
IESG F. Detienne
Internet-Draft P. Sethi
Expires: January 30, 2010 Cisco
 Y. Nir
 Check Point
 July 29, 2009

Safe IKE Recovery
draft-detienne-ikev2-recovery-03

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 30, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Detienne, et al. Expires January 30, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Safe IKE Recovery July 2009

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 The Internet Key Exchange protocol version 2 (IKEv2) suffers from the
 limitation of not having a means to quickly recover from a stale
 state known as dangling Security Associations (SA's) where one side
 has SA's that the corresponding party does not have anymore.

 This Draft proposes to address the limitation by offering an
 immediate, DoS-free recovery mechanism for IKE that can be used in
 all failover or post-crash situations.

Detienne, et al. Expires January 30, 2010 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Safe IKE Recovery July 2009

Table of Contents

1. Introduction . 4
2. Protocol overview . 4
2.1. Protocol requirements 4
2.1.1. Security level . 4
2.1.2. Network scenarios 5
2.1.3. Lightweightness 5

2.2. High level description 6
2.3. Notation . 6
2.4. Protocol design guidelines 6
2.5. Protocol design rationale 7

3. IKE recovery . 8
3.1. IKE Recovery options 8
3.2. Stateless IKE Recovery 8
3.2.1. Introducing CHECK_SPI 8
3.2.2. Stateless recovery by invalid IKE packets 8
3.2.3. Wait before rekey 11
3.2.4. Stateless IKE Recovery cookie 11

3.3. Ticket based IKE recovery using Session Resumption 12
3.3.1. Ticket Based Recovery 12
3.3.2. Choice of Recovery Mechanism 12
3.3.3. Ticket based recovery by invalid IKE packets 13

3.4. IPsec SA recovery . 15
3.4.1. In the presence of an IKE_SA 15
3.4.2. In the absence of an IKE_SA 16

3.5. Mandatory Initiators 18
3.6. Recovery closure . 20
3.7. Dealing with race conditions 20

4. Throttling and dampening 20
4.1. Invalid SPI throttling 21
4.2. Dampening . 21
4.3. User controls . 22

5. Negotiating IKE recovery 22
6. Payload formats . 23
7. IANA Considerations . 24
8. Security Considerations 24
9. Collapsed stateless exchange 24
10. Change log . 25
10.1. Changes from draft-fdetienn-sir-02 25

11. References . 25
11.1. Normative References 25
11.2. Informative References 26

 Authors' Addresses . 26

https://datatracker.ietf.org/doc/html/draft-fdetienn-sir-02

Detienne, et al. Expires January 30, 2010 [Page 3]

Internet-Draft Safe IKE Recovery July 2009

1. Introduction

 If an IKEv2 ([IKEv2]) endpoint receives an IPsec packet that it does
 not recognize (invalid SPI), a specific notify (INVALID_SPI) can be
 sent back to the originating peer to take action. This payload is
 typically only going to be trusted if it is protected by a IKE_SA as
 unprotected notifies can easily be forged. Similarly, an IKEv2
 endpoint receiving an unrecognized IKE message MAY send back an
 INVALID_IKE_SPI notify to the originating peer. In order to validate
 those unauthenticated messages, a polling sequence has to be started.

 The polling sequence works as follow. When a peer doubts the
 liveness of its remote peer, it can send empty informational
 exchanges expecting a reply confirming liveness. This works as
 informational exchanges are supposed to be acknowledged in IKEv2.

 Practical mechanisms offered so far suffer from one of the following
 limitations:
 o poll based and slow to react or resource hungry
 o based on unauthenticated packets and hence open to denial of
 service attacks
 o resource intensive (mostly CPU)
 This memo proposes to decrease the time incurred by this sequence.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [Bra97].

2. Protocol overview

2.1. Protocol requirements

 Dangling SA's can arise from many situations and in many network
 deployment contexts. The protocol described herein is meant to solve
 the dangling SA problem in all possible contexts, without making any
 assumption on resource availability that IKE does not already make.
 Since speed is the main driver for this memo, the protocol must
 minimize the time taken to identify then repair a dangling SA
 condition.

2.1.1. Security level

 The security level of the protocol is targeted to be at least as
 secure as IKE itself; i.e., the recovery protocol MUST NOT offer an
 entry point to an attack that IKE alone could resist to (sufficient
 level of security).

Detienne, et al. Expires January 30, 2010 [Page 4]

Internet-Draft Safe IKE Recovery July 2009

2.1.2. Network scenarios

2.1.2.1. Remote access vs. lan-to-lan

 The protocol must be independent of the network deployment. I.e.,
 the protocol must be usable in lan-to-lan as well as in remote-access
 types of situations or any other use case that can be deployed. No
 restriction must be made for the scope of the recovery protocol.

2.1.2.2. Failover pairs and clusters

 The protocol must work in the presence of failover pairs or clusters.
 Some network deployments will involve clusters of devices acting as a
 single device and those clusters may be extremely large. No
 assumption must be made as to the devices or group of devices that
 will implement the protocols. No back-channel mechanism should be
 necessary for the cluster to support the recovery protocol fully and
 securely; it is not expected that the cluster will be practically
 able to maintain communication between its elements, yet failover and
 recovery between elements of the cluster must remain possible.

2.1.2.3. Transition smoothness

 The protocol must cover for transitions; in particular, it must cover
 what happens when the SA search indices are changed. For example, if
 the (IKE_SPI,src_addr,dst_addr) tuple changes as would be the case in
 an IKE rekey or a MOBIKE update, the recovery protocol must support
 that transition smoothly.

 Ideally, the protocol must be insensitive to SA index changes and
 must avoid deleting state in order to preserve the data flow until
 new SA's are in place to take care of it.

2.1.3. Lightweightness

 The protocol should be lightweight and consume minimum amounts of
 network, memory and computational resources to validate dangling
 state. Ideally, the protocol should not consume anything that is not
 strictly necessary to the security and validity of the protocol.
 Also, the protocol should avoid state creation until absolutely
 necessary.

 This requirement is particularly important for resource constrained
 devices as well as for multiprotocol devices whose memory and CPU is
 claimed by and shared with other protocols or tasks. This
 requirement is the main reason for ruling out Birth Certificates as
 described in [BIRTHCERT].

Detienne, et al. Expires January 30, 2010 [Page 5]

Internet-Draft Safe IKE Recovery July 2009

2.2. High level description

 The recovery procedure works in 3 stages:
 1. An invalid IKE or ESP packet is received by either peer
 2. The remote peer is notified through a protected or unprotected
 notify
 * Protected notifies are implicitly trusted
 * The remote peer attemps to confirm the legitimacy of
 Unprotected Notifies
 3. The remote peer deletes or recreates the SA's in error

2.3. Notation

 The IKEv2 notation will be used throughout this document with one
 notable addition. Parent SA describes an IKE_SA from which a
 CHILD_SA has been derived.

 The following notation is specific to this document:
 o Cookie_X: a cookie generated by peer X that is to be reflected by
 peer Y.
 o CHECK_SPI(QUERY/ACK/NACK, Cookie): a contextual notation to
 express that cookie data is attached to a CHECK_SPI payload
 CHECK_SPI(QUERY/ACK/NACK). See Section 6.

2.4. Protocol design guidelines

 The general approach to recovering from dangling SA situations is to
 send proofs of desynchronization and liveness. It is admittedly
 difficult for two gateways to demonstrate they did have SA's but have
 lost them without a secure, authenticated channel to do so. It is
 however relatively easy for these gateways to provide valuable hints
 about the lost SA's.

 This memo presents a protocol that builds enough trust for those
 hints to be taken in account. The basic principle is that an
 attacker taking advantage of this recovery procedure would have to be
 positioned on the network such that it could perform more interesting
 attacks than tackling recovery. I.e. the barrier for attacking IKE
 recovery is as high or higher than other parts of the IKE protocol.

 The recovery of SA's as outlined in this memo occurs in three phases:
 o Unrecognized SPI's are detected
 o The protocol collects clues of previous connectivity
 o The SA's are repaired by [IKEv2] or by reconstructing the SA from
 the "ticket"

 This memo follows the below guidelines:

Detienne, et al. Expires January 30, 2010 [Page 6]

Internet-Draft Safe IKE Recovery July 2009

 o event driven protocol -- no polling involved
 o re-create SA's instead of deleting them upon error
 o let the side that still has the SA's negotiate fresh SA's after a
 failure
 o do not generate state when it can be avoided; reduce CPU cost

2.5. Protocol design rationale

 IKEv2 already specifies a poll-based peer liveness detection
 mechanism. While this type of mechanism helps recovery in most
 situations, the time taken for recovery tends to be high.
 Convergence time requirements are getting shorter and faster
 protocols are becoming a necessity.

 The protocol in this memo is triggered when dangling SA's are
 detected, i.e. when a peer receives unrecognized SPI's. This event
 is in turn triggered when there is actual traffic to be sent so there
 would be little point in just deleting SA's then hoping for the
 systems to recreate them. Instead, these SA's SHOULD be repaired as
 fast as possible in order for the underlying network traffic to be
 forwarded. This protocol assumes that the dangling SA's are meant to
 be rebuilt and not deleted.

 The device that has the SA's also has all the information needed to
 rekey them and becomes the defacto initiator at the end of the
 recovery procedure. This is particularly important for systems with
 dynamic security policies that do not specify how to build the SA; it
 may not be obvious for those peers to determine which security
 parameter they should use to recreate the SA they are now missing.
 When recreating the SA, the peer that has SA's implicitly knows what
 to rebuild and can use the old SA as a template.

 The choice of the rekeyer also brings in an added security value.
 The side that wants to transmit data or at least that pretends having
 SA's has to demonstrate 'willingness' to actually transmit.
 Correspondingly it also means that the gateway that does not have
 SA's is not forced to negotiate anything it may not need. It is
 important to note that the initial effort of setting up timers and
 retransmitting, etc... is left to the side that wants to transmit
 data.

 Last but not least, the protocol can remain stateless until
 sufficient proof of liveness is discovered. In fact, one of the
 protocol variations in this memo allows full statelessness at the
 expense of a round trip time. In an other variation, some small but
 reboot-resistant storage (a key) is used to accelerate the recovery.

Detienne, et al. Expires January 30, 2010 [Page 7]

Internet-Draft Safe IKE Recovery July 2009

3. IKE recovery

3.1. IKE Recovery options

 During their IKEv2 exchange, two peers negotiate support for IKE
 Recovery. If both peers can store ephemeral information as well as
 longer term additional information related to IKE Recovery, an
 accelerated procedure for setting up new SAs can be used. This
 procedure is called Ticket Based IKE Recovery and is described in

Section 3.3.

 If either peer cannot store ephemeral or long term information, peers
 fall back to Sateless IKE Recovery described in Section 3.2.

 In either case, IKE Recovery is negotiated during the initial IKE
 exchange by advertising capabilities as described in Section 5.

3.2. Stateless IKE Recovery

3.2.1. Introducing CHECK_SPI

 In order to achieve stateless IKE recovery, this memo introduces a
 new notify type called CHECK_SPI. The CHECK_SPI payload carries an
 SPI (IKE_SA or Child SA) and one of three sub-types (QUERY, ACK,
 NACK). The semantic of the CHECK_SPI subtypes is the following:
 o QUERY: a peer queries the remote peer SA DB for the presence of
 the SA whose value is in the payload
 o ACK: a peer confirms it has the SA specified in the payload
 o NACK: a peer confirms it does not have the SA specified in the
 payload

 The payload format of the CHECK_SPI notify is covered in Section 6.

3.2.2. Stateless recovery by invalid IKE packets

 When an IKE peer X receives an IKE packet with an unknown IKE SPI
 (A,B), that is not an initialization offer (IKE_SA_INIT), peer X
 SHOULD send an unprotected INVALID_IKE_SPI notification.

 Peer X Peer Y

 HDR(A,B) ...
 <--

 HDR(A,B) INVALID_IKE_SPI(A,B)
 -->

 Even if another IKE_SA exists with the remote peer Y, the

Detienne, et al. Expires January 30, 2010 [Page 8]

Internet-Draft Safe IKE Recovery July 2009

 notification MUST NOT be sent protected since peer Y may not share
 this SA either.

 In order to limit the risk of Denial of Service attacks, the sending
 of the INVALID_IKE_SPI notification MUST be rate limited.

 When peer Y receives the unauthenticated INVALID_IKE_SPI referencing
 the offending IKE SPI (A,B), Y MUST perform the following actions:
 o verify that (A,B) is indeed an active IKE_SPI with X
 o send to X a notify type CHECK_SPI(QUERY, (A,B), Cookie_Y)

 Peer X Peer Y

 HDR(A,B) INVALID_IKE_SPI(A,B)
 -->

 HDR(A,B) CHECK_SPI(QUERY(A,B),Cookie_Y)
 <--

 The sending of the CHECK_SPI packet MUST be rate limited on a per
 peer basis.

 State SHOULD NOT have been generated by either X or Y at this point.
 If the INVALID_IKE_SPI or CHECK_SPI notification gets lost, and X
 indeed does not have the IKE SPI, the process will start over again
 at the next protected IKE message sent by Y to X.

 When peer X receives an unauthenticated CHECK_SPI(QUERY,(A,B))
 packet, it MUST perform a look up for (A,B) in its IKE_SA database.
 Depending on whether X has or does not have the offending SA, it
 SHOULD reply with an IKE packet CHECK_SPI(ACK/NACK,(A,B)). The
 cookie data in the CHECK_SPI(ACK/NACK) packet is the same as that
 recieved in the CHECK_SPI(QUERY), i.e. the cookie is reflected back
 in the response.

Section 3.2.4 discusses cookie generation in greater detail. For
 now, it is enough to know that the cookie should contain enough
 information for peer Y to validate the CHECK_SPI(ACK/NACK) response
 without having to keep any state.

 Peer X Peer Y

 HDR(A,B) CHECK_SPI(QUERY,(A,B),Cookie_Y)
 <--

 HDR(A,B) CHECK_SPI(ACK/NACK,(A,B),Cookie_Y)
 [N(Cookie_X)]
 -->

Detienne, et al. Expires January 30, 2010 [Page 9]

Internet-Draft Safe IKE Recovery July 2009

 When peer Y receives the CHECK_SPI(ACK/NACK, Cookie_Y) packet, it
 MUST ensure Cookie_Y is valid. If it is not, the packet MUST be
 dropped and a rate limited message MUST be logged.

 If Cookie_Y is valid and the remote peer X confirms it has the IKE
 SPI (via CHECK_SPI(ACK,...)), a rate limited message SHOULD be
 logged; this could be a race condition or an attack from a spoofing
 attacker.

 If Cookie_Y is valid and the remote peer X confirms it does NOT have
 the IKE SPI (via CHECK_SPI(NACK,..)), peer Y SHOULD initiate a new
 IKE exchange to renegotiate the Parent SA. The parameters of the
 negotiation SHOULD be taken primarily from the configuration
 (security policy) and, if absent, taken from the confirmed dangling
 SA. Renegotiation of CHILD_SA's SHOULD follow the Parent IKE_SA
 creation. The original SA's SHOULD be deleted after successful
 creation of the new SA's.

 Peer X can also include an optional N(Cookie_X) payload in the
 CHECK_SPI(ACK/NACK) packet. This Cookie MUST be reflected back by Y
 in the new IKE exchange that completes the recovery. This additional
 cookie saves one round trip between peers that require an anti-
 spoofing Cookie exchange.

 A complete recovery exchange for IKE SA's would look like:

 Peer X Peer Y

 HDR(A,B) ...
 <--

 HDR(A,B) INVALID_IKE_SPI(A,B)
 -->

 HDR(A,B) CHECK_SPI(QUERY,(A,B), Cookie_Y)
 <--

 HDR(A,B) CHECK_SPI(NACK,(A,B), Cookie_Y)
 [N(Cookie_X)]
 -->

 HDR(A',0) SAi1, KEi, Ni, [N(Cookie_X)]
 <--

 ...

Detienne, et al. Expires January 30, 2010 [Page 10]

Internet-Draft Safe IKE Recovery July 2009

3.2.3. Wait before rekey

 There exists a particular attack where a man-in-the-middle can snoop
 and inject traffic but can not block or drop packets. This attack
 can spoof INVALID_SPI (allegedly from X), forcing a CHECK_SPI(QUERY)
 from Y. The attacker would spoof back CHECK_SPI(NACK) to force an
 undue rekey. Since the attacker can not block packets, the
 CHECK_SPI(QUERY) will also reach X, who will reply with
 CHECK_SPI(ACK).

 Y receives CHECK_SPI(NACK) first and MAY wait for a few msec before
 creating a new SA. Y will eventually receive BOTH a CHECK_SPI(ACK)
 and a CHECK_SPI(NACK). Which is dubious. The SIR process should
 then stop and log an error, saving the SA.

 The process is illustrated below:

 X Attacker Y
 Inv SPI
 ------------------>

 CHECK_SPI(QUERY)
 <-------------------------------------

 CHECK_SPI(NACK)
 ------------------> Should rekey
 but wait a few msec

 CHECK_SPI(ACK)
 -------------------------------------> Hint of attack
 => no rekey

 Ideally, the round-trip-time should be measured during the IKE
 exchange and Y wait for a full RTT before initiating a rekey.

 Given that IKE itself is subject to DH computation by a man-in-the-
 middle, also considering that SA's are dampened after creation (see

Section 4.2), the staging complexity and limited interest of this
 attack makes it rather impractical. An implementation MAY decide to
 implement this final safety delay but this is strictly optional.

3.2.4. Stateless IKE Recovery cookie

 The cookie information is chosen by the peer that emits it. As such,
 the cookie has strictly no meaning for the remote peer and can thus
 be chosen as seen fit. This section provides recommendations on how
 to generate and validate those cookies.

Detienne, et al. Expires January 30, 2010 [Page 11]

Internet-Draft Safe IKE Recovery July 2009

 When an IKE endpoint sends an unauthenticated CHECK_SPI, the cookie
 payload following the notify is computed as follow:

 Cookie = <VersionIDofSecret>
 | H(<secret> | CHECK_SPI(..., Query)
 | ip.src | ip.dst
 | udp.src | udp.dst)

 where
 o <secret> is a randomly generated secret known only to the
 responder and periodically changed
 o <VersionIDofSecret> should be changed whenever <secret> is
 regenerated
 o CHECK_SPI(..., Query) is the content of the CHECK_SPI notify
 payload where the operation subtype has been set to Query (cf.

Section 6)
 o ip.src is the source ip address of the IKE packet
 o ip.dst is the destination ip address of the IKE packet
 o udp.src is the source udp post of the IKE packet
 o udp.dst is the destination udp port of the IKE packet

 Upon reception of a CHECK_SPI(ACK or NACK) response containing a
 cookie, a peer can verify whether this is the reply to a Query it
 placed by recomputing the cookie and comparing it to the cookie in
 the CHECK_SPI message.

 In order to minimize the range of cryptographic attacks on <secret>,
 messages SHOULD have a limited life time.

3.3. Ticket based IKE recovery using Session Resumption

3.3.1. Ticket Based Recovery

 If both peers can store ephemeral information and support IKE Session
 Resumption as described in [IKERESUME], an accelerated procedure can
 be used. This procedure is called Ticket Based IKE Recovery.

 The ticket based IKE Recovery method relies on an unauthenticated
 INVALID_IKE_SPI along with a cookie for detection of a dangling SA.
 Recovery is effected using session resumption exchange described in
 [IKERESUME]to recover from a Dangling SA condition. This memo
 introduces a variation to the Session Resumption Exchange for
 protection against Denial of Service Attacks

3.3.2. Choice of Recovery Mechanism

 The choice of using Stateless IKE Recovery or Ticket Based Recovery
 depends upon the capabilities of the endpoint and its peer as well.

Detienne, et al. Expires January 30, 2010 [Page 12]

Internet-Draft Safe IKE Recovery July 2009

 It could also depend on policy.

 During Recovery, the endpoint that has the SA, also knows about the
 peers capabilities whereas the enpoint that has lost its SA can be
 presumed to not know its peers capabilities. This endpoint only
 offers a hint of its capabilities by responding to an invalid packet
 with an INVALID_SPI followed by a cookie.

 The endpoint that has the SA can choose to respond to an
 unauthenticated INVALID_SPI based on its knowledge of the peer
 capabiliries. If it has a session resumption ticket from the peer,
 it SHOULD initiate an IKE_SESSION_RESUME exchange, else it SHOULD
 send a CHECK_SPI query. If the peer is not capable of Safe IKE
 Recovery, the endpoint SHOULD fall back to liveness checks or other
 mechanisms recommended by [IKEv2].

 If the endpoint that receives an IKE_SESSION_RESUME packet is unable
 to use the resumption ticket for any reason, it should respond with a
 RESUME_NACK followed by the peer coookie it recieved in the clear.
 This allows the peer to initiate a full IKEv2 exchange safely.

3.3.3. Ticket based recovery by invalid IKE packets

 When a peer X receives an IKE packet with an unknown IKE_SPI, it
 SHOULD send an unprotected INVALID_IKE_SPI notify to the sender Y.
 The INVALID_IKE_SPI MUST be followed with a Cookie payload. The
 cookie payload content is relevant only to the generator of the
 cookie and a suggested format for it is described in Section 3.2.4.

 When peer Y receives the INVALID_IKE_SPI referencing the IKE_SPI(A,B)
 followed by CHECK_SPI(Cookie_X), it MUST perform the following
 actions:
 o verify that (A,B) is an active IKE_SA it has with X. If no such SA
 exists a rate limited mesage SHOULD be logged.
 o verify that it possesses a resumption ticket given to it by X and
 initiate an IKE_SESSION_RESUME exchange with X. This memo requires
 that the IKE_SESSION_RESUME packet MUST carry COOKIE_X received in
 the INVALID_SPI packet encrypted in the SK payload. Y also
 generates and sends another cookie COOKIE_Y in the clear.

Detienne, et al. Expires January 30, 2010 [Page 13]

Internet-Draft Safe IKE Recovery July 2009

 Peer X Peer Y

 HDR(A,B) ...
 <--

 (1) HDR(A,B) INVALID_IKE_SPI(A,B)
 CHECK_SPI(COOKIE_X)
 -->

 (2) HDR(A,B) Ni CHECK_SPI(COOKIE_Y)
 N(TICKET) SK{IDi, IDr... CHECK_SPI(COOKIE_X)}
 <--

 (3) HDR(A,B) SK{Nr,IDr,SAr2... CHECK_SPI(COOKIE_Y)}
 --->

 SK{}
 (4) <---
 ...

 At step(1), If Peer Y does not support [IKERESUME], it MUST ignore
 CHECK_SPI(COOKIE_X) and fall back to the stateless recovery method in

Section 3.2. Otherwise, on step (2), Peer Y responds to the invalid
 SPI by sending back the resumption ticket as well as COOKIE_X under
 the cover of SK.

 Peer X, on receiving the TICKET_RESUME notify with a cookie payload
 on step (2) MUST look up the SA (A,B) in its SA database. If the SA
 exists, it MUST respond with a protected CHECK_SPI(ACK) that includes
 the peer cookie COOKIE_Y and a rate limited message SHOULD be logged.

 If the SA does not exist, X should decrypt the SK payload using the
 contents of the ticket and validate COOKIE_X. If the cookie is not
 valid the packet should be dropped and a rate limited message SHOULD
 be logged.

 If packet (2) is rejected for any other reason, Peer X responds with
 a CHECK_SPI(NACK) containing COOKIE_Y and the exchange continues
 statelessly as described in Section 3.2.

 If packet (2) is finally accepted and validated, peer X sends back an
 IKE_SESSION_RESUME response to create a new SA. The response packet
 also includes CHECK_SPI(COOKIE_Y) which is simply sent back unchanged
 but protected inside the SK payload. Peer X can also proceed to
 computing and creating state for a new SA as described in
 [IKERESUME]. A further cookie exchange as described in [IKERESUME]
 is not required as the two peers have already reflected COOKIE_X.

Detienne, et al. Expires January 30, 2010 [Page 14]

Internet-Draft Safe IKE Recovery July 2009

 Peer Y performs the following actions on Packet (3) depending on the
 response it gets back from X
 o On receiving a SESSION_RESUME response, Peer Y decrypts the SK
 payload and validates the COOKIE2, and proceeds to create a new
 SA. If the cookie is invalid a rate limiting message is logged
 and the packet is dropped.
 o If the Peer Y receives a CHECK_SPI(NACK) followed by the cookie
 COOKIE_Y, Y MAY proceed to initiating a regular IKEv2 session.
 o If a protected CHECK_SPI(ACK) response is received, a rate
 limiting message is logged.
 o If the Peer Y receives a N(TICKET_NACK) notification, Y MAY
 initiate a regular IKEv2 exchange.

 Packet (4) is an empty informational liveliness message sent from Y
 to X using the newly installed SA, after a successful SESSION_RESUME
 exchange.

 Note: It is to be noted that the Stateful Ticket Recovery exchange
 described above could be used without any change, to complete a
 recovery even when if the QCD_TOKEN based method described in [QCD]
 is used for detection of Invalid SAS.

3.4. IPsec SA recovery

 We are now considering the case of an IKE endpoint Y sending an ESP
 or AH packet (or any type of traffic supported by a CHILD_SA) to peer
 X who does not have the corresponding phase 2 SA. We will
 differentiate two subcases depending on the presence or not of an IKE
 SA between the two peers.

 The recovery procedure will be roughly the same as for the Dangling
 Parent SA case but for children SA's, we send protected notifications
 whenever we can.

 Peer X Peer Y

 ESP(SPI) ...
 <--

 On receiving an unrecognized ESP or AH packet, Peer X SHOULD notify
 the remote peer Y. The method will be different, according to the
 presence of an IKE_SA with Y.

3.4.1. In the presence of an IKE_SA

 In IKEv2, when an IKE_SA is available between two peers, CHILD_SA's
 SHOULD not be out of sync thanks to the acknowledgement and
 retransmissons of notifies. IKEv2 however does not specify what to

Detienne, et al. Expires January 30, 2010 [Page 15]

Internet-Draft Safe IKE Recovery July 2009

 do when a peer does not eventually respond to protected DELETE_SPI
 notifies.

 This section augments the IKEv2 specification in order to allow the
 recovery of stale SA's in case peers decided to keep the Parent SA
 nevertheless.

 If an IKE_SA is available with the remote peer, peer X MUST send a
 protected INVALID_SPI notification to the Y. The notification MUST be
 protected by the Parent SA and MUST contain the SPI of the invalid
 packet.

 Peer X Peer Y

 ESP(SPI) ...
 <--

 HDR(A,B) SK{INVALID_SPI(SPI)}
 -->

 At this point, Y MUST check whether it has the offending SA. If so,
 it SHOULD re-key or delete the child SA according to its security
 policy. This document suggests that Y SHOULD delete the dangling SA
 but MAY rekey if deemed adequate. If the offending SA is not to be
 found, a message SHOULD be logged as the triggering ESP packet may be
 an attack or the result of a race condition. The logging MUST be
 rate limited.

3.4.2. In the absence of an IKE_SA

 If an IKE_SA is not available with peer Y, an unprotected INVALID_SPI
 notification MUST be sent. The notification MUST contain the SPI of
 the invalid packet.

 Peer X Peer Y

 ESP(SPI) ...
 <--

 HDR(0,0) INVALID_SPI(SPI)
 -->

 Note: An IKE SPI of (0,0) is used since there is no other IKE SPI to
 use (by construction)

 Peer Y MUST verify whether it has the offending CHILD_SA; if it does
 not, Y MUST log a rate limited message and drop the notify. If Y
 owns the offending SA, Y MUST perform the following:

Detienne, et al. Expires January 30, 2010 [Page 16]

Internet-Draft Safe IKE Recovery July 2009

 o ensure the unauthenticated INVALID_SPI notify is legitimate
 o rebuild the dangling SA's with the remote peer if needed
 The following procedure will help determining whether the INVALID_SPI
 notify is legitimate.

 Peer Y MUST send a protected CHECK_SPI notify to X. Since Y has the
 CHILD_SA, it MUST have its Parent SA by construction.

 Peer X Peer Y

 HDR(0,0) INVALID_SPI(SPI)
 -->

 HDR(A,B) SK{CHECK_SPI(QUERY, SPI)}
 <--

 If X can decrypt the CHECK_SPI(QUERY) notification from Y, i.e it has
 a valid IKE_SA(A,B), the situation can be either of the following:
 o therY also generates and sends another cookie COOKIE_Y in the
 cleare is a logic error on X as it should have sent the
 INVALID_SPI protected
 o the INVALID_SPI request that led to the CHECK_SPI notify has been
 forged
 o there was a race condition in an earlier exchange

 X MUST try to identify which condition it has met, e.g. by checking
 SPI is in the SA database and MUST log a message about a possible
 security alert.

 Under normal recovery circumstances, X will not have the PARENT SA.
 In this case, X MUST reply with an unprotected INVALID_IKE_SPI(A,B)
 and fall back into the Parent SA recovery procedure.

 The Parent SA recovery procedure could use either stateless or Ticket
 based recovery. The overall recovery scheme for CHILD_SA's using the
 Stateless IKE recovery procedure can be summarized as follows:

Detienne, et al. Expires January 30, 2010 [Page 17]

Internet-Draft Safe IKE Recovery July 2009

 Peer X Peer Y

 ESP(SPI) ...
 <--

 HDR(0,0) INVALID_SPI(SPI)
 -->

 HDR(A,B) SK{CHECK_SPI(QUERY,(SPI)) }
 <--

 HDR(A,B) INVALID_IKE_SPI (A,B)
 -->

 HDR(A,B) CHECK_SPI(QUERY,(A,B),Cookie)
 <--

 HDR(A,B) CHECK_SPI(NACK,(A,B),Cookie)
 -->

 HDR(A',0) SAi1, KEi, Ni
 <--

3.5. Mandatory Initiators

 There are cases where the side having the SA's cannot act as an
 initiator in a recovery procedure and has to rely on the peer device
 to initiate recovery. These exceptions include:
 o Specific implementations, typically in remote access, that rely on
 the 'client' to be a pure initiator.
 o gateways that are behind a dynamic PAT device and that can not be
 reached directly from outside. These devices have to be
 initiators of the connection in order to set up the translation
 rules.

 We call such devices Mandatory Initiators and in the context of this
 document, they will eventually become responsible for recovering the
 SA's.

 Mandatory Initiators SHOULD be determined by the system administrator
 through their configuration or implicitly through the set of features
 they are configured for. Mandatory Initiators MAY determine by
 themselves whether they are behind a dynamic PAT device. The
 determination can for instance arise from analyzing the NAT-T
 payloads described in [NAT-T].

 Because Mandatory Initiators are actually IKEv2 initiators, they
 typically know by configuration which peers they should have a

Detienne, et al. Expires January 30, 2010 [Page 18]

Internet-Draft Safe IKE Recovery July 2009

 connection with, even if the SA's are missing. If this is indeed the
 case, the following Mandatory Initiator recovery procedure SHOULD be
 followed.

 The recovery procedure for Mandatory Initiators is the same as for
 other peers with change in the last step containing the
 CHECK_SPI(NACK) where the Mandatory Initiator actually sends
 initiates an an IKEv2 Initial Exchange along with the CHECK_SPI(NACK)
 payload.

 Example CHILD_SA recovery exchange with mandatory initiator (Parent
 SA present):

 Peer X Peer Y

 HDR(A,B) ...
 <--

 HDR(A,B) INVALID_IKE_SPI(A,B)
 -->

 HDR(A,B) CHECK_SPI(QUERY,(A,B), Cookie_X)
 <--

 HDR(A',0) SAi1, KEi, Ni,
 CHECK_SPI(NACK,(A,B), Cookie_X)
 -->

 ...

 When Peer Y receives the Initial Offer, it MUST verify it has the IKE
 SPI in the CHECK_SPI reply. In other words, the recovery procedure
 HINTS the Mandatory Initiator about a need for resynchronizing the
 SA's. This hint MAY be ignored, according to the local peer policy.

 If it does not have the corresponding IKE SA, Y MUST log a rate
 limited message and drop the message. If Y owns the IKE SPI, it MUST
 validates the cookie as described in Section 3.2.4 and proceed with
 the IKE exchange, according to its security policy.

 In any case, X SHOULD NOT retransmit the Initial Offer. The process
 will restart by itself if the IKE SA is indeed missing and further
 offending ESP or IKE packets are emitted. If X receives a valid
 Message 2, it can proceed with the rest of the IKEv2 negotiation and
 retransmit as necessary.

 Example CHILD_SA recovery exchange with mandatory initiator (no
 Parent SA):

Detienne, et al. Expires January 30, 2010 [Page 19]

Internet-Draft Safe IKE Recovery July 2009

 Peer X Peer Y
 (Mandatory Initiator)

 ESP(SPI) ...
 <--

 HDR(0,0) INVALID_SPI(SPI)
 -->

 HDR(A,B) CHECK_SPI(QUERY,(SPI))
 <--

 HDR(A,B) INVALID_IKE_SPI (A,B)
 -->

 HDR(A,B) CHECK_SPI(QUERY,(A,B), Cookie)
 <--

 HDR(A',0) SAi1, KEi, Ni,
 CHECK_SPI(NACK,(A,B),Cookie)
 -->

3.6. Recovery closure

 In many cases, the outcome of the recovery procedure yields to the
 creation of a new IKE_SA. Either side may be left with an old IKE_SA
 and dangling CHILD_SA's. In order to recover entirely, the old
 CHILD_SA's SHOULD be recreated (entirely renegotiated) under the
 protection of the new Parent SA. After which, the old SA's (IKE_SA
 and CHILD_SA's) SHOULD be entirely deleted.

3.7. Dealing with race conditions

 When a peer deletes SA's, a DELETE payload is sent that MUST be
 acknowldeged. Before the delete notify reaches the remote peer,
 further ESP packets for the now deleted SPI may be received. These
 ESP packets MUST be silently discarded as long the DELETE Notify can
 be retransmitted.

4. Throttling and dampening

 An important aspect of the security in IKE recovery has to do with
 limitating the CPU utilization. In order to thwart flood types
 denial of service attacks, strict rate limiting and throttling
 mechanisms have to be enforced.

 All the notifications that are exchanged during IKE recovery SHOULD

Detienne, et al. Expires January 30, 2010 [Page 20]

Internet-Draft Safe IKE Recovery July 2009

 be rate limited. This paragraph provides information on the way rate
 limiting should take place.

4.1. Invalid SPI throttling

 The sending of all Invalid SPI notifies MUST be rate limited one way
 or an other. The rate limiting SHOULD be performed on a per peer
 basis but dynamic state creation SHOULD be avoided as much as
 possible (it can be; this is an implementation matter).

 Invalid SPI rate limiting protects against natural dangling SA
 occurences. I.e. normal traffic conditions may cause unrecognized
 SPI's to be received and this message is the most important to
 protect. Indeed, it is not realistic to send one notification per
 bad ESP packet received. On high speed links, this could mean
 thousands of IKE notifies sent for the same offending SPI.

 The receiving of unauthenticated Invalid SPI notifies MUST as well be
 rate limited. Again, the rate limiting SHOULD be performed on a per
 peer basis without dynamic state creation. In normal circumstances,
 the peer receiving Invalid SPI notifies has an SA with the peer
 sendig those notifies and already maintains peer-related data
 structures that can help in maintaining adequate counters.

 Authenticated Invalid SPI notifies can be accepted without
 throttling.

4.2. Dampening

 After one of the following conditions:
 o the natural creation or rekey of one or more SA's
 o the recovery of one or more SA's
 o the failure in recovering an SA owned by the local security
 gateway
 o the logging of an error or warning message involving an SA owned
 by the local security gateway

 The peer with which SA's were created, attempted or against which a
 log was emitted SHOULD be dampened, which means that all the
 unauthenticated Invalid SPI and Check SPI messages emitted by that
 peer MUST be ignored for a chosen duration.

 This protection prevents a man-in-the-middle from forcing the fast
 recreation of SA's and potentially depleting the entropy of systems
 under attack. It also deals efficently with race conditions that may
 occur after a rekey.

Detienne, et al. Expires January 30, 2010 [Page 21]

Internet-Draft Safe IKE Recovery July 2009

4.3. User controls

 Because throttling at large is related to speed, the network
 implementation around the security gateways has a major influence on
 the pertinence of the paremeters controlling rate limiting. It is
 difficult to provide good absolute values for the rate limiters,
 considering that these are implementation dependent.

 As such, for the sake of fitness in practical deployments, a system
 implementing this memo MUST provide administrative controls over the
 rate limiter parameters.

5. Negotiating IKE recovery

 IKE recovery capabilities MUST be advertised through a Vendor ID
 payload.

 In the first two messages of the Parent SA negotiation, the Vendor ID
 payload for this specification MUST be sent if supported (and it MUST
 be received by both sides). The content of the payload is the ASCII
 string:

 SECURE IKE RECOVERY, or in hex: 53 45 43 55 52 45 20 49 4b 45 20 52
 45 43 4F 56 45 52 59"

 The peers' capbility for IKE Session Resumption is known implicitly
 from receiving the resumption ticket.

 Determining peer capability can be useful for two reasons at least.
 First, this information MAY let a system decide to fallback to
 another recovery mechanism, such as from Ticket based Recovery to
 Stateless Safe IKE Recovery or falling back to the one embedded in
 IKEv2

 Knowledge of the peer's capabilities can be used by the 'live
 peer'(the one that still has the SA's) in order to determine whether
 it is normal or not to receive unauthenticated INVALID_SPI with or
 without cookies or CHECK_SPI notifies. A peer that has lost
 information about it's peer SHOULD go under the assumption that peer
 does understand IKE Recovery as described in this memo. This
 assumption implies that INVALI_SPI notifies with cookies and
 CHECK_SPI notifies can be sent. If the remote peer does not support
 IKE Recovery, it will just ignore these messages.

 In general, it is useful for system administrators to monitor the
 capabilities of a remote system connecting to a local security
 gateway and there is an interest in advertising the IKE Recovery

Detienne, et al. Expires January 30, 2010 [Page 22]

Internet-Draft Safe IKE Recovery July 2009

 capability.

6. Payload formats

 For reference, the Notify Payload is defined as follow

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 The meaning of the fields is the same as defined in [IKEv2].

 This memo introduces a new Notify Message Type that is being
 developped with a Private Use Type:
 o CHECK_SPI: 32770

 An official IANA assigned number MUST be assigned if this document
 reaches final recommendation state.

 The notification data area is formatted as such:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Subtype ! CookieSize | RESERVED !
 +-+
 ! Cookie !
 ~ ~
 ! !
 +-+

 o Subtype (1 Octet) - This field determines the operation being
 performed (Query, Reply_ACK, Reply_NACK, Lone_Cookie)
 o CookieSize - The size of the optional cookie embedded in the
 CHECK_SPI notify. If there is no cookie, CookieSize is set to 0
 (zero).

Detienne, et al. Expires January 30, 2010 [Page 23]

Internet-Draft Safe IKE Recovery July 2009

 o Cookie - The optional cookie embedded in the payload. Its size
 depends on the value CookieSize.

 The list of operations and their corresponding value:
 o Query: 0
 o Reply_ACK: 1
 o NACK: 2

7. IANA Considerations

 This document requires the following notification to be registered by
 IANA. The corresponding registry was established by IANA.
 o CHECK_SPI Notification type (Section 6).

8. Security Considerations

 IKE recovery self-protection is discussed all along the document and
 contains many mechanism to thwart denial of service attacks.

 IKE recovery is subject to a man-in-the-middle attack that can let
 the attacker trigger a renegotiation. It has to be noticed that an
 attacker able to block ESP and/or IKE packets can cause IKE itself to
 also tear down and trigger a rekey of IKE SA's. With throttling and
 dampening enabled, IKE recovery is able to reduce the amount of
 rekeys/negotiations to as low a rate as IKEv2.

 Overall, IKE Recovery is not more vulnerable than IKEv2 and even
 improves on the security of IKEv2 by resynchronizing SA's more
 rapidly which is important with dynamic polices.

9. Collapsed stateless exchange

 In order to save on round-trips, IKE Recovery can be collapsed into
 an IKEv2 exchange. The recovery case goes as follows:

Detienne, et al. Expires January 30, 2010 [Page 24]

Internet-Draft Safe IKE Recovery July 2009

 Peer X Peer Y

 (1) HDR(A,B) ...
 <--

 (2) HDR(A,B) INVALID_IKE_SPI(A,B), N(Cookie_X)
 -->

 (3) HDR(A',0) HDR N(Cookie_X),
 CHECK_SPI(QUERY,(A,B)), N(Cookie_Y), SAi1, KEi, Ni
 <--

 (4) HDR(A',B') CHECK_SPI(NACK,(A,B)), N(Cookie_Y),
 SAr1, KEr, Nr, [CERTREQ], KEi, Ni
 -->

 (5) HDR(A',B') SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr}
 <--

 ...

 In the exchange above, X sends an optional N(Cookie_X) in the
 INVALID_IKE_SPI notify if it expects cookies to be used when acting
 as a responder. Cookie_X is reflected by peer Y as in a normal IKE

10. Change log

 NOTE TO RFC EDITOR: This section is to be removed in the final RFC

10.1. Changes from draft-fdetienn-sir-02

 Minor changes around rate limiting. Removed implementation
 recommendation to keep only high level recommendation.

11. References

11.1. Normative References

 [Bra97] Bradner, S., "RFC 2119, Key Words for use in RFCs to
 indicate Requirement Levels", March 1997.

 [IKEv2] Kaufman, Ed., "RFC 4306, Internet Key Exchange (IKEv2)
 Protocol", December 2005.

 [NAT-T] Kivinen, "RFC 3947, Negotiation of NAT-Traversal in the

Detienne, et al. Expires January 30, 2010 [Page 25]

https://datatracker.ietf.org/doc/html/draft-fdetienn-sir-02
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc3947

Internet-Draft Safe IKE Recovery July 2009

 IKE", January 2005.

11.2. Informative References

 [BIRTHCERT]
 Harkins, D., Kauffman, C., Kivinen, T., Kent, S., and R.
 Perlman, "Design Rationale for IKEv2", July 2007.

 [IKERESUME]
 Sheffer, Y., "Stateless Session Resumption for the IKE
 Protocol", July 2007.

 [QCD] Nir, Y., "A Quick Crash Detection Method for IKE",
 Aug 2008.

Authors' Addresses

 Frederic Detienne
 Cisco
 De Kleetlaan, 7
 Diegem B-1831
 Belgium

 Phone: +32 2 704 5681
 Email: fd@cisco.com

 Pratima Sethi
 Cisco
 O'Shaugnessy Road, 11
 Bangalore, Karnataka 560027
 India

 Phone: +91 80 4154 1654
 Email: psethi@cisco.com

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim st.
 Tel Aviv 67897
 Israel

 Email: yir@checkpoint.com

Detienne, et al. Expires January 30, 2010 [Page 26]

