
CFRG A. Langley
Internet-Draft Google
Intended status: Informational January 6, 2015
Expires: July 10, 2015

Elliptic Curves for Security
draft-agl-cfrgcurve-00

Abstract

 This memo describes an algorithm for deterministically generating
 parameters for elliptic curves over prime fields offering high
 practical security in cryptographic applications, including Transport
 Layer Security (TLS) and X.509 certificates. It also specifies a
 specific curve at the ~128-bit security level.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Langley Expires July 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft cfrgcurve January 2015

Table of Contents

1. Note on authorship . 2
2. Introduction . 2
3. Requirements Language . 3
4. Security Requirements . 3
5. Notation . 3
6. Parameter Generation . 4
6.1. Edwards Curves . 4
6.2. Twisted Edwards Curves 5
6.3. Generators . 6

7. Recommended Curves . 7
8. Wire-format of field elements 8
9. Elliptic Curve Diffie-Hellman 9
9.1. Diffie-Hellman protocol 11

10. Test vectors . 11
11. References . 12
11.1. Normative References 12
11.2. Informative References 12

 Author's Address . 13

1. Note on authorship

 This document is a merging of "draft-black-rpgecc-01" (by Benjamin
 Black, Joppe W. Bos, Craig Costello, Patrick Longa and Michael
 Naehrig) and "draft-turner-thecurve25519function-01" (by Watson Ladd,
 Rich Salz and Sean Turner). They are the actual authors of the words
 and figures, but authorship also implies support and so are not
 listed as authors until they have confirmed that they support this
 document. None the less, they deserve any credit for the contents.

2. Introduction

 Since the initial standardization of elliptic curve cryptography
 (ECC) in [SEC1] there has been significant progress related to both
 efficiency and security of curves and implementations. Notable
 examples are algorithms protected against certain side-channel
 attacks, different 'special' prime shapes which allow faster modular
 arithmetic, and a larger set of curve models from which to choose.
 There is also concern in the community regarding the generation and
 potential weaknesses of the curves defined in [NIST].

 This memo describes a deterministic algorithm for generation of
 elliptic curves for cryptography. The constraints in the generation
 process produce curves that support constant-time, exception-free
 scalar multiplications that are resistant to a wide range of side-
 channel attacks including timing and cache attacks, thereby offering
 high practical security in cryptographic applications. The

https://datatracker.ietf.org/doc/html/draft-black-rpgecc-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01

Langley Expires July 10, 2015 [Page 2]

Internet-Draft cfrgcurve January 2015

 deterministic algorithm operates without any hidden parameters,
 reliance on randomness or any other processes offering opportunities
 for manipulation of the resulting curves. The selection between
 curve models is determined by choosing the curve form that supports
 the fastest (currently known) complete formulas for each modularity
 option of the underlying field prime. Specifically, the Edwards
 curve x^2 + y^2 = 1 + dx^2y^2 is used with primes p with p = 3 mod 4,
 and the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2 is used for
 primes p with p = 1 mod 4.

3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

4. Security Requirements

 For each curve at a specific security level:

 1. The domain parameters SHALL be generated in a simple,
 deterministic manner, without any secret or random inputs. The
 derivation of the curve parameters is defined in Section 6.

 2. The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
 the attacks described in [Smart], [AS], and [S], as in [EBP].

 3. MOV Degree: the embedding degree k MUST be greater than (r - 1) /
 100, as in [EBP].

 4. CM Discriminant: discriminant D MUST be greater than 2^100, as in
 [SC].

5. Notation

 Throughout this document, the following notation is used:

 p Denotes the prime number defining the underlying field.

 GF(p) The finite field with p elements.

 d An element in the finite field GF(p), not equal to -1 or zero.

 Ed An Edwards curve: an elliptic curve over GF(p) with equation x^2 +
 y^2 = 1 + dx^2y^2.

 tEd A twisted Edwards curve where a=-1: an elliptic curve over GF(p)
 with equation -x^2 + y^2 = 1 + dx^2y^2.

Langley Expires July 10, 2015 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft cfrgcurve January 2015

 oddDivisor The largest odd divisor of the number of GF(p)-rational
 points on a (twisted) Edwards curve.

 oddDivisor' The largest odd divisor of the number of GF(p)-rational
 points on the non-trivial quadratic twist of a (twisted) Edwards
 curve.

 cofactor The cofactor of the subgroup of order oddDivisor in the
 group of GF(p)-rational points of a (twisted) Edwards curve.

 cofactor' The cofactor of the subgroup of order oddDivisor in the
 group of GF(p)-rational points on the non-trivial quadratic twist
 of a (twisted) Edwards curve.

 trace The trace of Frobenius of Ed or tEd such that #Ed(GF(p)) = p +
 1 - trace or #tEd(GF(p)) = p + 1 - trace, respectively.

 P A generator point defined over GF(p) of prime order oddDivisor on
 Ed or tEd.

 X(P) The x-coordinate of the elliptic curve point P.

 Y(P) The y-coordinate of the elliptic curve point P.

6. Parameter Generation

 This section describes the generation of the curve parameter, namely
 d, of the elliptic curve. The input to this process is p, the prime
 that defines the underlying field. The size of p determines the
 amount of work needed to compute a discrete logarithm in the elliptic
 curve group and choosing a precise p depends on many implementation
 concerns. The performance of the curve will be dominated by
 operations in GF(p) and thus carefully choosing a value that allows
 for easy reductions on the intended architecture is critical for
 performance. This document does not attempt to articulate all these
 considerations.

6.1. Edwards Curves

 For p = 3 mod 4, the elliptic curve Ed in Edwards form is determined
 by the non-square element d from GF(p) (not equal to -1 or zero) with
 smallest absolute value such that #Ed(GF(p)) = cofactor * oddDivisor,
 #Ed'(GF(p)) = cofactor' * oddDivisor', cofactor = cofactor' = 4, and
 both subgroup orders oddDivisor and oddDivisor' are prime. In
 addition, care must be taken to ensure the MOV degree and CM
 discriminant requirements from Section 4 are met.

 These cofactors are chosen because they are minimal.

Langley Expires July 10, 2015 [Page 4]

Internet-Draft cfrgcurve January 2015

Input: a prime p, with p = 3 mod 4
Output: the parameter d defining the curve Ed
1. Set d = 0
2. repeat
 repeat
 if (d > 0) then
 d = -d
 else
 d = -d + 1
 end if
 until d is not a square in GF(p)

 Compute oddDivisor, oddDivisor', cofactor and cofactor' where #Ed(GF(p)) =
 cofactor * oddDivisor, #Ed'(GF(p)) = cofactor' * oddDivisor', cofactor and
 cofactor' are powers of 2 and oddDivisor, oddDivisor' are odd.
 until ((cofactor = cofactor' = 4), oddDivisor is prime and oddDivisor' is
prime)
3. Output d

 GenerateCurveEdwards

6.2. Twisted Edwards Curves

 For a prime p = 1 mod 4, the elliptic curve tEd in twisted Edwards
 form is determined by the non-square element d from GF(p) (not equal
 to -1 or zero) with smallest absolute value such that #tEd(GF(p)) =
 cofactor * oddDivisor, #tEd'(GF(p)) = cofactor' * oddDivisor',
 cofactor = 8, cofactor' = 4 and both subgroup orders oddDivisor and
 oddDivisor' are prime. In addition, care must be taken to ensure the
 MOV degree and CM discriminant requirements from Section 4 are met.

 These cofactors are chosen so that they are minimal such that the
 cofactor of the main curve is greater than the cofactor of the twist.
 It's not possible in this case for the cofactors to be equal, but it
 is possible for the twist cofactor to be larger. The latter is
 considered dangerous because algorithms that depend on the cofactor
 of the curve may be vulnerable if a point on the twist is accepted.

Langley Expires July 10, 2015 [Page 5]

Internet-Draft cfrgcurve January 2015

Input: a prime p, with p = 1 mod 4
Output: the parameter d defining the curve tEd
1. Set d = 0
2. repeat
 repeat
 if (d > 0) then
 d = -d
 else
 d = -d + 1
 end if
 until d is not a square in GF(p)

 Compute oddDivisor, oddDivisor', cofactor, cofactor' where #tEd(GF(p)) =
 cofactor * oddDivisor, #tEd'(GF(p)) = cofactor' * oddDivisor', cofactor
 and cofactor' are powers of 2 and oddDivisor, oddDivisor' are odd.
 until (cofactor = 8 and cofactor' = 4 and rd is prime and rd' is prime)
3. Output d

 GenerateCurveTEdwards

6.3. Generators

 Any point with the correct order will serve as a generator for the
 group. The following algorithm computes a possible generator by
 taking the smallest positive value x in GF(p) (when represented as an
 integer) such that (x, y) is on the curve and such that (X(P),Y(P)) =
 8 * (x, y) has large prime order oddDivisor.

Langley Expires July 10, 2015 [Page 6]

Internet-Draft cfrgcurve January 2015

Input: a prime p and curve parameters non-square d and
 a = -1 for twisted Edwards (p = 1 mod 4) or
 a = 1 for Edwards (p = 3 mod 4)
Output: a generator point P = (X(P), Y(P)) of order oddDivisor
1. Set x = 0 and found_gen = false
2. while (not found_gen) do
 x = x + 1
 while ((1 - a * x^2) * (1 - d * x^2) is not a quadratic
 residue mod p) do
 x = x + 1
 end while
 Compute an integer s, 0 < s < p, such that
 s^2 * (1 - d * x^2) = 1 - a * x^2 mod p
 Set y = min(s, p - s)

 (X(P), Y(P)) = 8 * (x, y)

 if ((X(P), Y(P)) has order oddDivisor on Ed or tEd, respectively) then
 found_gen = true
 end if
 end while
3. Output (X(P),Y(P))

 GenerateGen

7. Recommended Curves

 For the ~128-bit security level, the prime 2^255-19 is recommended
 for performance over a wide-range of architectures. This prime is
 congruent to 1 mod 4 and the above procedure results in the following
 twisted Edwards curve, called "intermediate25519":

 p 2^255-19

 d 121665

 order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

 cofactor 8

 In order to be compatible with widespread existing practice, the
 recommended curve is an isogeny of this curve. An isogeny is a
 "renaming" of the points on the curve and thus cannot affect the
 security of the curve:

 p 2^255-19

Langley Expires July 10, 2015 [Page 7]

Internet-Draft cfrgcurve January 2015

 d 370957059346694393431380835087545651895421138798432190163887855330
 85940283555

 order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

 cofactor 8

 X(P) 151122213495354007725011514095885315114540126930418572060461132
 83949847762202

 Y(P) 463168356949264781694283940034751631413079938662562256157830336
 03165251855960

 The d value in the this curve is much larger than the generated curve
 and this might slow down some implementations. If this is a problem
 then implementations are free to calculate on the original curve,
 with small d as the isogeny map can be merged into the affine
 transform without any performance impact.

 The latter curve is isomorphic to a Montgomery curve defined by v^2 =
 u^3 + 486662u^2 + u where the maps are:

 (u, v) = ((1+y)/(1-y), sqrt(-1)*sqrt(486664)*u/x)
 (x, y) = (sqrt(-1)*sqrt(486664)*u/v, (u-1)/(u+1)

 The base point maps onto the Montgomery curve such that u = 9, v = 14
 781619447589544791020593568409986887264606134616475288964881837755586
 237401.

 The Montgomery curve defined here is equal to the one defined in
 [curve25519] and the isomorphic twisted Edwards curve is equal to the
 one defined in [ed25519].

8. Wire-format of field elements

 When transmitting field elements in the Diffie-Hellman protocol
 below, they MUST be encoded as an array of bytes, x, in little-endian
 order such that x[0] + 256 * x[1] + 256^2 * x[2] + ... + 256^n * x[n]
 is congruent to the value modulo p and x[n] is minimal. On receiving
 such an array, implementations MUST mask the (8-log2(p)%8)%8 most-
 significant bits in the final byte. This is done to preserve
 compatibility with point formats which reserve the sign bit for use
 in other protocols and to increase resistance to implementation
 fingerprinting.

 (NOTE: draft-turner-thecurve25519function also says "Implementations
 MUST reject numbers in the range [2^255-19, 2^255-1], inclusive." but
 I'm not aware of any implementations that do so.)

https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function

Langley Expires July 10, 2015 [Page 8]

Internet-Draft cfrgcurve January 2015

9. Elliptic Curve Diffie-Hellman

 This section describes how to perform Diffie-Hellman using curves
 generated by the above procedure. For safety reasons, Diffie-Hellman
 is performed on the Montgomery isomorphism of the curve and the
 public values transmitted are u coordinates.

 Let U denote the projection map from a point (u,v) on E, to u,
 extended so that U of the point at infinity is zero. U is surjective
 onto GF(p) if the v coordinate takes on values in GF(p) and in a
 quadratic extension of GF(p).

 Then DH(s, U(Q)) = U(sQ) is a function defined for all integers s and
 elements U(Q) of GF(p). Proper implementations use a restricted set
 of integers for s and only u-coordinates of points Q defined over
 GF(p). The remainder of this section describes how to compute this
 function quickly and securely, and use it in a Diffie- Hellman
 scheme.

 Let s be a 255 bits long integer, where s = sum s_i * 2^i with s_i in
 {0, 1}.

 Computing DH(s, u) is done by the following procedure, taken from
 [curve25519] based on formulas from [montgomery]. All calculations
 are performed in GF(p), i.e., they are performed modulo p. The
 parameter a24 is a24 = (486662 - 2) / 4 = 121665.

Langley Expires July 10, 2015 [Page 9]

Internet-Draft cfrgcurve January 2015

 x_1 = u
 x_2 = 0
 z_2 = 1
 x_3 = u
 z_3 = 1
 For t = 254 down to 0:
 // Conditional swap; see text below.
 (x_2, x_3) = cswap (s_t, x_2, x_3)
 (z_2, z_3) = cswap (s_t, z_2, z_3)
 A = x_2 + z_2
 AA = A^2
 B = x_2 - z_2
 BB = B^2
 E = AA - BB
 C = x_3 + z_3
 D = x_3 - z_3
 DA = D * A
 CB = C * B
 x_3 = (DA + CB)^2
 z_3 = x_1 * (DA - CB)^2
 x_2 = AA * BB
 z_2 = E * (AA + a24 * E)
 // Conditional swap; see text below.
 (x_2, x_3) = cswap (s_t, x_2, x_3)
 (z_2, z_3) = cswap (s_t, z_2, z_3)
 Return x_2 * (z_2^(p - 1))

 In implementing this procedure, due to the existence of side-channels
 in commodity hardware, it is important that the pattern of memory
 accesses and jumps not depend on the values of any of the bits of s.
 It is also important that the arithmetic used not leak information
 about the integers modulo p (such as having b * c distinguishable
 from c * c).

 The cswap instruction SHOULD be implemented in constant time
 (independent of s_t) as follows:

 cswap(s_t, x_2, x_3)
 dummy = s_t * (x_2 - x_3)
 x_2 = x_2 - dummy
 x_3 = x_3 + dummy
 Return (x_2, x_3)

 where s_t is 1 or 0. Alternatively, an implementation MAY use the
 following:

Langley Expires July 10, 2015 [Page 10]

Internet-Draft cfrgcurve January 2015

 cswap(s_t, x_2, x_3)
 dummy = mask(s_t) AND (x_2 XOR x_3)
 x_2 = x_2 XOR dummy
 x_3 = x_3 XOR dummy
 Return (x_2, x_3)

 where mask(s_t) is the all-1 or all-0 word of the same length as x_2
 and x_3, computed, e.g., as mask(s_t) = 1 - s_t. The latter version
 is often more efficient.

9.1. Diffie-Hellman protocol

 The DH function can be used in an ECDH protocol with the recommended
 curve as follows:

 Alice generates 32 random bytes in f[0] to f[31]. She masks the
 three rightmost bits of f[0] and the leftmost bit of f[31] to zero
 and sets the second leftmost bit of f[31] to 1. This means that f is
 of the form 2^254 + 8 * {0, 1, ..., 2^(251) - 1} as a little-endian
 integer.

 Alice then transmits K_A = DH(f, 9) to Bob, where 9 is the number 9.

 Bob similarly generates 32 random bytes in g[0] to g[31], applies the
 same masks, computes K_B = DH(g, 9) and transmits it to Alice.

 Alice computes DH(f, DH(g, 9)); Bob computes DH(g, DH(f, 9)) using
 their generated values and the received input.

 Both of them now share K = DH(f, DH(g, 9)) = DH(g, DH(f, 9)) as a
 shared secret. Alice and Bob can then use a key-derivation function,
 such as hashing K, to compute a key.

10. Test vectors

 The following test vectors are taken from [nacl]. All numbers are
 shown as little-endian hexadecimal byte strings:

Langley Expires July 10, 2015 [Page 11]

Internet-Draft cfrgcurve January 2015

 Alice's private key, f:

 77 07 6d 0a 73 18 a5 7d 3c 16 c1 72 51 b2 66 45
 df 4c 2f 87 eb c0 99 2a b1 77 fb a5 1d b9 2c 2a

 Alice's public key, DH(f, 9):

 85 20 f0 09 89 30 a7 54 74 8b 7d dc b4 3e f7 5a
 0d bf 3a 0d 26 38 1a f4 eb a4 a9 8e aa 9b 4e 6a

 Bob's private key, g:

 5d ab 08 7e 62 4a 8a 4b 79 e1 7f 8b 83 80 0e e6
 6f 3b b1 29 26 18 b6 fd 1c 2f 8b 27 ff 88 e0 eb

 Bob's public key, DH(g, 9):

 de 9e db 7d 7b 7d c1 b4 d3 5b 61 c2 ec e4 35 37
 3f 83 43 c8 5b 78 67 4d ad fc 7e 14 6f 88 2b 4f

 Their shared secret, K:

 4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
 e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

 [AS] Satoh, T. and K. Araki, "Fermat quotients and the
 polynomial time discrete log algorithm for anomalous
 elliptic curves", 1998.

 [EBP] ECC Brainpool, "ECC Brainpool Standard Curves and Curve
 Generation", October 2005, <http://www.ecc-

brainpool.org/download/Domain-parameters.pdf>.

 [NIST] National Institute of Standards, "Recommended Elliptic
 Curves for Federal Government Use", July 1999,
 <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.pdf>.

Langley Expires July 10, 2015 [Page 12]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

Internet-Draft cfrgcurve January 2015

 [S] Semaev, I., "Evaluation of discrete logarithms on some
 elliptic curves", 1998.

 [SC] Bernstein, D. and T. Lange, "SafeCurves: choosing safe
 curves for elliptic-curve cryptography", June 2014,
 <http://safecurves.cr.yp.to/>.

 [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
 September 2000,
 <http://www.secg.org/collateral/sec1_final.pdf>.

 [Smart] Smart, N., "The discrete logarithm problem on elliptic
 curves of trace one", 1999.

 [curve25519]
 Bernstein, D., "Curve25519 -- new Diffie-Hellman speed
 records", 2006,
 <http://www.iacr.org/cryptodb/archive/2006/

PKC/3351/3351.pdf>.

 [ed25519] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
 Yang, "High-speed high-security signatures", 2011,
 <http://ed25519.cr.yp.to/ed25519-20110926.pdf>.

 [montgomery]
 Montgomery, P., "Speeding the Pollard and elliptic curve
 methods of factorization", 1983,
 <http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf>.

 [nacl] Bernstein, D., "Cryptography in NaCl", 2009,
 <http://cr.yp.to/highspeed/naclcrypto-20090310.pdf>.

Author's Address

 Adam Langley
 Google
 345 Spear St
 San Francisco, CA 94105
 US

 Email: agl@google.com

http://safecurves.cr.yp.to/
http://www.secg.org/collateral/sec1_final.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://ed25519.cr.yp.to/ed25519-20110926.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf

Langley Expires July 10, 2015 [Page 13]

