
MPTCP Working Group O. Bonaventure
Internet-Draft UCLouvain
Intended status: Experimental October 27, 2014
Expires: April 30, 2015

MPTLS : Making TLS and Multipath TCP stronger together
draft-bonaventure-mptcp-tls-00

Abstract

 Multipath TCP and the Transport Layer Security (TLS) include several
 techniques that improve the reliability and the security of data
 transfers. In this document we propose Multipath TLS (MPTLS), a
 tighter coupling between TLS and Multipath TCP that provides improved
 security and reliability in the presence of adversaries. MPTLS would
 the resilience of existing TLS applications to attacks. It could
 also serve as a basis for the TCP extension that is being discussed
 within the TCPINC working group to provide unauthenticated encryption
 and integrity protection of TCP streams.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Bonaventure Expires April 30, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MPTLS October 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Attacks considered . 3
3. High-level architecture 6
4. Required modifications to Multipath TCP 8
4.1. The three-way handshake 8
4.2. Provision of a message-mode service 9
4.3. HMAC authentication 10

5. Required modifications to TLS 14
5.1. Modifying the TLS record 15
5.2. Key derivation . 16

6. Interactions with middleboxes 17
7. Security considerations 17
7.1. RST injection . 17
7.2. Data injection . 18
7.3. Fake TCP acknowledgements 18

8. Conclusion . 18
9. Acknowledgements . 19
10. References . 19
10.1. Normative References 19
10.2. Informative References 19

 Author's Address . 21

1. Introduction

 Transport Layer Security (TLS) [RFC5246] is an application layer
 protocol that allows to encrypt and authenticate the data exchanged
 between applications running on different hosts. Various documents
 have analysed the security of the TLS protocol from different
 viewpoints [I-D.sheffer-uta-tls-attacks]. Over the years, various
 extensions to TLS have been developed and deployed. Besides attacks
 on the cryptographic algorithms or their implementations, TLS is also
 vulnerable to some forms of attacks that affect the underlying TCP
 protocol [RFC0793].

 TCP, by default, does not include any cryptographic technique to
 authenticate/encrypt data. Three types of solutions have been
 proposed to improve the security of TCP. A first approach is to tune
 the TCP stack to prevent some packet injection attacks. Examples of
 this approach may be found in [RFC5927] or [RFC5961]. Another
 approach is to add authentication to the TCP protocol. The TCP MD5
 option defined in [RFC2385] was the first example of such an

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc2385

Bonaventure Expires April 30, 2015 [Page 2]

Internet-Draft MPTLS October 2014

 approach. The TCP-AO option defined in [RFC5925] and [RFC5926] is a
 more recent example. These two solutions were designed to protect
 long-lived TCP connections such as BGP sessions from packet injection
 attacks. They assume that a secret is shared among the communicating
 hosts. A third approach is to extend TCP to include the
 cryptographic techniques directly inside the TCP stack
 [I-D.bittau-tcp-crypt].

 On the other hand, Multipath TCP [RFC6824] is a recent extension to
 TCP that allows to use several interfaces (or paths) to transmit the
 packets that belong to a single connection. It achieves this by
 managing several TCP connections (called subflows) for each Multipath
 TCP session. With Multipath TCP, the number of subflows associated
 to a given session may change dynamically. This is typically the
 case for mobile hosts that change of IP address, but this ability of
 Multipath TCP to adapt to changes in the underlying TCP subflows can
 also be used to improve the reaction to various packet injection
 attacks. Thanks to its ability to manage subflows, Multipath TCP can
 cope with various types of attacks and errors that affect the TCP
 stack and cannot easily be recovered at the application layer without
 implementing a session layer protocol.

 In this document, we propose a high level design for Multipath TLS
 (MPTLS). Multipath TLS integrates Multipath TCP and TLS together to
 provide enhanced security for the applications. This integration can
 be beneficial for security sensitive applications that already rely
 on TLS. It could also address the requirements of the TCP extension
 being developed within the TCPINC working group.

 This document is organised as follows. Section Section 2 describes
 the attacks that can affect TCP or TLS. Section Section 3 provides a
 high-level overview of the proposed architecture. Section Section 4
 describes the required changes to the Multipath TCP protocol while
 section Section 5 explains the proposed modifications to the TLS
 protocol. Section Section 6 discusses the interactions with
 middleboxes and section Section 7 the security considerations.

2. Attacks considered

 Any security protocol must be designed with the set of attacks that
 need to be prevented in mind. For this work, we consider three
 different types of attackers :

 o a completely off-path attacker that cannot capture any of the
 packets exchanged by the communicating hosts but is able to inject
 spoofed packets. We call this attacker the off-path attacker.

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5926
https://datatracker.ietf.org/doc/html/rfc6824

Bonaventure Expires April 30, 2015 [Page 3]

Internet-Draft MPTLS October 2014

 o an attacker that sits on (at least one of) the paths used to
 exchange packets between the communicating hosts at the beginning
 of the connection but later moves away from this path. We assume
 that this attacker is able to capture the packets exchanged and
 send spoofed packets but cannot modify the packets sent by the
 communicating hosts. We call this attack the partially on-path
 attacker.

 o an attacker that is always on the path between the communicating
 hosts. This attacker is able to capture the packets exchanged by
 the communicating hosts and modify them. We call this attacker
 the on-path attacker. This attacker could also be a middlebox
 that sits on one of the paths used by the communicating hosts.

 The off-path attacker is the simplest type of attacker in our
 taxonomy. This attacker can inject spoofed packets inside existing
 TCP connections. To inject a packet so that it is accepted inside an
 existing TCP connection, the attacker needs to guess the IP addresses
 of the communicating hosts, the port numbers (one is usually well-
 known) and sequence numbers and acknowledgements that fit inside the
 receive window. Several techniques have been defined
 [RFC6528],[RFC6056], [RFC5961], [Bellovin] to cope with such attacks
 and some have been implemented [I-D.ietf-tcpm-tcp-security]. The
 off-path attacker can try to inject either packets containing data or
 control packets (i.e. packets carrying the RST or the FIN flags).
 For both control and data packet injection attacks, a successful
 attack results in the termination of the affected TCP connection.

 Multipath TCP is by design less vulnerable than regular TCP to such
 attacks since it uses 64 bits data sequence numbers. It should be
 noted that the utilisation of TLS on a TCP connection does not
 increase its reaction against this form of attack. If the underlying
 TCP connection is reset due to an off-path attack, the TLS session is
 reset as well. The standard solution to cope with these off-path
 attacks is to authenticate the packets that are exchanged at either
 the TCP or the IP layer. The TCP-MD5 option, defined in [RFC2385],
 allows to authenticate the packets exchanged by the communicating
 hosts. This prevents the packet injection attacks discussed above
 since the receiving host can verify the validity of all received
 packets and easily reject those sent by the attacker. The recently
 proposed TCP-AO option [RFC5925] generalises this technique by
 allowing different types of hash functions and supporting key
 rollover techniques. Unfortunately, both TCP-MD5 and TCP-AO suffer
 from an important drawback. They assume that the communicating hosts
 have a shared secret. This shared secret is required because both
 techniques aim at authenticating all packets including the initial
 packets of the three-way handshake. While TCP-MD5 and TCP-AO can be
 used to secure the long-lived TCP connections used by BGP sessions

https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc5925

Bonaventure Expires April 30, 2015 [Page 4]

Internet-Draft MPTLS October 2014

 between Internet routers, they cannot be easily used to secure
 regular Internet traffic. Furthermore, combining TCP-AO with
 Multipath TCP would consume a large fraction of the TCP option space
 in the packets and would prevent the use of other important TCP
 extensions such as TCP-SACK. For these reasons, TCP-AP [RFC5925] is
 not a suitable solution.

 The second type of attacker that we consider is the on-path attacker.
 This is the most powerful attacker. TCP by itself is not protected
 against such attackers that can modify the packets exchanged on a TCP
 connection. Some of the deployed middleboxes operate like on-path
 attackers since they modify the contents of TCP packets. Typical
 examples are the NAT devices that change IP addresses and port
 numbers. Application Level Gateway running on NATs sometimes also
 need to modify the packet payloads or TCP normalisers that re-segment
 TCP packets [Normaliser] are other examples. Furthermore, studies
 have also shown that some middleboxes may generate packets to
 terminate TCP connections for various reasons [RFC3360]. We need to
 distinguish two types of attacks from these on-path attackers of
 middleboxes :

 o attacks that modify the packet payload without terminating the
 connection

 o attacks where the middlebox terminates the affected TCP connection

 The first type of attack is transparent for TCP. TCP does not detect
 the attack since the checksum has been modified by the attacker and
 delivers the modified payload. Multipath TCP, thanks to its DSS
 checksum, can detect a payload modification performed by a middlebox
 that understand TCP but not Multipath TCP. In this case, it falls
 back to regular TCP to preserve the connectivity between the
 communicating hosts. It should be noted that it would be possible to
 design a middlebox that modifies the payload of Multipath TCP packets
 in a way that cannot be detected by Multipath TCP (e.g. if the
 middlebox updates the DSS checksum after having modified the
 payload). If the middlebox decides to close the connection by using
 regular TCP RST or FIN flags, then Multipath TCP can react by
 reestablishing a new subflow (possibly via another path) to preserve
 the connection despite of the attack. The ability to manage several
 subflows is an important technique that allows Multipath TCP to react
 to attacks. While this reaction is effective against currently
 deployed TCP middleboxes, it is possible to design Multipath TCP
 aware middleboxes that inject specific Multipath TCP packets (e.g. by
 using the FAST_CLOSE option whose security relies on the keys
 exchanged during the initial handshake) to actively terminate
 Multipath TCP connections.

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc3360

Bonaventure Expires April 30, 2015 [Page 5]

Internet-Draft MPTLS October 2014

 On the other hand, TLS uses cryptographic techniques that enable the
 secure of keys that allow to authenticate and encrypt the records
 exchanged over the (Multipath) TCP connection. With appropriate
 cryptographic techniques and a PKI that prevents MITM attacks, it is
 possible to negotiate keys through an on-path attacker without
 enabling this attacker to derive the security keys. These security
 keys can then be used to authenticate and encrypt the records that
 are exchanged. Unfortunately, while the current TLS specification
 and implementations verify the authenticity of the received records
 from the derived secret keys, they react to an authentication failure
 by releasing the underlying TCP connection and alerting the
 application. This implies that an on-path attack will result in a
 denial of service attack for TLS applications.

3. High-level architecture

 At a high level, MPTLS integrated TLS and Multipath TCP together as
 shown in the figure below. The application interacts with the TLS
 implementation through the existing API without any change. This
 ensures the backward compatibility with existing applications.

 normal TLS interface
 +--------------+
 | Modified TLS |
 | ^ |
 +---|----|-----+
 | | message interface
 +--\/----------+
 |Modified MPTCP|
 | |
 +--------------+

 Figure 1: Simplified architecture

 We modify the TLS sublayer and keep in this layer the following
 functions that are already part TLS :

 o secure handshake and key negotiation

 o transmission and reception of the TLS records

 o encryption/decryption of the TLS records

 The TLS techniques that allow to authenticate TLS records are moved
 to the modified Multipath TCP sublayer. For this, we leverage the
 recently proposed encrypt-then-mac technique [RFC7366]. This is
 motivated by two reasons. First, Multipath TCP already verifies the

https://datatracker.ietf.org/doc/html/rfc7366

Bonaventure Expires April 30, 2015 [Page 6]

Internet-Draft MPTLS October 2014

 received data by using its optional DSS checksum. We replace this
 checksum with a cryptographic MAC authentication that has strong
 security properties. Second, if Multipath TCP receives a TLS record
 with an invalid MAC it can simply discard the data and wait for its
 retransmission or perhaps terminate the affected TCP subflow and
 create a new one to retransmit the data. This is much better from a
 security viewpoint than the current approach used by TLS that
 terminates the TLS session as soon as a record with an invalid MAC
 has been received.

 To enable Multipath TCP to correctly compute the MAC of each TLS
 record, we modify the interface between TLS and Multipath TCP. While
 regular TCP provides a bytestream service to TLS, our modified
 Multipath TCP provides a message mode service. With this service,
 Multipath TCP transports a sequence of TLS records. All these
 records are delivered in sequence (possibly after some
 retransmissions by the underlying layer) to the TLS sublayer at the
 receiver.

 As explained earlier, TLS negotiates the keys that are used to
 encrypt and authenticate the TLS records. Multipath TCP also needs
 keys to authenticate the establishment of subflows. Instead of
 exchanging the Multipath TCP keys in clear as defined in [RFC6824],
 we leverage the technique proposed in [RFC5705] that allows to derive
 additional keys from the MasterSecret negotiated during the secure
 TLS key exchange. The required keys are then passed to Multipath TCP
 as proposed in [I-D.paasch-mptcp-ssl] to secure the establishment of
 new subflows and also authenticate the transported TLS records. A
 drawback of this approach is that the keys required to authenticate
 the establishment of subflows are only available at the end of the
 TLS key exchange. Thus, this key exchange can only be performed over
 the initial subflows.

 We modify the service model of Multipath TCP when integrating it with
 TLS. Instead of providing a bytestream service, Multipath TCP
 provides an (authenticated) message-mode service. Each TLS record is
 sent as a single message by Multipath TCP. More precisely, the
 following workflow is used :

 o the application generates a block of up to 2^14 bytes of plain
 text

 o the TLS layer encrypts the plain text and adds the TLS record
 header

 o the TLS layer passes the TLS record to Multipath TCP as a message

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc5705

Bonaventure Expires April 30, 2015 [Page 7]

Internet-Draft MPTLS October 2014

 o Multipath TCP maps the entire TLS record via one DSS option onto a
 single subflow, computes the MAC and adds the DSN option

 o the corresponding packets are reliably transported through the
 network and delivered to the Multipath TCP layer at the
 destination

 o Once all packets have been correctly received at the destination,
 the MAC is verified. If the verification succeeds, the TLS record
 (without the authenticated MAC) is passed to the TLS layer that
 extracts the record header and decrypts the ciphertext to retrieve
 the plaintext and pass it to the application.

 Additional details about the required modifications to TLS and
 Multipath TCP are discussed in sections Section 5 and Section 4.

4. Required modifications to Multipath TCP

 Several modifications are required inside Multipath TCP to integrate
 it with TLS as proposed in the previous sections.

 The high level solution described above requires some modifications
 to Multipath TCP to support the integration of TLS with Multipath TCP
 :

 o Multipath TCP must be modified to support a message-mode service
 (limited to messages of up to 2^16 bytes) instead of the default
 bytestream service

 o Multipath TCP must be able to utilize the keys generated by TLS to
 authenticate the messages through a MAC algorithm and the
 establishment of new subflows

 o optionally an improved API to enable a better exchange of
 information between TLS and Multipath TCP

4.1. The three-way handshake

 [RFC6824] uses the three way handshake to negotiate the utilisation
 of Multipath TCP through the utilisation of the MP_CAPABLE option and
 also to exchange the keys that are used to both identify the
 Multipath TCP connection and authenticate the additional subflows.
 Since in MPTLS the keys will be provided by TLS, there is no need to
 exchange keys during the three way handshake. However, the three-way
 handshake is also used to exchange the tokens that identify the
 Multipath TCP connection on each host and the initial data sequence
 numbers in both directions. To identify the Multipath TCP

Bonaventure Expires April 30, 2015 [Page 8]

Internet-Draft MPTLS October 2014

 connection, we place the Sender's token in the MP_CAPABLE option of
 the SYN and SYN+ACK segments.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Sender's Token (32 bits) |
 +---+

 Figure 2: MP_CAPABLE option

 This variant of the MP_CAPABLE option is shorter than the MP_CAPABLE
 option defined in [RFC6824]. The two could be distinguished by
 relying on the length of the MP_CAPABLE option or based on the
 version number or one of the bits of the MP_CAPABLE option.

 The IDSN of each host should be generated by using the hash function
 associated with this version of Multipath TCP as
 IDSN=Hash(LocalToken||RemoteToken) where Local Token is the locally
 generated token and RemoteToken the token that has been generated by
 the remote host. An alternative could be to add a 32 bits random
 number in the MP_CAPABLE option and generate the IDSN as proposed in
 [I-D.paasch-mptcp-lowoverhead]. However, this solution uses 32 more
 bits of options in the SYN segment.

4.2. Provision of a message-mode service

 The second important modification to Multipath TCP is to replace its
 bytestream service by a message-mode service that is targeted to the
 needs of the modified TLS sublayer. To distribute the data over
 different subflows, Multipath TCP relies on the Data Sequence Signal
 option [RFC6824] whose format is shown below :

Bonaventure Expires April 30, 2015 [Page 9]

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824

Internet-Draft MPTLS October 2014

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+----------------------+
 | Kind | Length |Subtype| (reserved) |F|m|M|a|A|
 +---------------+---------------+-------+----------------------+
 | Data ACK (4 or 8 octets, depending on flags) |
 +--+
 | DSN: Data sequence number (4/8 octets, depending on flags) |
 +--+
 | SSN : Subflow Sequence Number (4 octets) |
 +-------------------------------+------------------------------+
 | Data-Level Length (2 octets) | Checksum (2 octets) |
 +-------------------------------+------------------------------+

 Figure 3: Data Sequence Signal option

 This option allows to map Length bytes from the bytestream of the
 Multipath TCP connection starting at data sequence number 'DSN' to
 the subflow sequence number 'SSN'. Since the length field is encoded
 as a two bytes long unsigned integer, it can be used to map up to
 2^16 bytes. This is larger than the maximum size of the TLS
 plaintext encoded inside a record (2^14 bytes) [RFC5246]. Even with
 expansion, a TLS ciphertext will never become larger than 2^16 bytes.
 We cover each TLS record with a single mapping. This implies that a
 single TLS record can only be mapped onto one subflow. If the TLS
 session is interactive, then short TLS records will be used anyway.
 If the TLS session transports a large amount of data, sending entire
 records over each subflow should not impact the performance. We note
 that some deployments of TLS already dynamically adapt the length of
 the TLS records to the activity of the session [Grigorik].

 We modify the semantics of the DSS option as follows. First, the
 Data-level length becomes the size of the TLS record that is
 transported. Given the constraints imposed by [RFC5246], this record
 will always be shorter than 2^16 bytes. Second, the DSS checksum is
 disabled and replaced by a MAC.

4.3. HMAC authentication

 TLS supports a range of authentication techniques that can be
 negotiated during the TLS handshake. In this first version of the
 document, we assume that TLS has negotiated a keyed HMAC to
 authenticate the TLS record. Subsequent versions of this document
 will analyse other record authentication methods such as [RFC5116].
 There are several possible design options to transport the computed
 HMAC.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5116

Bonaventure Expires April 30, 2015 [Page 10]

Internet-Draft MPTLS October 2014

 At a high level, our objective is to transport the computed HMAC
 together with the mapped data. As explained in the previous
 subsection, this data will be transported on the same TCP subflow
 given that the TLS record is covered by one DSS mapping. These three
 blocks of information can be transported either as

 +------------+--------------+-------------------------+
 | DSS | HMAC | TLS record |
 +------------+--------------+-------------------------+

 or

 +------------+-------------------------+--------------+
 | DSS | TLS record | HMAC |
 +------------+-------------------------+--------------+

 Sending the HMAC before the TLS record could simplify the processing
 at the receiver, but would force the sender to compute the entire
 HMAC before transmitting the TLS record. On the other hand, by
 sending the HMAC after the TLS record, we could enable hardware
 accelerators to both encrypt the TLS record and compute the HMAC on
 the fly while transmitting the data.

 At this stage, it is too early to opt for one encoding over the
 other, even if supporting both would create a too complex protocol.

 The second design question is how to encode the HMAC. Again, several
 options are possible.

 A first approach would be to rely on the TCP-AO option [RFC5925] and
 modify it so that it can authenticate all the data covered by the DSS
 mapping. However, using another (long) TCP option would consume
 space in the limited TCP option space. Furthermore, TCP-AO was
 designed with the assumption that each TCP-AO option covers a single
 TCP segment. Thus, there might be middleboxes that rely on this
 assumption to accept/reject packets. Modifying the TCP-AO option
 would likely result in difficulties with some middelboxes.

 A second approach is to place the length of the HMAC inside the DSS
 option, e.g. as a single byte that follows the Data-Level length
 field. This allows to support various HMAC lengths, including
 truncated HMAC [RFC6066].

 A third approach is to encode the HMAC as a variable length option
 using the same format as the TCP options, but transport this

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6066

Bonaventure Expires April 30, 2015 [Page 11]

Internet-Draft MPTLS October 2014

 information inside the DSS payload, before or after the TLS record
 that contains the real data. The variable-length TCP options are
 encoded in [RFC0793] as :

 <Kind><Length><Option>

 Where Kind and Length are encoded as a single byte. This limits the
 length of each option at 255 bytes, which is large enough to carry a
 HMAC. Option Kind=0 defined in [RFC0793] is a special option that
 does not contain a length information and is used to indicate the end
 of the option list. The HMAC option would always be transmitted
 before the TLS record and the null option would terminate the list of
 options.

 The simplest solution appears to be the second approach and sending
 the HMAC before the TLS record. Since the TLS keys can change during
 the lifetime of a TLS sessions, MPTLS needs to indicate which key has
 been used to compute an HMAC. This problem can be solved by
 associating a key identifier to the keys that are passed by TLS to
 Multipath TCP and place this key identifier inside the DSS option.
 The figure below provides the structure of the DSS option used by
 MPTLS.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+----------------------+
 | Kind | Length |Subtype| (reserved) |F|m|M|a|A|
 +---------------+---------------+-------+----------------------+
 | Data ACK (4 or 8 octets, depending on flags) |
 +--+
 | DSN: Data sequence number (4/8 octets, depending on flags) |
 +--+
 | SSN : Subflow Sequence Number (4 octets) |
 +-------------------------------+------------------------------+
 | Data-Level Length (2 octets) | MAC Length | Key Id. |
 +-------------------------------+------------------------------+

 Figure 4: MPTLS Data Sequence Signal option

 The semantics of the last two fields of this modified DSS option is
 the following.

 o 'MAC Length' is an 8 bits unsigned integer that specifies the
 length of the HMAC that follows the DSS option, i.e. the HMAC
 starts at subflow sequence number 'SSN' and ends at
 'SSN+MACLength-1'. A length of 0 indicates that no HMAC has been
 computed for the TLS record.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Bonaventure Expires April 30, 2015 [Page 12]

Internet-Draft MPTLS October 2014

 o 'Key Identifier' is an 8 bits unsigned integer that indicates the
 key that was used to compute the attached HMAC. When a TLS
 session starts, the key identifier is set to zero. It is
 incremented by one after each renegotiation of the keys. Using
 key identifiers allows an MPTLS implementation to verify the
 validate of TLS records that have been generated by using
 different keys.

 The last point to be discussed about the HMAC and the modified DSS
 option is the data that is covered by the HMAC. MPTLS uses the HMAC
 to authenticate both the TLS record, i.e. the payload mapped by the
 DSS, and the DSS option itself. This implies that any modification
 to one of the fields of the DSS option or to the data part would be
 detected by the HMAC. It should be noted that in contrast with TCP-
 AO, MPTLS does not protect the TCP header fields. This choice is
 motivated by the fact that various middleboxes modify IP and TCP
 fields, notably the IP addresses, the TCP port numbers, the sequence
 and acknowledgement numbers. Including these fields in the MPTLS
 HMAC would prevent any communication through such middleboxes.

 The HMAC should also be used to authenticate the following Multipath
 TCP options that may be exchanged during a Multipath TCP connection :

 o ADD_ADDR2 : This option must be authenticated with a HMAC
 [I-D.ietf-mptcp-rfc6824bis]. If replay attacks inside a single
 connection are concern, then the option needs to be updated to
 include a valid data-level sequence number and a valid data level
 ack

 o REMOVE_ADDR : This option must be authenticated with a HMAC. The
 above comment applies if replay attacks are a concern.

 o MP_PRIO : This option must be authenticated with a HMAC. The
 above comment applies if replay attacks are a concern.

 o MP_FASTCLOSE : This option must be authenticated with a HMAC. The
 current version defined in [RFC6824] includes the key negotiated
 during the three-way exchange. Placing the MAC key generated by
 TLS in this option would not be appropriate. A possible solution
 would be to place the Initial Data Sequence number inside the
 FAST_CLOSE option and authenticate this number via the HMAC.

 o MP_FAIL : This option is used to perform a fallback to regular TCP
 when middlebox interference has been observed. When MPTCP is used
 together with TLS, this mechanism should never be triggered and a
 host should silently ignore any MP_FAIL option that it receives.

https://datatracker.ietf.org/doc/html/rfc6824

Bonaventure Expires April 30, 2015 [Page 13]

Internet-Draft MPTLS October 2014

 The processing of data on a receiving host is slightly modified
 compared to regular TCP. In Multipath TCP version 1, as defined in
 [RFC6824], two levels of acknowledgements are used. With MPTLS, data
 remains acknowledged at the subflow level as soon as it has been
 received. Selective acknowledgements [RFC2018] can be negotiated to
 provide additional information about out-of-sequence data at the
 subflow level.

 With MPTLS, data can only be acknowledged at the Data-Sequence level
 (i.e. through the Data ack field of the DSS option) once it has been
 received in sequence and the HMAC that authenticates the received TLS
 record has been validated. If the HMAC authentication fails for one
 received TLS record, then the corresponding subflow should be
 terminated with a reason code [I-D.bonaventure-mptcp-rst] that
 indicates an authentication failure. The TLS record will then be
 retransmitted over another available subflow or a new subflow will be
 established to transmit this record. This mode of operation allows
 Multipath TCP to cope with various types of packet injection attacks
 without breaking the connection and affecting the TLS layer or the
 application.

5. Required modifications to TLS

 Multipath TCP can be completely transparent to the application since
 it provides the same socket interface as regular TCP. On the other
 hand, TLS is a record oriented protocol. Data is encoded in records
 that are reliably exchanged over the underlying TCP connection. TLS
 defines two types of records :

 o the control records that are used to exchange control information
 such as the secure handshake messages that negotiate the
 cryptographic parameters and keys

 o the data records that transport encrypted and authenticated data

 These two types of records have a variable length and are encoded by
 using a TLV format specified in [RFC5246]. The TLS protocol defines
 several types of data records depending on the type of encryption
 scheme that is used. Current TLS implementations apply a MAC-then-
 Encrypt approach to transmit data [RFC5246]. This implies that each
 data record, is first authenticated, e.g. by using a negotiated HMAC
 algorithm, then the authenticated record is encrypted. Several
 cryptographers have argued about several security problems with this
 approach there are ongoing discussions to use Encrypt-then-MAC for
 the data record [RFC7366]. This technique has better security
 properties and we build upon it to integrate TLS and Multipath TCP
 together.

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7366

Bonaventure Expires April 30, 2015 [Page 14]

Internet-Draft MPTLS October 2014

 At a high level, an MPTLS connection starts like a regular Multipath
 TCP connection. The Multipath TCP connection starts with a three-way
 handshake using the MP_CAPABLE option to negotiate the utilisation of
 Multipath TCP and exchange the tokens as explained in section

Section 4.

 Once the three-way handshake has finished, the bytestream is
 established and TLS can start its key negotiation. All the crypto
 mechanisms defined in [RFC5246] can be used to negotiate the crypto
 parameters and keys. In contrast with TCP-AO, this crypto
 negotiation is performed over an unprotected bytestream as when TLS
 is used over single-path TCP. In particular, no HMAC is included in
 the DSS option defined in the previous section.

 TLS uses the client_write_MAC_key and server_write_MAC_key to
 authenticate the data records. We build upon the encrypt-then-mac
 principle [RFC7366] and place the encryption/decryption function in
 the TLS layer and the authentication function inside Multipath TCP.
 As in AEAD algorithms [RFC5116], we assume that two different keys
 are used for the encryption and the authentication. The encryption
 keys are generated and stored in the TLS layer. The authentication
 keys are generated in the TLS layer by using the PRF described in
 [RFC5246] or through the procedure defined in [RFC5705].

 This part of the document describes in more details the modifications
 to TLS that are required to better integrate with Multipath TCP. The
 key issues that need to be discussed here are :

 o the new format for the TLS records

 o the derivation of the keys that are used by TLS and Multipath TCP

 o the interactions between TLS and Multipath TCP

5.1. Modifying the TLS record

 [RFC7366] defines a TLS record as being composed of :

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 GenericBlockCipher fragment;
 opaque MAC;
 } TLSCiphertext;

 Although the length field of this record is encoded as a 16 bits
 integer, TLS limits the record size to 2^14 bytes at most. Since

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7366
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705

Bonaventure Expires April 30, 2015 [Page 15]

Internet-Draft MPTLS October 2014

 MPTLS performs the authentication outside of the TLS record, we need
 to remove the opaque MAC from the structure of the TLS record. With
 regular TCP, this record format enables the receiver to retrieve the
 record boundaries and extract it from the bytestream. In MPTLS, this
 feature is not required since it provides a message mode service that
 delivers entire TLS records. For this reason, we also remove the
 length information from the TLS record. Note that this implies that
 it will be impossible for MPTLS to fallback to regular TCP if
 middlebox interference is detected. The modified TLS record becomes
 :

 struct {
 ContentType type;
 ProtocolVersion version;
 GenericBlockCipher fragment;
 } MPTCP_TLSCiphertext;

5.2. Key derivation

 MPTLS needs to derive more keys than when it is used over regular
 TCP. Once the TLS handshake has succeeded, the crypto parameters and
 keys are known by the two communicating hosts. In TLS, [RFC5246],
 six keys are derived from the Master key :

 o client_write_MAC_key[SecurityParameters.mac_key_length]

 o server_write_MAC_key[SecurityParameters.mac_key_length]

 o client_write_key[SecurityParameters.enc_key_length]

 o server_write_key[SecurityParameters.enc_key_length]

 o client_write_IV[SecurityParameters.fixed_iv_length]

 o server_write_IV[SecurityParameters.fixed_iv_length]

 The last two keys are only used with some specific crypto algorithms.
 We leverage [RFC5705] to derive two additional keys :

 o client_write_MPTCP_key[SecurityParameters.mac_key_length]

 o server_write_MPTCP_key[SecurityParameters.mac_key_length]

 The *write_MAC_key and *_write_MPTCP_key keys are derived by TLS and
 immediately passed to the Multipath TCP sublayer by using a similar
 technique as [I-D.paasch-mptcp-ssl]. The *write_MAC_key keys are
 used to authenticate the TLS records while the *_write_MPTCP_key keys
 are used to authenticate the establishment of subflows.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705

Bonaventure Expires April 30, 2015 [Page 16]

Internet-Draft MPTLS October 2014

 It should be noted that the key derivation technique used by TLS
 requires a distinction between the active opener (i.e. the client)
 and the passive opener (i.e. the server). For most MPTLS connections
 it is easy to determine the role of each communicating host.
 However, in the case of a simultaneous establishment of the Multipath
 TCP connection, we need a tiebreak to determine which host acts as
 the client and which host acts as the server. We propose to use the
 Tokens and the random number exchanged in the MP_CAPABLE option. By
 convention, the client will be the host that proposed the smallest
 [token] in the MP_CAPABLE option and the server the other one. In
 the unlikely case that both hosts propose the same token, then we
 rely on the IP addresses of the two hosts. These addresses are
 unique and the client is the host that has the numerically smallest
 address. It should be noted that this solution does not work if
 there is a NAT on the path between the two communicating hosts that
 changes (one of) the IP addresses. However, it is unlikely that a
 simultaneous establishment of a TCP connection will be possible
 through a NAT anyway. Adding complexity to handle this unlikely
 scenario (same token pair and NAT) does not seem to be necessary.

6. Interactions with middleboxes

 In this document, we assume that there are no middleboxes that
 modify, split or reassemble packets and/or options. A subsequent
 version of this document will discuss how such middleboxes could be
 handled.

7. Security considerations

 Various TCP attacks have been documented in the literature. In this
 section, we discuss some of these attacks and analyze how they affect
 our proposed TLS above Multipath TCP. A more detailed version of
 this section will be provided in the next version of this document.

7.1. RST injection

 A first attack is the injection of a RST segment in an existing TCP
 connection. Such RST segments can be injected by middleboxes as
 described [RFC3360]. There have also been documented attacks against
 very long-lived TCP connections (typically BGP sessions) where an
 attacker sends spoofed RST segments. Several techniques have been
 proposed to mitigate this attack [RFC4953].

 If an off-path attacker sends a spoofed RST segment, it could
 terminate the corresponding TCP connection. For regular TCP, this
 attack would cause a denial of service. However, since our solution
 builds upon Multipath TCP, this attack is less severe. If an
 attacker is able to inject a RST segment on an established subflow,

https://datatracker.ietf.org/doc/html/rfc3360
https://datatracker.ietf.org/doc/html/rfc4953

Bonaventure Expires April 30, 2015 [Page 17]

Internet-Draft MPTLS October 2014

 this subflow will be terminated. This will not cause the termination
 of the Multipath TCP connection and thus will not affect the
 application. Multipath TCP can be configured to reestablish the
 subflow when a RST segment is received without a FAST_CLOSE.

 An on-path attacker such as a middlebox as discussed in [RFC3360] can
 send a spoofed RST segment that would pass the mitigations described
 in [RFC4953]. However, such an attacker cannot know the keys that
 are used to authenticate the subflows and the TLS records. Thus, the
 only attack that such attacker could carry is inserting RST or FIN
 segments in one of the subflows. MPTLS will react to such attacks by
 reestablishing a new subflow.

7.2. Data injection

 An attacker can also inject TCP segments containing an invalid TLS
 record in one of the TCP subflows. Given that the TLS record is
 protected by an HMAC computed with keys that are negotiated during
 the secure TLS handshake, the attacker, cannot inject a valid TLS
 record in the connection even if the attacker can predict the
 sequence numbers, acknowledgements, Data Sequence Number and Data
 acknowledgements that are verified by Multipath TCP. When a receiver
 detects an invalid HMAC, it discards the associated TLS record and
 terminates the associated TCP subflow. This will slowdown the data
 transfer but would not affect the reliability of the data transfer.

7.3. Fake TCP acknowledgements

 An attacker can inject fake TCP acknowledgements at the subflow level
 but not that the DSS level given that the DSS-level acknowledgements
 are protected by the HMAC. Such an attack could force the
 retransmission of already transmitted data at the subflow level.

8. Conclusion

 In this document, we have proposed the main design principles of
 MPTLS : a tighter integration between Multipath TCP and Transport
 Layer Security (TLS). By leveraging the best characteristics of each
 protocol, MPTLS provides better security and reliability than by
 considering Multipath TCP and TLS as isolated protocols.

 MPTLS would be useful for two different types of applications.
 First, it would be beneficial for all the existing applications that
 rely on TLS, even if they are used on single-homed devices. Second,
 MPTLS could serve as a basis for the TCP extension that is being
 discussed within the TCPINC working group to provide unauthenticated
 encryption and integrity protection of TCP streams. These two use

https://datatracker.ietf.org/doc/html/rfc3360
https://datatracker.ietf.org/doc/html/rfc4953

Bonaventure Expires April 30, 2015 [Page 18]

Internet-Draft MPTLS October 2014

 cases will be discussed in more details in the next versions of this
 draft.

9. Acknowledgements

 This work was partially supported by the FP7-Trilogy2 project.

10. References

10.1. Normative References

 [I-D.ietf-mptcp-rfc6824bis]
 Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", draft-ietf-mptcp-rfc6824bis-02 (work in
 progress), January 2014.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

 [RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366, September 2014.

10.2. Informative References

 [Bellovin]
 Bellovin, S., "Security problems in the TCP/IP protocol
 suite", SIGCOMM Comput. Commun. Rev. 19, 2 (April 1989),
 32-48 , April 1989,
 <http://doi.acm.org/10.1145/378444.378449>.

 [Grigorik]
 Grigorik, I., "High Performance Browser Networking",
 O'Reilly , 2013,
 <http://chimera.labs.oreilly.com/books/1230000000545>.

Bonaventure Expires April 30, 2015 [Page 19]

https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-rfc6824bis-02
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7366
http://doi.acm.org/10.1145/378444.378449
http://chimera.labs.oreilly.com/books/1230000000545

Internet-Draft MPTLS October 2014

 [I-D.bittau-tcp-crypt]
 Bittau, A., Boneh, D., Hamburg, M., Handley, M., Mazieres,
 D., and Q. Slack, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-bittau-tcp-crypt-04 (work in progress),
 February 2014.

 [I-D.bonaventure-mptcp-rst]
 Bonaventure, O., Paasch, C., and G. Detal, "Processing of
 RST segments by Multipath TCP", draft-bonaventure-mptcp-

rst-00 (work in progress), July 2014.

 [I-D.ietf-tcpm-tcp-security]
 Gont, F., "Survey of Security Hardening Methods for
 Transmission Control Protocol (TCP) Implementations",

draft-ietf-tcpm-tcp-security-03 (work in progress), March
 2012.

 [I-D.paasch-mptcp-lowoverhead]
 Paasch, C. and O. Bonaventure, "MultiPath TCP Low
 Overhead", draft-paasch-mptcp-lowoverhead-00 (work in
 progress), October 2012.

 [I-D.paasch-mptcp-ssl]
 Paasch, C. and O. Bonaventure, "Securing the MultiPath TCP
 handshake with external keys", draft-paasch-mptcp-ssl-00
 (work in progress), October 2012.

 [I-D.sheffer-uta-tls-attacks]
 Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Current Attacks on TLS and DTLS", draft-sheffer-uta-tls-

attacks-00 (work in progress), February 2014.

 [Normaliser]
 Kreibich, C., Handley, M., and V. Paxson, "Network
 intrusion detection Evasion, traffic normalization, and
 end-to-end protocol semantics", Proc. USENIX Security
 Symposium , 2001.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

https://datatracker.ietf.org/doc/html/draft-bittau-tcp-crypt-04
https://datatracker.ietf.org/doc/html/draft-bonaventure-mptcp-rst-00
https://datatracker.ietf.org/doc/html/draft-bonaventure-mptcp-rst-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-security-03
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-lowoverhead-00
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-ssl-00
https://datatracker.ietf.org/doc/html/draft-sheffer-uta-tls-attacks-00
https://datatracker.ietf.org/doc/html/draft-sheffer-uta-tls-attacks-00
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2385

Bonaventure Expires April 30, 2015 [Page 20]

Internet-Draft MPTLS October 2014

 [RFC3360] Floyd, S., "Inappropriate TCP Resets Considered Harmful",
BCP 60, RFC 3360, August 2002.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks", RFC
4953, July 2007.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC5926] Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms
 for the TCP Authentication Option (TCP-AO)", RFC 5926,
 June 2010.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
 Robustness to Blind In-Window Attacks", RFC 5961, August
 2010.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056, January
 2011.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, February 2012.

Author's Address

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

Bonaventure Expires April 30, 2015 [Page 21]

https://datatracker.ietf.org/doc/html/bcp60
https://datatracker.ietf.org/doc/html/rfc3360
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5926
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc5961
https://datatracker.ietf.org/doc/html/bcp156
https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc6528

