
Network Working Group R. Barnes
Internet-Draft Cisco
Intended status: Informational K. Bhargavan
Expires: September 12, 2019 Inria
 March 11, 2019

Hybrid Public Key Encryption
draft-barnes-cfrg-hpke-01

Abstract

 This document describes a scheme for hybrid public-key encryption
 (HPKE). This scheme provides authenticated public key encryption of
 arbitrary-sized plaintexts for a recipient public key. HPKE works
 for any Diffie-Hellman group and has a strong security proof. We
 provide instantiations of the scheme using standard and efficient
 primitives.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Barnes & Bhargavan Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HPKE March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Notation . 3
3. Security Properties . 3
4. Notation . 3
5. Cryptographic Dependencies 3
5.1. DH-Based KEM . 5

6. Hybrid Public Key Encryption 5
6.1. Encryption to a Public Key 6
6.2. Authentication using a Pre-Shared Key 7
6.3. Authentication using an Asymmetric Key 8
6.4. Encryption and Decryption 9

7. Ciphersuites . 10
8. Security Considerations 11
9. IANA Considerations . 11
10. References . 11
10.1. Normative References 11
10.2. Informative References 12

Appendix A. Possible TODOs 13
 Authors' Addresses . 13

1. Introduction

 Hybrid public-key encryption (HPKE) is a substantially more efficient
 solution than traditional public key encryption techniques such as
 those based on RSA or ElGamal. Encrypted messages convey a single
 ciphertext and authentication tag alongside a short public key, which
 may be further compressed. The key size and computational complexity
 of elliptic curve cryptographic primitives for authenticated
 encryption therefore make it compelling for a variety of use case.
 This type of public key encryption has many applications in practice,
 for example, in PGP [RFC6637] and in the developing Messaging Layer
 Security protocol [I-D.ietf-mls-protocol].

 Currently, there are numerous competing and non-interoperable
 standards and variants for hybrid encryption, including ANSI X9.63
 [ANSI], IEEE 1363a [IEEE], ISO/IEC 18033-2 [ISO], and SECG SEC 1
 [SECG]. Lack of a single standard makes selection and deployment of
 a compatible, cross-platform and ecosystem solution difficult to
 define. This document defines an HPKE scheme that provides a subset
 of the functions provided by the collection of schemes above, but
 specified with sufficient clarity that they can be interoperably
 implemented and formally verified.

https://datatracker.ietf.org/doc/html/rfc6637

Barnes & Bhargavan Expires September 12, 2019 [Page 2]

Internet-Draft HPKE March 2019

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Security Properties

 As a hybrid authentication encryption algorithm, we desire security
 against (adaptive) chosen ciphertext attacks (IND-CCA2 secure). The
 HPKE variants described in this document achieve this property under
 the Random Oracle model assuming the gap Computational Diffie Hellman
 (CDH) problem is hard [S01].

4. Notation

 The following terms are used throughout this document to describe the
 operations, roles, and behaviors of HPKE:

 o Initiator (I): Sender of an encrypted message.

 o Responder (R): Receiver of an encrypted message.

 o Ephemeral (E): A fresh random value meant for one-time use.

 o "(skX, pkX)": A KEM key pair used in role X; "skX" is the private
 key and "pkX" is the public key

 o "pk(sk)": The public key corresponding to a private key

 o "len(x)": The one-octet length of the octet string "x"

 o "+": Concatenation of octet strings; "0x01 + 0x02 = 0x0102"

 o "*": Repetition of an octet string; "0x01 * 4 = 0x01010101"

 o "^": XOR of octet strings; "0xF0F0 ^ 0x1234 = 0xE2C4"

5. Cryptographic Dependencies

 HPKE variants rely on the following primitives:

 o A Key Encapsulation Mechanism (KEM):

 * GenerateKeyPair(): Generate a key pair (sk, pk)

Barnes & Bhargavan Expires September 12, 2019 [Page 3]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Internet-Draft HPKE March 2019

 * Marshal(pk): Produce a fixed-length octet string encoding the
 public key "pk"

 * Unmarshal(enc): Parse a fixed-length octet string to recover a
 public key

 * Encap(pk): Generate an ephemeral symmetric key and a fixed-
 length encapsulation of that key that can be decapsulated by
 the holder of the private key corresponding to pk

 * Decap(enc, sk): Use the private key "sk" to recover the
 ephemeral symmetric key from its encapsulated representation
 "enc"

 * AuthEncap(pkR, skI) (optional): Same as Encap(), but the
 outputs encode an assurance that the ephemeral shared key is
 known only to the holder of the private key "skI"

 * AuthDecap(skI, pkR) (optional): Same as Decap(), but the holder
 of the private key "skI" is assured that the ephemeral shared
 key is known only to the holder of the private key
 corresponding to "pkI"

 o A Key Derivation Function:

 * Extract(salt, IKM): Extract a pseudorandom key of fixed length
 from input keying material "IKM" and an optional octet string
 "salt"

 * Expand(PRK, info, L): Expand a pseudorandom key "PRK" using
 optional string "info" into "L" bytes of output keying material

 * Nh: The output size of the Extract function

 o An AEAD encryption algorithm [RFC5116]:

 * Seal(key, nonce, aad, pt): Encrypt and authenticate plaintext
 "pt" with associated data "aad" using secret key "key" and
 nonce "nonce", yielding ciphertext and tag "ct"

 * Open(key, nonce, aad, ct): Decrypt ciphertext "ct" using
 associated data "aad" with secret key "key" and nonce "nonce",
 returning plaintext message "pt" or the error value "OpenError"

 * Nk: The length in octets of a key for this algorithm

 * Nn: The length in octets of a nonce for this algorithm

https://datatracker.ietf.org/doc/html/rfc5116

Barnes & Bhargavan Expires September 12, 2019 [Page 4]

Internet-Draft HPKE March 2019

 A set of concrete instantiations of these primitives is provided in
Section 7. Ciphersuite values are two octets long.

5.1. DH-Based KEM

 Suppose we are given a Diffie-Hellman group that provides the
 following operations:

 o GenerateKeyPair(): Generate an ephemeral key pair "(sk, pk)" for
 the DH group in use

 o DH(sk, pk): Perform a non-interactive DH exchange using the
 private key sk and public key pk to produce a shared secret

 o Marshal(pk): Produce a fixed-length octet string encoding the
 public key "pk"

 Then we can construct a KEM (which we'll call "DHKEM") in the
 following way:

 def Encap(pkR):
 skE, pkE = GenerateKeyPair()
 zz = DH(skE, pkR)
 enc = Marshal(pkE)
 return zz, enc

 def Decap(enc, skR):
 pkE = Unmarshal(enc)
 return DH(skR, pkE)

 def AuthEncap(pkR, skI):
 skE, pkE = GenerateKeyPair()
 zz = DH(skE, pkR) + DH(skI, pkR)
 enc = Marshal(pkE)
 return zz, enc

 def AuthDecap(enc, skR, pkI):
 pkE = Unmarshal(enc)
 return DH(skR, pkE) + DH(skR, pkI)

 The Marshal and GenerateKeyPair functions are the same as for the
 underlying DH group.

6. Hybrid Public Key Encryption

 In this section, we define a few HPKE variants. All cases take a
 plaintext "pt" and a recipient public key "pkR" and produce an
 ciphertext "ct" and an encapsulated key "enc". These outputs are

Barnes & Bhargavan Expires September 12, 2019 [Page 5]

Internet-Draft HPKE March 2019

 constructed so that only the holder of the private key corresponding
 to "pkR" can decapsulate the key from "enc" and decrypt the
 ciphertext. All of the algorithms also take an "info" parameter that
 can be used to influence the generation of keys (e.g., to fold in
 identity information) and an "aad" parameter that provides Additional
 Authenticated Data to the AEAD algorithm in use.

 In addition to the base case of encrypting to a public key, we
 include two authenticated variants, one of which authenticates
 possession of a pre-shared key, and one of which authenticates
 possession of a KEM private key. The following one-octet values will
 be used to distinguish between modes:

 +-----------+-------+
 | Mode | Value |
 +-----------+-------+
 | mode_base | 0x00 |
 | | |
 | mode_psk | 0x01 |
 | | |
 | mode_auth | 0x02 |
 +-----------+-------+

 All of these cases follow the same basic two-step pattern:

 1. Set up an encryption context that is shared between the sender
 and the recipient

 2. Use that context to encrypt or decrypt content

 A "context" encodes the AEAD algorithm and key in use, and manages
 the nonces used so that the same nonce is not used with multiple
 plaintexts.

 The procedures described in this session are laid out in a Python-
 like pseudocode. The ciphersuite in use is left implicit.

6.1. Encryption to a Public Key

 The most basic function of an HPKE scheme is to enable encryption for
 the holder of a given KEM private key. The "SetupBaseI()" and
 "SetupBaseR()" procedures establish contexts that can be used to
 encrypt and decrypt, respectively, for a given private key.

 The the shared secret produced by the KEM is combined via the KDF
 with information describing the key exchange, as well as the explicit
 "info" parameter provided by the caller.

Barnes & Bhargavan Expires September 12, 2019 [Page 6]

Internet-Draft HPKE March 2019

 Note that the "SetupCore()" method is also used by the other HPKE
 variants describe below. The value "0*Nh" in the "SetupBase()"
 procedure represents an all-zero octet string of length "Nh".

 def SetupCore(mode, secret, kemContext, info):
 context = ciphersuite + mode +
 len(kemContext) + kemContext +
 len(info) + info
 key = Expand(secret, "hpke key" + context, Nk)
 nonce = Expand(secret, "hpke nonce" + context, Nn)
 return Context(key, nonce)

 def SetupBase(pkR, zz, enc, info):
 kemContext = enc + pkR
 secret = Extract(0*Nh, zz)
 return SetupCore(mode_base, secret, kemContext, info)

 def SetupBaseI(pkR, info):
 zz, enc = Encap(pkR)
 return SetupBase(pkR, zz, enc, info)

 def SetupBaseR(enc, skR, info):
 zz = Decap(enc, skR)
 return SetupBase(pk(skR), zz, enc, info)

 Note that the context construction in the SetupCore procedure is
 equivalent to serializing a structure of the following form in the
 TLS presentation syntax:

 struct {
 uint16 ciphersuite;
 uint8 mode;
 opaque kemContext<0..255>;
 opaque info<0..255>;
 } HPKEContext;

6.2. Authentication using a Pre-Shared Key

 This variant extends the base mechansism by allowing the recipient to
 authenticate that the sender possessed a given pre-shared key (PSK).
 We assume that both parties have been provisioned with both the PSK
 value "psk" and another octet string "pskID" that is used to identify
 which PSK should be used.

 The primary differences from the base case are:

 o The PSK is used as the "salt" input to the KDF (instead of 0)

Barnes & Bhargavan Expires September 12, 2019 [Page 7]

Internet-Draft HPKE March 2019

 o The PSK ID is added to the context string used as the "info" input
 to the KDF

 This mechanism is not suitable for use with a low-entropy password as
 the PSK. A malicious recipient that does not possess the PSK can use
 decryption of a plaintext as an oracle for performing offline
 dictionary attacks.

 def SetupPSK(pkR, psk, pskID, zz, enc, info):
 kemContext = enc + pkR + pskID
 secret = Extract(psk, zz)
 return SetupCore(mode_psk, secret, kemContext, info)

 def SetupPSKI(pkR, psk, pskID, info):
 zz, enc = Encap(pkR)
 return SetupPSK(pkR, psk, pskID, zz, enc, info)

 def SetupPSKR(enc, skR, psk, pskID, info):
 zz = Decap(enc, skR)
 return SetupPSK(pk(skR), psk, pskID, zz, enc, info)

6.3. Authentication using an Asymmetric Key

 This variant extends the base mechansism by allowing the recipient to
 authenticate that the sender possessed a given KEM private key. This
 assurance is based on the assumption that "AuthDecap(enc, skR, pkI)"
 produces the correct shared secret only if the encapsulated value
 "enc" was produced by "AuthEncap(pkR, skI)", where "skI" is the
 private key corresponding to "pkI". In other words, only two people
 could have produced this secret, so if the recipient is one, then the
 sender must be the other.

 The primary differences from the base case are:

 o The calls to "Encap" and "Decap" are replaced with calls to
 "AuthEncap" and "AuthDecap".

 o The initiator public key is added to the context string used as
 the "info" input to the KDF

 Obviously, this variant can only be used with a KEM that provides
 "AuthEncap()" and "AuthDecap()" procuedures.

 This mechanism authenticates only the key pair of the initiator, not
 any other identity. If an application wishes to authenticate some
 other identity for the sender (e.g., an email address or domain
 name), then this identity should be included in the "info" parameter
 to avoid unknown key share attacks.

Barnes & Bhargavan Expires September 12, 2019 [Page 8]

Internet-Draft HPKE March 2019

 def SetupAuth(pkR, pkI, zz, enc, info):
 kemContext = enc + pkR + pkI
 secret = Extract(0*Nh, zz)
 return SetupCore(mode_auth, secret, kemContext, info)

 def SetupAuthI(pkR, skI, info):
 zz, enc = AuthEncap(pkR, skI)
 return SetupAuth(pkR, pk(skI), zz, enc, info)

 def SetupAuthR(enc, skR, pkI, info):
 zz = AuthDecap(enc, skR, pkI)
 return SetupAuth(pk(skR), pkI, zz, enc, info)

6.4. Encryption and Decryption

 HPKE allows multiple encryption operations to be done based on a
 given setup transaction. Since the public-key operations involved in
 setup are typically more expensive than symmetric encryption or
 decryption, this allows applications to "amortize" the cost of the
 public-key operations, reducing the overall overhead.

 In order to avoid nonce reuse, however, this decryption must be
 stateful. Each of the setup procedures above produces a context
 object that stores the required state:

 o The AEAD algorithm in use

 o The key to be used with the AEAD algorithm

 o A base nonce value

 o A sequence number (initially 0)

 All of these fields except the sequence number are constant. The
 sequence number is used to provide nonce uniqueness: The nonce used
 for each encryption or decryption operation is the result of XORing
 the base nonce with the current sequence number, encoded as a big-
 endian integer of the same length as the nonce. Implementations MAY
 use a sequence number that is shorter than the nonce (padding on the
 left with zero), but MUST return an error if the sequence number
 overflows.

 Each encryption or decryption operation increments the sequence
 number for the context in use. A given context SHOULD be used either
 only for encryption or only for decryption.

Barnes & Bhargavan Expires September 12, 2019 [Page 9]

Internet-Draft HPKE March 2019

 It is up to the application to ensure that encryptions and
 decryptions are done in the proper sequence, so that the nonce values
 used for encryption and decryption line up.

 def Context.Nonce(seq):
 encSeq = encode_big_endian(seq, len(self.nonce))
 return self.nonce ^ encSeq

 def Context.Seal(aad, pt):
 ct = Seal(self.key, self.Nonce(self.seq), aad, pt)
 self.seq += 1
 return ct

 def Context.Open(aad, ct):
 pt = Open(self.key, self.Nonce(self.seq), aad, pt)
 if pt == OpenError:
 return OpenError
 self.seq += 1
 return pt

7. Ciphersuites

 The HPKE variants as presented will function correctly for any
 combination of primitives that provides the functions described
 above. In this section, we provide specific instantiations of these
 primitives for standard groups, including: Curve25519, Curve448
 [RFC7748], and the NIST curves P-256 and P-512.

 +--------+-------------------+-------------+------------------+
 | Value | KEM | KDF | AEAD |
 +--------+-------------------+-------------+------------------+
 | 0x0001 | DHKEM(P-256) | HKDF-SHA256 | AES-GCM-128 |
 | | | | |
 | 0x0002 | DHKEM(P-256) | HKDF-SHA256 | ChaCha20Poly1305 |
 | | | | |
 | 0x0002 | DHKEM(Curve25519) | HKDF-SHA256 | AES-GCM-128 |
 | | | | |
 | 0x0002 | DHKEM(Curve25519) | HKDF-SHA256 | ChaCha20Poly1305 |
 | | | | |
 | 0x0001 | DHKEM(P-521) | HKDF-SHA512 | AES-GCM-256 |
 | | | | |
 | 0x0002 | DHKEM(P-521) | HKDF-SHA512 | ChaCha20Poly1305 |
 | | | | |
 | 0x0002 | DHKEM(Curve448) | HKDF-SHA512 | AES-GCM-256 |
 | | | | |
 | 0x0002 | DHKEM(Curve448) | HKDF-SHA512 | ChaCha20Poly1305 |
 +--------+-------------------+-------------+------------------+

https://datatracker.ietf.org/doc/html/rfc7748

Barnes & Bhargavan Expires September 12, 2019 [Page 10]

Internet-Draft HPKE March 2019

 For the NIST curves P-256 and P-521, the Marshal function of the DH
 scheme produces the normal (non-compressed) representation of the
 public key, according to [SECG]. When these curves are used, the
 recipient of an HPKE ciphertext MUST validate that the ephemeral
 public key "pkE" is on the curve. The relevant validation procedures
 are defined in [keyagreement]

 For the CFRG curves Curve25519 and Curve448, the Marshal function is
 the identity function, since these curves already use fixed-length
 octet strings for public keys.

 The values "Nk" and "Nn" for the AEAD algorithms referenced above are
 as follows:

 +------------------+----+----+
 | AEAD | Nk | Nn |
 +------------------+----+----+
 | AES-GCM-128 | 16 | 12 |
 | | | |
 | AES-GCM-256 | 32 | 12 |
 | | | |
 | ChaCha20Poly1305 | 32 | 12 |
 +------------------+----+----+

8. Security Considerations

 [[TODO]]

9. IANA Considerations

 [[OPEN ISSUE: Should the above table be in an IANA registry?]]

10. References

10.1. Normative References

 [ANSI] "Public Key Cryptography for the Financial Services
 Industry -- Key Agreement and Key Transport Using Elliptic
 Curve Cryptography", n.d..

 [IEEE] "IEEE 1363a, Standard Specifications for Public Key
 Cryptography - Amendment 1 -- Additional Techniques",
 n.d..

 [ISO] "ISO/IEC 18033-2, Information Technology - Security
 Techniques - Encryption Algorithms - Part 2 -- Asymmetric
 Ciphers", n.d..

Barnes & Bhargavan Expires September 12, 2019 [Page 11]

Internet-Draft HPKE March 2019

 [keyagreement]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.sp.800-56ar2, May 2013.

 [MAEA10] "A Comparison of the Standardized Versions of ECIES",
 n.d., <http://sceweb.sce.uhcl.edu/yang/teaching/

csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [S01] "A Proposal for an ISO Standard for Public Key Encryption
 (verison 2.1)", n.d.,
 <http://www.shoup.net/papers/iso-2_1.pdf>.

 [SECG] "Elliptic Curve Cryptography, Standards for Efficient
 Cryptography Group, ver. 2", n.d.,
 <http://www.secg.org/download/aid-780/sec1-v2.pdf>.

10.2. Informative References

 [I-D.ietf-mls-protocol]
 Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., and
 R. Robert, "The Messaging Layer Security (MLS) Protocol",

draft-ietf-mls-protocol-03 (work in progress), January
 2019.

 [RFC6637] Jivsov, A., "Elliptic Curve Cryptography (ECC) in
 OpenPGP", RFC 6637, DOI 10.17487/RFC6637, June 2012,
 <https://www.rfc-editor.org/info/rfc6637>.

http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.shoup.net/papers/iso-2_1.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-03
https://datatracker.ietf.org/doc/html/rfc6637
https://www.rfc-editor.org/info/rfc6637

Barnes & Bhargavan Expires September 12, 2019 [Page 12]

Internet-Draft HPKE March 2019

Appendix A. Possible TODOs

 The following extensions might be worth specifying:

 o Multiple recipients - It might be possible to add some
 simplifications / assurances for the case where the same value is
 being encrypted to multiple recipients.

 o Test vectors - Obviously, we can provide decryption test vectors
 in this document. In order to provide known-answer tests, we
 would have to introduce a non-secure deterministic mode where the
 ephemeral key pair is derived from the inputs. And to do that
 safely, we would need to augment the decrypt function to detect
 the deterministic mode and fail.

 o A reference implementation in hacspec or similar

Authors' Addresses

 Richard L. Barnes
 Cisco

 Email: rlb@ipv.sx

 Karthik Bhargavan
 Inria

 Email: karthikeyan.bhargavan@inria.fr

Barnes & Bhargavan Expires September 12, 2019 [Page 13]

