this
 document. At this time we did not find any additional security
 problems with Tail loss probe.

8. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5681

Dukkipati, et al. Expires August 29, 2013 [Page 17]

Internet-Draft TCP Loss Probe February 2013

9. References

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, August 2012.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

 [RFC5827] Allman, M., Ayesta, U., Wang, L., Blanton, J., and P.
 Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, April 2010.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [IMC11PRR]
 Mathis, M., Dukkipati, N., Cheng, Y., and M. Ghobadi,
 "Proportional Rate Reduction for TCP", Proceedings of the
 2011 ACM SIGCOMM conference on Internet measurement
 conference , 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [FACK] Mathis, M. and M. Jamshid, "Forward acknowledgement:
 refining TCP congestion control", ACM SIGCOMM Computer
 Communication Review, Volume 26, Issue 4, Oct. 1996. ,
 1996.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [GRIWODZ06]
 Griwodz, C. and P. Halvorsen, "The fun of using TCP for an
 MMORPG", NOSSDAV , 2006.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2018

Dukkipati, et al. Expires August 29, 2013 [Page 18]

Internet-Draft TCP Loss Probe February 2013

 [PETLUND08]
 Petlund, A., Evensen, K., Griwodz, C., and P. Halvorsen,
 "TCP enhancements for interactive thin-stream
 applications", NOSSDAV , 2008.

 [MONDAL08]
 Mondal, A. and A. Kuzmanovic, "Removing Exponential
 Backoff from TCP", ACM SIGCOMM Computer Communication
 Review , 2008.

 [Laminar] Mathis, M., "Laminar TCP and the case for refactoring TCP
 congestion control", July 2012.

 [HURTIG13]
 Hurtig, P., Brunstrom, A., Petlund, A., and M. Welzl, "TCP
 and SCTP RTO Restart", draft-ietf-tcpm-rtorestart-00 (work
 in progress), February 2013.

Authors' Addresses

 Nandita Dukkipati
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 93117
 USA

 Email: nanditad@google.com

 Neal Cardwell
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: ncardwell@google.com

 Yuchung Cheng
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 93117
 USA

 Email: ycheng@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rtorestart-00

Dukkipati, et al. Expires August 29, 2013 [Page 19]

Internet-Draft TCP Loss Probe February 2013

 Matt Mathis
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 93117
 USA

 Email: mattmathis@google.com

Dukkipati, et al. Expires August 29, 2013 [Page 20]

