
CoRE Working Group C. Bormann
Internet-Draft K. Hartke
Intended status: Informational Universitaet Bremen TZI
Expires: February 1, 2013 July 31, 2012

Congestion Control Principles for CoAP
draft-bormann-core-congestion-control-02

Abstract

 The CoAP protocol needs to be implemented in such a way that it does
 not cause persistent congestion on the network it uses. Congestion
 control is a complex issue -- the proper rationale for the congestion
 control mechanisms chosen in CoAP is probably more material than the
 CoAP protocol specification itself. This informational document
 attempts to pull out the background material and more extensive
 considerations behind the CoAP congestion control mechanisms, while
 leaving the basic MUSTs and MUST NOTs in the main spec.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 1, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bormann & Hartke Expires February 1, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoAP Congestion Control July 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3
1.2. Objectives . 4
1.2.1. TCP-Friendliness 4
1.2.2. Actually working well 4
1.2.3. Getting actual implementation 5

2. Input . 6
2.1. RFC 2914 . 6
2.2. RFC 5405 . 6
2.3. draft-eggert-core-congestion-control 7

3. coap-11 Congestion Control Principles 8
4. How do other protocols do it 11
4.1. DNS . 11
4.2. SIP . 11
4.3. TCP . 11
4.4. HTTP . 12

5. Advanced CoAP Congestion Control 14
5.1. RTT Measurement . 14
5.2. Block Slow-Start . 14

6. Changes Planned for Base Specifications 16
7. IANA Considerations . 17
8. Security Considerations 18
9. Acknowledgements . 19
10. References . 20
10.1. Normative References 20
10.2. Informative References 20

 Authors' Addresses . 22

Bormann & Hartke Expires February 1, 2013 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/draft-eggert-core-congestion-control

Internet-Draft CoAP Congestion Control July 2012

1. Introduction

 With few exceptions, it is simply incompetent to build an
 implementation of a packet-based protocol without considering
 congestion control. Unfortunately, detailed, evidence-based
 knowledge about congestion control is limited to a small group of
 people. It has become customary for these to try to encode their
 knowledge into the protocol definitions, in an attempt to replace
 competence by conformance.

 This has worked relatively well for TCP, not the least because the
 art of TCP implementation is itself limited to a rather small group
 of experts, which over the years often have acquired some knowledge
 of congestion control principles, complementing the desire for
 conformance by substantial competence again. Conversely, application
 developers are a much larger, much more diverse group. Worse,
 protocol complexity for which the rationale is not apparent to the
 developers might simply not be implemented. Giving congestion-
 unaware developers UDP sockets that are not protected by TCP's
 congestion control may lead to disasters.

 With this background, an application protocol that is threatening to
 be widely deployed and does not rely on the built-in congestion
 control properties of TCP presents a serious worry.

 This document attempts to present a more extensive rationale for
 CoAP's minimal, but effective congestion control design, as well as
 some updates to it. This rationale is not included in
 [I-D.ietf-core-coap] or [I-D.ietf-core-observe] as the specification
 is threatening to become too long with all the rationale and
 implementation considerations discussion already included. While the
 present document discusses normative statements, it is not intended
 to supplement or replace the normative statements in
 [I-D.ietf-core-coap] and [I-D.ietf-core-observe], but just to provide
 additional explanation.

 ((Editorial note: the updates to the mandates discussed here
 partially still need to make it into the next version of
 [I-D.ietf-core-coap]. A summary of the updates needed is in

Section 6.))

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] when they
 appear in ALL CAPS. These words may also appear in this document in
 lower case as plain English words, absent their normative meanings.

https://datatracker.ietf.org/doc/html/rfc2119

Bormann & Hartke Expires February 1, 2013 [Page 3]

Internet-Draft CoAP Congestion Control July 2012

 (Note that this document is itself informational, but it is
 discussing normative statements.)

 The term "byte" is used in its now customary sense as a synonym for
 "octet".

1.2. Objectives

 The objectives of adding congestion control to the CoAP protocol
 specification can be on two different levels, with one additional
 (third) consideration.

1.2.1. TCP-Friendliness

 Much of the knowledge that the IETF has accumulated on congestion
 control focuses on not being worse than its flagship transport
 protocol, TCP, and being "fair" to instances of TCP competing for
 capacity. Since fairness is not really a well-defined term, we
 reduce it to "friendliness".

 One objective of this document is to discuss how CoAP can be employed
 in a TCP-friendly way, and what are the minimum mandates the protocol
 needs to make in order to ensure this for reasonable applications.

 (Note that TCP itself is not TCP-friendly when abused, e.g., when
 opening 10000 connections in close succession; so there will be no
 attempt to stay TCP-friendly when CoAP is abused, either.)

 Conclusion: CoAP needs to be TCP-friendly, but probably not more so
 than TCP itself.

1.2.2. Actually working well

 Making sure that the network continues to work well in the presence
 of a strong deployment of active CoAP endpoints is a much harder
 objective to achieve. There is only limited knowledge about the
 characteristics of the constrained node/networks CoAP will be used
 in. They might exhibit congestion in surprising ways.

 It may turn out the collected wisdom that has been derived from TCP
 deployment experience in the mostly browser-oriented Internet does
 not transfer to the Internet of Things, and that we need to invent
 new mechanisms for the latter.

 But this is research.

 Imposing the need for a completed solution that meets requirements
 entirely unknown at this time would be an instance of the Fallacy of

Bormann & Hartke Expires February 1, 2013 [Page 4]

Internet-Draft CoAP Congestion Control July 2012

 Perfection [GF].

 We will need to accumulate additional knowledge, on a research basis,
 and with experience coming in from larger CoAP deployments. One
 likely outcome is that constrained node/networks will simply continue
 to evolve to be able to cope with TCP and CoAP.

 Conclusion: For now, we will focus on staying safe where TCP would
 have stayed safe.

1.2.3. Getting actual implementation

 The protocol specification may specify whatever it wants; if there is
 significant complexity in implementing a mandate and the rationale is
 not apparent for implementers, compliance will be but a lucky
 coincidence - even more so in implementations for highly constrained
 systems. A design that achieves stable operation outside
 pathological situations and is implemented is preferable to a
 picture-perfect design that is a beautiful part of the specification
 and then ignored.

 Binding the inevitable complexity of a congestion control scheme to
 mechanisms that already have to be implemented for other functional
 reasons seems the most fruitful approach for obtaining compliance.
 This consideration, together with the main design objective of CoAP -
 being implementable on constrained nodes and networks - has been the
 overriding design objective.

Bormann & Hartke Expires February 1, 2013 [Page 5]

Internet-Draft CoAP Congestion Control July 2012

2. Input

 The word "congestion" occurs more than a hundred times in 1id-
 abstracts.txt, indicating that there is a lot of documents under
 construction that might become relevant to this document. We select
 a few existing documents here and pick up a few salient points.

2.1. RFC 2914

 [RFC2914], "Congestion Control Principles", is the BCP that lays out
 the basic principles for congestion control in the Internet. While
 it does allude to non-TCP protocols, it mainly focuses on TCP and
 TCP-like behavior.

2.2. RFC 5405

 [RFC5405], "Unicast UDP Usage Guidelines for Application Designers",
 makes additional points for the usage of UDP. It is also a BCP
 document. Its considerations have mostly been made without looking
 at specific application protocols, and with a view to guiding
 application protocol developers towards congestion-controlled
 transport protocols (which is unfortunately not an appropriate choice
 for CoAP). It does consider the case of low data-volume applications
 (section 3.1.2 is therefore the most relevant section for this
 document). It clearly needs to be interpreted intelligently in order
 to arrive at congestion control guidelines for a new application
 protocol. E.g., it recommends:

 Applications that at any time exchange only a small number of UDP
 datagrams with a destination SHOULD still control their
 transmission behavior by not sending on average more than one UDP
 datagram per round-trip time (RTT) to a destination.

 Instead, a CoAP client that does receive a response without the need
 for a retransmission should be able to send an ensuing request right
 away, without the need to do any such rate control -- this keeps the
 spirit, but not the letter of that requirement.

 While [RFC5405] does provide a good set of "don't forget" points,
 some of its requirements appear to attempt to err on the side of
 caution, without regards to the specific characteristics of an
 application. Fortunately, these requirements are often phrased as a
 SHOULD, so it is possible to explain when and why they should not be
 heeded.

https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405

Bormann & Hartke Expires February 1, 2013 [Page 6]

Internet-Draft CoAP Congestion Control July 2012

2.3. draft-eggert-core-congestion-control

 [I-D.eggert-core-congestion-control], "Congestion Control for the
 Constrained Application Protocol (CoAP)", was the original document
 that led to CoAP's congestion control design. This document provides
 good historical context and should be read in conjunction with the
 present document. However, the "credit-based" mechanism proposed in
 its section 3.2 is probably too complicated to be implemented in
 constrained nodes; CoAP now uses a simpler algorithm that uses the
 information the implementation already has to keep (i.e., it is based
 on limiting the outstanding exchanges).

Bormann & Hartke Expires February 1, 2013 [Page 7]

https://datatracker.ietf.org/doc/html/draft-eggert-core-congestion-control

Internet-Draft CoAP Congestion Control July 2012

3. coap-11 Congestion Control Principles

 CoAP is a protocol that attempts to minimize the complexity of its
 implementation. It is mainly intended for interactions that are not
 really flow-shaped, so traditional congestion control mechanisms
 simply do not have useful information to work on.

 Basic CoAP [I-D.ietf-core-coap] uses a strict lock-step protocol for
 its requests and responses (both on the reliability layer with CON/
 ACK and one level higher with requests and responses), with
 exponential back-off in case of non-delivery. The initial timeout is
 dithered between 2 and 3 seconds and grows up to between 32 and 48
 seconds.

 This is inherently TCP-friendly, similar to the way protocols like
 DNS operate.

 [I-D.ietf-core-coap] goes on to require:

 In order not to cause congestion, Clients (including proxies)
 SHOULD strictly limit the number of simultaneous outstanding
 interactions that they maintain to a given server (including
 proxies). An outstanding interaction is either a CON for which an
 ACK has not yet been received but is still expected (message
 layer) or a request for which a response has not yet been received
 but is still expected (which may both occur at the same time,
 counting as one outstanding interaction). A good value for this
 limit is the number 1. (Note that [RFC2616], in trying to achieve
 a similar objective, did specify a specific number of simultaneous
 connections as a ceiling. While revising [RFC2616], this was
 found to be impractical for many applications
 [I-D.ietf-httpbis-p1-messaging]. For the same considerations,
 this specification does not mandate a particular maximum number of
 outstanding interactions, but instead encourages clients to be
 conservative when initiating interactions.)

 The rationale for this design is that it is very easy to implement
 for a constrained device: a constrained device will already have a
 hard limit on the number of slots available for initiating
 transactions. Similarly, even back-end systems already need to bind
 state to outstanding transactions; adding some form of congestion
 control state to these does not require maintaining new objects, just
 new fields. In any case, having some form of limit is not elective:
 in the text the SHOULD needs to be changed into a MUST, even though
 it may not be easy to pinpoint the exact criterion for compliance.

 In the following, we refer to the initiator parameter that limits the
 number of outstanding interactions as NSTART.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Bormann & Hartke Expires February 1, 2013 [Page 8]

Internet-Draft CoAP Congestion Control July 2012

 Clients SHOULD also heed this [RFC5405] guideline:

 an application SHOULD perform congestion control over all UDP
 traffic it sends to a destination, independently from how it
 generates this traffic. For example, an application that forks
 multiple worker processes or otherwise uses multiple sockets to
 generate UDP datagrams SHOULD perform congestion control over the
 aggregate traffic.

 Note that [RFC5405] is not explicit here with respect to what it
 considers to be a "destination"; it also uses the term "destination
 host" when it appears to provide specific discussion about all
 protocol entities at an IP address. [RFC5405] duly notes the failure
 of the congestion manager approach [RFC3124], but appears to wish it
 back into existence. For the purposes of CoAP, probably
 "destination" here should be used as with the CoAP term destination
 endpoint (i.e., including the UDP port number). Still, an
 implementation that e.g. uses a new source port per request (i.e. a
 new source endpoint, which is a valid strategy) probably needs to
 heed this SHOULD for the entirety of the combination of its own
 endpoint abstractions.

 For certain exchanges in CoAP, there is a chance that a request would
 never elicit a response (e.g., due to a crashed server) but there is
 also no (protocol) timeout governing this exchange. Therefore, the
 count of outstanding interactions needs to decay at some rate; a
 decay rate below that at which TCP sends to a very lossy channel
 (e.g., 7 B/s) should be safe.

 There are also some special congestion control considerations with
 responses to multicast requests, see [I-D.ietf-core-coap] section

4.5; servers are expected to provide estimates for group size and a
 target rate as well as a response size. Where those estimates are
 hard to come up with, a default response dithering window of 10
 seconds should be added to [I-D.ietf-core-coap], as well an
 admonition for a client not to use multicast requests when such a
 default window would be way off. Finally, a server that receives
 another multicast request within the dithering window for a request
 that it already is answering SHOULD move the dithering window for its
 next response to after the first dithering window.

 Finally, the text in [I-D.ietf-core-coap] needs to be reviewed
 whether it always clearly separates the discussion for avoiding
 network congestion from any mechanisms for avoiding server
 overloading.

 [I-D.ietf-core-observe] adds one additional behavior: servers may
 send NON messages as notifications for state changes, which is

https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc3124

Bormann & Hartke Expires February 1, 2013 [Page 9]

Internet-Draft CoAP Congestion Control July 2012

 outside of exchanges that would be governed by NSTART. This
 functionality needs to be supported with some discussion of
 congestion control. Generally, servers SHOULD NOT send more than one
 NON message every 3 seconds on average ([RFC5405] section 3.1.2), and
 they SHOULD NOT send NON messages while waiting for CON messages to
 be acknowledged (however, CON retransmissions should send the new
 resource state if it has changed since, see [I-D.ietf-core-observe]

section 4.5). There already was a decision to add a requirement to
 require sending a CON message at least every 24 hours before
 continuing with NON messages; probably the parameter of no more than
 a NON per 3 seconds should be increased for servers that check the
 client that rarely (e.g., to the rate at which TCP sends into a very
 lossy channel, e.g., 7 B/s).

Bormann & Hartke Expires February 1, 2013 [Page 10]

https://datatracker.ietf.org/doc/html/rfc5405#section-3.1.2

Internet-Draft CoAP Congestion Control July 2012

4. How do other protocols do it

 While CoAP congestion control could be designed from first
 principles, it is maybe more realistic to have a look at how other
 protocols address its respective version of the problem.

4.1. DNS

 The DNS protocol, which in many characteristics is quite close to
 CoAP, does not have any explicit mechanisms for congestion control at
 all. Many documents consider DNS to be "sporadic messages", not
 worth of congestion control.

 [RFC4336] says:

 (The short flows generated by request-response applications, such
 as DNS and SNMP, don't cause congestion in practice, and any
 congestion control mechanism would take effect between flows, not
 within a single end- to-end transfer of information.)

 (This simple packet-for-packet request-response nature is now
 changing a bit with DNS being used for voluminous keying information
 and growing TXT records.)

4.2. SIP

 SIP uses a 0.5 s initial timeout (T1 "RTT Estimate"), and uses binary
 exponential increase after that. That is similar to CoAP, but starts
 from a smaller initial estimate. CoAP is more conservative (initial
 RESPONSE_TIMEOUT is 2 s to 3 s) as we expect latencies in constrained
 networks to be higher than in the networks used for telephony.

4.3. TCP

 A well-known problem with relying on TCP's built-in congestion
 control is that, even with all congestion-control mechanisms in
 place, simply multiplying the number of instances may lead to
 eventual congestion.

 About a decade ago, TCP has increased its initial congestion window
 (IW) to about 3 full-size packets, or up to 4 packets with MSS <=
 1095 bytes (which is comparable to CoAP's maximum packet sizes)
 [RFC3390]. As an Experimental specification, moving to an IW of 10
 packets (IW10) is being examined [I-D.ietf-tcpm-initcwnd]. A related
 change is also planned in that document that will avoid resetting
 this initial window when the SYN or SYN/ACK is lost. This would mean
 that it is considered appropriate to send about 15 kB of data on a
 single connection without any congestion control feedback whatsoever,

https://datatracker.ietf.org/doc/html/rfc3390

Bormann & Hartke Expires February 1, 2013 [Page 11]

Internet-Draft CoAP Congestion Control July 2012

 except that some SYN+SYN/ACK exchange made it through. While
 [I-D.ietf-tcpm-initcwnd] is not yet approved, it is a WG document and
 there is widespread feeling of its inevitability even beyond the
 experimental status that is being planned now.

 The numbers 3, 4, and 10 clearly provide some additional context for
 the selection of appropriate values of NSTART.

 Conclusion: For now, it is probably appropriate to RECOMMEND keeping
 NSTART at or below a value chosen from the space between 3 and 10.

4.4. HTTP

 HTTP is running on top of TCP, so it is TCP-friendly by definition.
 However, as HTTP 1.0 was using one TCP connection per request, and it
 became clear that browser usage would entail fetching many objects in
 parallel, congestion was still observed, and client implementations
 started to limit the number of simultaneously active connections to
 one server. Even when persistent connections were added (and later
 codified in HTTP 1.1) this remained a concern. Under 8.1.4
 "Practical considerations", [RFC2616] defines a limit on the number
 of simultaneous connections from one client to one server.

 Clients that use persistent connections SHOULD limit the number of
 simultaneous connections that they maintain to a given server. A
 single-user client SHOULD NOT maintain more than 2 connections
 with any server or proxy. A proxy SHOULD use up to 2*N
 connections to another server or proxy, where N is the number of
 simultaneously active users. These guidelines are intended to
 improve HTTP response times and avoid congestion.

 Intended as a guideline, this has been implemented to the letter in
 browser clients for a decade. However, using this as a hard limit is
 simply not appropriate for all environments. This led server
 implementers to widely deploy workarounds, such as splitting up a
 website between multiple servers ("domain sharding") in order to
 increase the connection concurrency.

 From this historical evidence we can learn that well-meaning
 limitations can cause a lot of pain when implemented slavishly. The
 httpbis effort has learned this lesson and removed the suggestion for
 a hard limit (see [HTTPBISt131], [HTTPBISc715]). Note that it now
 says:

 Clients (including proxies) SHOULD limit the number of
 simultaneous connections that they maintain to a given server
 (including proxies).

https://datatracker.ietf.org/doc/html/rfc2616

Bormann & Hartke Expires February 1, 2013 [Page 12]

Internet-Draft CoAP Congestion Control July 2012

 Previous revisions of HTTP gave a specific number of connections
 as a ceiling, but this was found to be impractical for many
 applications. As a result, this specification does not mandate a
 particular maximum number of connections, but instead encourages
 clients to be conservative when opening multiple connections.

 In particular, while using multiple connections avoids the
 "head-of- line blocking" problem (whereby a request that takes
 significant server-side processing and/or has a large payload can
 block subsequent requests on the same connection), each connection
 used consumes server resources (sometimes significantly), and
 furthermore using multiple connections can cause undesirable side
 effects in congested networks.

 Note that servers might reject traffic that they deem abusive,
 including an excessive number of connections from a client.

 Conclusion: There is no doubt that CoAP should follow this hard-
 learned expertise.

Bormann & Hartke Expires February 1, 2013 [Page 13]

Internet-Draft CoAP Congestion Control July 2012

5. Advanced CoAP Congestion Control

5.1. RTT Measurement

 For an initiator that plans to make multiple requests to one
 destination end-point, it may be worthwhile to make RTT measurements
 in order to obtain a better RTT estimation than that implied by the
 default initial timeout of 2 to 3 s. The usual algorithms for RTT
 estimation can be used [RFC6298], with appropriately extended
 default/base values. Note that such a mechanism MUST, during idle
 periods, decay RTT estimates that are shorter than the basic RTT
 estimate back to the basic RTT estimate, until fresh measurements
 become available again.

 One important consideration not relevant for TCP is the fact that a
 CoAP round-trip may include application processing time, which may be
 hard to predict, and may differ between different resources available
 at the same endpoint. Servers will only trigger early ACKs (with a
 non-piggybacked response to be sent later) based on the default
 timers, e.g. after 1 s. A client that has arrived at a RTT estimate
 much shorter than the 2 to 3 s used as a default SHOULD therefore not
 expend all of its retransmissions in the shorter estimated timescale.

 It may also be worthwhile to do RTT estimates not just based on
 information measured from a single destination endpoint, but also
 based on entire hosts (IP addresses) and/or complete prefixes (e.g.,
 maintain an RTT estimate for a whole /64). The exact way this can be
 used to reduce the amount of state in an initiator is for further
 study.

5.2. Block Slow-Start

 The CoAP protocol is not optimized for making good use of available
 network capacity; given a good offered load, a lightly-loaded network
 and some time, a TCP connection will always overtake a series of CoAP
 requests.

 However, the [I-D.ietf-core-block] protocol can be used by inventive
 clients to emulate TCP slow start. E.g., a client can do a request
 for block 0, and, if a response comes back without a loss, it can
 fire off the requests for block 1 and block 2 at the same time, etc.,
 using each response in a similar way that TCP would clock its data
 segments based on ACKs, waiving NSTART. Similar approaches may work
 to increase channel utilization for any other REST usage that
 requires multiple requests.

 Clearly, the slow start period MUST terminate on the first loss/
 retransmission. How exactly the congestion window is to be

https://datatracker.ietf.org/doc/html/rfc6298

Bormann & Hartke Expires February 1, 2013 [Page 14]

Internet-Draft CoAP Congestion Control July 2012

 maintained after that (a "congestion avoidance period" for CoAP) is a
 subject for further study. See also [I-D.mathis-tcpm-tcp-laminar]
 for fresh approaches to maintaining the necessary variables in TCP.
 Another alternative would be an implementation that emulates
 [RFC5348].

Bormann & Hartke Expires February 1, 2013 [Page 15]

https://datatracker.ietf.org/doc/html/rfc5348

Internet-Draft CoAP Congestion Control July 2012

6. Changes Planned for Base Specifications

 [I-D.ietf-core-coap]:

 1. Change SHOULD in second paragraph of [I-D.ietf-core-coap] 4.7 to
 MUST; define protocol parameter NSTART.

 2. Add reference to (and/or cite) [RFC5405] guideline about
 combining congestion control state for a destination; clarify its
 meaning for CoAP using the definition of an endpoint.

 3. Add a mechanism of decaying outstanding transactions at a rate of
 about 7 B/s.

 4. Add default "Leisure" (response dithering windows) of 10 seconds
 to [I-D.ietf-core-coap] 8.2, as well as n admonition for a client
 not to use multicast requests when such a default window would be
 way off.

 [I-D.ietf-core-observe]:

 1. servers SHOULD NOT send more than one NON notification every 3
 seconds to an endpoint on average ([RFC5405] section 3.1.2);
 define protocol parameter MAXNONRATE.

 2. servers SHOULD NOT send NON messages while waiting for CON
 messages to be acknowledged (however, CON retransmissions should
 send the new resource state if it has changed since, see
 [I-D.ietf-core-observe] section 4.5).

 3. require sending a CON message at least every 24 hours before
 continuing with NON messages.

 4. consider increasing MAXNONRATE for servers that check the client
 that rarely (e.g., to the rate at which TCP sends into a very
 lossy channel, e.g., 7 B/s).

 Additional changes have been made to limit the leeway that
 implementations have in changing the CoRE protocol parameters; these
 changes are already gathered in Section 4.8 of [I-D.ietf-core-coap]
 and will not be repeated here.

Bormann & Hartke Expires February 1, 2013 [Page 16]

https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5405#section-3.1.2

Internet-Draft CoAP Congestion Control July 2012

7. IANA Considerations

 This document makes no requirements on IANA. (This section to be
 removed by RFC editor.)

Bormann & Hartke Expires February 1, 2013 [Page 17]

Internet-Draft CoAP Congestion Control July 2012

8. Security Considerations

 (TBD. The security considerations of, e.g., [RFC2581], [RFC2914],
 and [RFC5405] apply. Some issues are already discussed in the
 security considerations of [I-D.ietf-core-coap].)

Bormann & Hartke Expires February 1, 2013 [Page 18]

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc5405

Internet-Draft CoAP Congestion Control July 2012

9. Acknowledgements

 The first document to examine CoAP congestion control issues in
 detail was [I-D.eggert-core-congestion-control], to which this draft
 owes a lot.

 Michael Scharf did a review of CoAP congestion control issues that
 asked a lot of good questions that this draft attempts to answer.

Bormann & Hartke Expires February 1, 2013 [Page 19]

Internet-Draft CoAP Congestion Control July 2012

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
RFC 2914, September 2000.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405,
 November 2008.

10.2. Informative References

 [GF] Bormann, C., "Garrulity and Fluff", IAB Smart Object
 Workshop, 2011, <http://www.iab.org/wp-content/

IAB-uploads/2011/04/Bormann.pdf>.

 [HTTPBISc715]
 "Changeset 715", October 2009,
 <http://trac.tools.ietf.org/wg/httpbis/trac/changeset/

715>.

 [HTTPBISt131]
 "increase connection limit", HTTPBIS ticket #131, closed
 2009-12-02, September 2008,
 <http://trac.tools.ietf.org/wg/httpbis/trac/ticket/131>.

 [I-D.eggert-core-congestion-control]
 Eggert, L., "Congestion Control for the Constrained
 Application Protocol (CoAP)",

draft-eggert-core-congestion-control-01 (work in
 progress), January 2011.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-08 (work in progress),
 February 2012.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-11 (work in progress), July 2012.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
http://www.iab.org/wp-content/IAB-uploads/2011/04/Bormann.pdf
http://www.iab.org/wp-content/IAB-uploads/2011/04/Bormann.pdf
http://trac.tools.ietf.org/wg/httpbis/trac/changeset/715
http://trac.tools.ietf.org/wg/httpbis/trac/changeset/715
http://trac.tools.ietf.org/wg/httpbis/trac/ticket/131
https://datatracker.ietf.org/doc/html/draft-eggert-core-congestion-control-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-11

Bormann & Hartke Expires February 1, 2013 [Page 20]

Internet-Draft CoAP Congestion Control July 2012

draft-ietf-core-observe-05 (work in progress), March 2012.

 [I-D.ietf-httpbis-p1-messaging]
 Fielding, R., Lafon, Y., and J. Reschke, "HTTP/1.1, part
 1: Message Routing and Syntax"",

draft-ietf-httpbis-p1-messaging-20 (work in progress),
 July 2012.

 [I-D.ietf-tcpm-initcwnd]
 Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window",

draft-ietf-tcpm-initcwnd-04 (work in progress), June 2012.

 [I-D.mathis-tcpm-tcp-laminar]
 Mathis, M., "Laminar TCP and the case for refactoring TCP
 congestion control", draft-mathis-tcpm-tcp-laminar-01
 (work in progress), July 2012.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion Manager",
RFC 3124, June 2001.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [RFC4336] Floyd, S., Handley, M., and E. Kohler, "Problem Statement
 for the Datagram Congestion Control Protocol (DCCP)",

RFC 4336, March 2006.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, September 2008.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-20
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-initcwnd-04
https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-tcp-laminar-01
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc4336
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc6298

Bormann & Hartke Expires February 1, 2013 [Page 21]

Internet-Draft CoAP Congestion Control July 2012

Authors' Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

Bormann & Hartke Expires February 1, 2013 [Page 22]

