Network Working Group                                       S. Josefsson
Internet-Draft                                                    SJD AB
Intended status: Informational                                N. Moeller
Expires: August 20, 2015
                                                       February 16, 2015


                           EdDSA and Ed25519
                    draft-josefsson-eddsa-ed25519-01

Abstract

   The elliptic curve signature scheme EdDSA and one instance of it
   called Ed25519 is described.  An example implementation and test
   vectors are provided.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 20, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Josefsson & Moeller      Expires August 20, 2015                [Page 1]


Internet-Draft               EdDSA & Ed25519               February 2015


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Notation  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   3
   4.  EdDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     4.1.  Encoding  . . . . . . . . . . . . . . . . . . . . . . . .   4
     4.2.  Keys  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     4.3.  Sign  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     4.4.  Verify  . . . . . . . . . . . . . . . . . . . . . . . . .   5
   5.  Ed25519 . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
   6.  Security considerations . . . . . . . . . . . . . . . . . . .  10
     6.1.  Side-channel leaks  . . . . . . . . . . . . . . . . . . .  10
   7.  Test Vectors for Ed25519  . . . . . . . . . . . . . . . . . .  10
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  14
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  14
     11.2.  Informative References . . . . . . . . . . . . . . . . .  14
   Appendix A.  Ed25519 Python Library . . . . . . . . . . . . . . .  15
   Appendix B.  Library driver . . . . . . . . . . . . . . . . . . .  19
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  20

1.  Introduction

   The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
   Schnorr's signature system with Twisted Edwards curves.  EdDSA needs
   to be instantiated with certain parameters, and Ed25519 is described
   in this document.  To facilitate adoption in the Internet community
   of Ed25519, this document describe the signature scheme in an
   implementation-oriented way, and we provide sample code and test
   vectors.

   The advantages with EdDSA and Ed25519 include:

   1.  High-performance on a variety of platforms.

   2.  Does not require the use of a unique random number for each
       signature.

   3.  More resilient to side-channel attacks.

   4.  Small public keys (32 bytes) and signatures (64 bytes).

   5.  The formulas are "strongly unified", i.e., they are valid for all
       points on the curve, with no exceptions.




Josefsson & Moeller      Expires August 20, 2015                [Page 2]


Internet-Draft               EdDSA & Ed25519               February 2015


   6.  Collision resilience, meaning that hash-function collisions do
       not break this system.

   For further background, see the original EdDSA paper [EDDSA].

2.  Notation

   The following notation is used throughout the document:

   GF(p) finite field with p elements

   x^y x multiplied by itself y times

   h_i the i'th bit of h

   a || b (bit-)string a concatenated with (bit-)string b

3.  Background

   EdDSA is defined using an elliptic curve over GF(q) of the form

   -x^2 + y^2 = 1 + d x^2 y^2

   It is required that q = 1 modulo 4 (which implies that -1 is a square
   modulo q) and that d is a non-square modulo q.  For Ed25519, the
   curve used is equivalent to curve25519, under a change of
   coordinates, which means that the difficulty of the discrete
   logarithm problem is the same as for curve25519.

   Points on this curve form a group under addition, (x3, y3) = (x1, y1)
   + (x2, y2), with the formulas

           x1 y2 + x2 y1              y1 y2 + x1 x2
   x3 = -------------------,  y3 = -------------------
         1 + d x1 x2 y1 y2          1 - d x1 x2 y1 y2

   Unlike may other curves used for cryptographic applications, these
   formulas are "strongly unified": they are valid for all points on the
   curve, with no exceptions.  In particular, the denominators are non-
   zero for all input points.

   There are more efficient formulas, which are still strongly unified,
   which use homogeneous coordinates to avoid the expensive modulo q
   inversions.  See [Faster-ECC] and [Edwards-revisited].







Josefsson & Moeller      Expires August 20, 2015                [Page 3]


Internet-Draft               EdDSA & Ed25519               February 2015


4.  EdDSA

   EdDSA is a digital signature system with several parameters.  The
   generic EdDSA digital signature system is normally not implemented
   directly, but instead a particular instance of EdDSA (like Ed25519)
   is implemented.  A precise explanation of the generic EdDSA is thus
   not particulary useful for implementers, but for background and
   completeness, a succint description of the generic EdDSA algorithm is
   given here.

   EdDSA has seven parameters:

   1.  an integer b >= 10.

   2.  a cryptographic hash function H producing 2b-bit outputs.

   3.  a prime power q congruent to 1 modulo 4.

   4.  a (b-1)-bit encoding of elements of the finite field GF(q).

   5.  a non-square element d of GF(q)

   6.  a prime l between 2^(b-4) and 2^(b-3) satisfying lB=0 where nB
       means the n'th multiple of B in the group E.

   7.  an element B != (0,1) of the set E = { (x,y) is a member of GF(q)
       x GF(q) such that -x^2 + y^2 = 1 + dx^2y^2 }.

4.1.  Encoding

   An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
   which is the (b-1)-bit encoding of y concatenated with one bit that
   is 1 if x is negative and 0 if x is not negative.  Negative elements
   of GF(q) are those x which the (b-1)-bit encoding of x is
   lexicographically larger than the (b-1)-bit encoding of -x.

4.2.  Keys

   An EdDSA secret key is a b-bit string k.  Let the hash H(k) = (h_0,
   h_1, ..., h_(2b-1)) determine an integer a which is 2^(b-2) plus the
   sum of m = 2^i * h_i for all i equal or larger than 3 and equal to or
   less than b-3 such that m is a member of the set { 2^(b-2), 2^(b-2) +
   8, ..., 2^(b-1) - 8 }.  The EdDSA public key is ENC(A) = ENC(aB).
   The bits h_b, ..., h_(2b-1) is used below during signing.







Josefsson & Moeller      Expires August 20, 2015                [Page 4]


Internet-Draft               EdDSA & Ed25519               February 2015


4.3.  Sign

   The signature of a message M under a secret key k is the 2b-bit
   string ENC(R) || ENC'(S), where ENC'(S) is defined as the b-bit
   little-endian encoding of S.  R and S are derived as follows.  First
   define r = H(h_b, ... h_(2b-1)), M) interpreting 2b-bit strings in
   little-endian form as integers in {0, 1, ..., 2^(2b)-1}.  Let R=rB
   and S=(r+H(ENC(R) || ENC(A) || M)a) mod l.

4.4.  Verify

   To verify a signature ENC(R) || ENC'(S) on a message M under a public
   key ENC(A), proceed as follows.  Parse the inputs so that A and R is
   an element of E, and S is a member of the set {0, 1, ..., l-1 }.
   Compute H' = H(ENC(R) || ENC(A) || M) and check the group equation
   8SB = 8R + 8H'A in E.  Verification is rejected if parsing fails or
   the group equation does not hold.

5.  Ed25519

   Ed25519 is EdDSA instantiated with b=256, H being SHA-512 [RFC4634],
   q is the prime 2^255-19, the 255-bit encoding of GF(2^255-19) being
   the little-endian encoding of {0, 1, ..., 2^255-20}, l is the prime
   2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed, d = -121665/121666 which
   is a member of GF(q), and B is the unique point (x, 4/5) in E for
   which x is positive.  The curve q, prime l, d and B follows from
   [I-D.irtf-cfrg-curves].

   The rest of this section describes how Ed25519 can be implemented in
   Python (version 3.2 or later) for illustration.  See appendix A for
   the complete implementation and appendix B for a test-driver to run
   it through some test vectors.

   First some preliminaries that will be needed.

















Josefsson & Moeller      Expires August 20, 2015                [Page 5]


Internet-Draft               EdDSA & Ed25519               February 2015


   import hashlib

   def sha512(s):
       return hashlib.sha512(s).digest()

   # Base field Z_p
   p = 2**255 - 19

   def modp_inv(x):
       return pow(x, p-2, p)

   # Curve constant
   d = -121665 * modp_inv(121666) % p

   # Group order
   q = 2**252 + 27742317777372353535851937790883648493

   def sha512_modq(s):
       return int.from_bytes(sha512(s), "little") % q

   Then follows functions to perform point operations.






























Josefsson & Moeller      Expires August 20, 2015                [Page 6]


Internet-Draft               EdDSA & Ed25519               February 2015


# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)

# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q

def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

   Now follows functions for point compression.

















Josefsson & Moeller      Expires August 20, 2015                [Page 7]


Internet-Draft               EdDSA & Ed25519               February 2015


# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)




Josefsson & Moeller      Expires August 20, 2015                [Page 8]


Internet-Draft               EdDSA & Ed25519               February 2015


   These are functions for manipulating the secret.

   def secret_expand(secret):
       if len(secret) != 32:
           raise Exception("Bad size of private key")
       h = sha512(secret)
       a = int.from_bytes(h[:32], "little")
       a &= (1 << 254) - 8
       a |= (1 << 254)
       return (a, h[32:])

   def secret_to_public(secret):
       (a, dummy) = secret_expand(secret)
       return point_compress(point_mul(a, G))

   The signature function works as below.

   def sign(secret, msg):
       a, prefix = secret_expand(secret)
       A = point_compress(point_mul(a, G))
       r = sha512_modq(prefix + msg)
       R = point_mul(r, G)
       Rs = point_compress(R)
       h = sha512_modq(Rs + A + msg)
       s = (r + h * a) % q
       return Rs + int.to_bytes(s, 32, "little")

   And finally the verification function.

   def verify(public, msg, signature):
       if len(public) != 32:
           raise Exception("Bad public-key length")
       if len(signature) != 64:
           Exception("Bad signature length")
       A = point_decompress(public)
       if not A:
           return False
       Rs = signature[:32]
       R = point_decompress(Rs)
       if not R:
           return False
       s = int.from_bytes(signature[32:], "little")
       h = sha512_modq(Rs + public + msg)
       sB = point_mul(s, G)
       hA = point_mul(h, A)
       return point_equal(sB, point_add(R, hA))





Josefsson & Moeller      Expires August 20, 2015                [Page 9]


Internet-Draft               EdDSA & Ed25519               February 2015


6.  Security considerations

6.1.  Side-channel leaks

   For implementations performing signatures, secrecy of the key is
   fundamental.  It is possible to protect against some side-channel
   attacks by ensuring that the implementation executes exactly the same
   sequence of instructions and performs exactly the same memory
   accesses, for any value of the secret key.

   To make an implementation side-channel silent in this way, the modulo
   q arithmetic must not use any data-dependent branches, e.g., related
   to carry propagation.  Side channel-silent point addition is
   straight-forward, thanks to the unified formulas.

   Scalar multiplication, multiplying a point by an integer, needs some
   additional effort to implement in a side-channel silent manner.  One
   simple approach is to implement a side-channel silent conditional
   assignment, and use together with binary algorithm to examine one bit
   of the integer at a time.

   Note that the example implementation in this document does not
   attempt to be side-channel silent.

7.  Test Vectors for Ed25519

   Below is a sequence of octets with test vectors for the the Ed25519
   signature algorithm.  The octets are hex encoded and whitespace is
   inserted for readability.  Private keys are 64 bytes, public keys 32
   bytes, message of arbitrary length, and signatures are 64 bytes.  The
   test vectors are taken from [ED25519-TEST-VECTORS] (but we removed
   the public key as a suffix of the secret key, and removed the message
   from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].

   -----TEST 1
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   d75a980182b10ab7d54bfed3c964073a
   0ee172f3daa62325af021a68f707511a

   MESSAGE (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155



Josefsson & Moeller      Expires August 20, 2015               [Page 10]


Internet-Draft               EdDSA & Ed25519               February 2015


   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b

   -----TEST 2
   SECRET KEY:
   4ccd089b28ff96da9db6c346ec114e0f
   5b8a319f35aba624da8cf6ed4fb8a6fb

   PUBLIC KEY:
   3d4017c3e843895a92b70aa74d1b7ebc
   9c982ccf2ec4968cc0cd55f12af4660c

   MESSAGE (length 1 byte):
   72

   SIGNATURE:
   92a009a9f0d4cab8720e820b5f642540
   a2b27b5416503f8fb3762223ebdb69da
   085ac1e43e15996e458f3613d0f11d8c
   387b2eaeb4302aeeb00d291612bb0c00

   -----TEST 3
   SECRET KEY:
   c5aa8df43f9f837bedb7442f31dcb7b1
   66d38535076f094b85ce3a2e0b4458f7

   PUBLIC KEY:
   fc51cd8e6218a1a38da47ed00230f058
   0816ed13ba3303ac5deb911548908025

   MESSAGE (length 2 bytes):
   af82

   SIGNATURE:
   6291d657deec24024827e69c3abe01a3
   0ce548a284743a445e3680d7db5ac3ac
   18ff9b538d16f290ae67f760984dc659
   4a7c15e9716ed28dc027beceea1ec40a

   -----TEST 1024
   SECRET KEY:
   f5e5767cf153319517630f226876b86c
   8160cc583bc013744c6bf255f5cc0ee5

   PUBLIC KEY:
   278117fc144c72340f67d0f2316e8386
   ceffbf2b2428c9c51fef7c597f1d426e




Josefsson & Moeller      Expires August 20, 2015               [Page 11]


Internet-Draft               EdDSA & Ed25519               February 2015


   MESSAGE:
   08b8b2b733424243760fe426a4b54908
   632110a66c2f6591eabd3345e3e4eb98
   fa6e264bf09efe12ee50f8f54e9f77b1
   e355f6c50544e23fb1433ddf73be84d8
   79de7c0046dc4996d9e773f4bc9efe57
   38829adb26c81b37c93a1b270b20329d
   658675fc6ea534e0810a4432826bf58c
   941efb65d57a338bbd2e26640f89ffbc
   1a858efcb8550ee3a5e1998bd177e93a
   7363c344fe6b199ee5d02e82d522c4fe
   ba15452f80288a821a579116ec6dad2b
   3b310da903401aa62100ab5d1a36553e
   06203b33890cc9b832f79ef80560ccb9
   a39ce767967ed628c6ad573cb116dbef
   efd75499da96bd68a8a97b928a8bbc10
   3b6621fcde2beca1231d206be6cd9ec7
   aff6f6c94fcd7204ed3455c68c83f4a4
   1da4af2b74ef5c53f1d8ac70bdcb7ed1
   85ce81bd84359d44254d95629e9855a9
   4a7c1958d1f8ada5d0532ed8a5aa3fb2
   d17ba70eb6248e594e1a2297acbbb39d
   502f1a8c6eb6f1ce22b3de1a1f40cc24
   554119a831a9aad6079cad88425de6bd
   e1a9187ebb6092cf67bf2b13fd65f270
   88d78b7e883c8759d2c4f5c65adb7553
   878ad575f9fad878e80a0c9ba63bcbcc
   2732e69485bbc9c90bfbd62481d9089b
   eccf80cfe2df16a2cf65bd92dd597b07
   07e0917af48bbb75fed413d238f5555a
   7a569d80c3414a8d0859dc65a46128ba
   b27af87a71314f318c782b23ebfe808b
   82b0ce26401d2e22f04d83d1255dc51a
   ddd3b75a2b1ae0784504df543af8969b
   e3ea7082ff7fc9888c144da2af58429e
   c96031dbcad3dad9af0dcbaaaf268cb8
   fcffead94f3c7ca495e056a9b47acdb7
   51fb73e666c6c655ade8297297d07ad1
   ba5e43f1bca32301651339e22904cc8c
   42f58c30c04aafdb038dda0847dd988d
   cda6f3bfd15c4b4c4525004aa06eeff8
   ca61783aacec57fb3d1f92b0fe2fd1a8
   5f6724517b65e614ad6808d6f6ee34df
   f7310fdc82aebfd904b01e1dc54b2927
   094b2db68d6f903b68401adebf5a7e08
   d78ff4ef5d63653a65040cf9bfd4aca7
   984a74d37145986780fc0b16ac451649
   de6188a7dbdf191f64b5fc5e2ab47b57



Josefsson & Moeller      Expires August 20, 2015               [Page 12]


Internet-Draft               EdDSA & Ed25519               February 2015


   f7f7276cd419c17a3ca8e1b939ae49e4
   88acba6b965610b5480109c8b17b80e1
   b7b750dfc7598d5d5011fd2dcc5600a3
   2ef5b52a1ecc820e308aa342721aac09
   43bf6686b64b2579376504ccc493d97e
   6aed3fb0f9cd71a43dd497f01f17c0e2
   cb3797aa2a2f256656168e6c496afc5f
   b93246f6b1116398a346f1a641f3b041
   e989f7914f90cc2c7fff357876e506b5
   0d334ba77c225bc307ba537152f3f161
   0e4eafe595f6d9d90d11faa933a15ef1
   369546868a7f3a45a96768d40fd9d034
   12c091c6315cf4fde7cb68606937380d
   b2eaaa707b4c4185c32eddcdd306705e
   4dc1ffc872eeee475a64dfac86aba41c
   0618983f8741c5ef68d3a101e8a3b8ca
   c60c905c15fc910840b94c00a0b9d0

   SIGNATURE:
   0aab4c900501b3e24d7cdf4663326a3a
   87df5e4843b2cbdb67cbf6e460fec350
   aa5371b1508f9f4528ecea23c436d94b
   5e8fcd4f681e30a6ac00a9704a188a03

   -----TEST 1A
   -----An additional test with the data from test 1 but using an
   -----uncompressed public key.
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   0455d0e09a2b9d34292297e08d60d0f6
   20c513d47253187c24b12786bd777645
   ce1a5107f7681a02af2523a6daf372e1
   0e3a0764c9d3fe4bd5b70ab18201985a
   d7

   MSG (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b

   -----TEST 1B
   -----An additional test with the data from test 1 but using an



Josefsson & Moeller      Expires August 20, 2015               [Page 13]


Internet-Draft               EdDSA & Ed25519               February 2015


   -----compressed prefix.
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   40d75a980182b10ab7d54bfed3c96407
   3a0ee172f3daa62325af021a68f70751
   1a

   MESSAGE (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b
   -----

8.  Acknowledgements

   Feedback on this document was received from Werner Koch.

9.  IANA Considerations

   None.

10.  Security Considerations

   TBA.

11.  References

11.1.  Normative References

   [RFC4634]  Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and HMAC-SHA)", RFC 4634, July 2006.

   [I-D.irtf-cfrg-curves]
              Langley, A., Salz, R., and S. Turner, "Elliptic Curves for
              Security", draft-irtf-cfrg-curves-01 (work in progress),
              January 2015.

11.2.  Informative References







Josefsson & Moeller      Expires August 20, 2015               [Page 14]


Internet-Draft               EdDSA & Ed25519               February 2015


   [EDDSA]    Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
              Yang, "High-speed high-security signatures", WWW
              http://ed25519.cr.yp.to/ed25519-20110926.pdf, September
              2011.

   [Faster-ECC]
              Bernstein, D. and T. Lange, "Faster addition and doubling
              on elliptic curves", WWW http://eprint.iacr.org/2007/286,
              July 2007.

   [Edwards-revisited]
              Hisil, H., Wong, K., Carter, G., and E. Dawson, "Twisted
              Edwards Curves Revisited", WWW
              http://eprint.iacr.org/2008/522, December 2008.

   [ED25519-TEST-VECTORS]
              Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
              Yang, "Ed25519 test vectors", WWW
              http://ed25519.cr.yp.to/python/sign.input, July 2011.

   [ED25519-LIBGCRYPT-TEST-VECTORS]
              Koch, W., "Ed25519 Libgcrypt test vectors", WWW
              http://git.gnupg.org/cgi-
              bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=tests/t-ed25519.in
              p;h=e13566f826321eece65e02c593bc7d885b3dbe23;hb=refs/
              heads/master, July 2014.

Appendix A.  Ed25519 Python Library

   Below is an example implementation of Ed25519 written in Python,
   version 3.2 or higher is required.

# Loosely based on the public domain code at
# http://ed25519.cr.yp.to/software.html
#
# Needs python-3.2

import hashlib


def sha512(s):
    return hashlib.sha512(s).digest()

# Base field Z_p
p = 2**255 - 19


def modp_inv(x):



Josefsson & Moeller      Expires August 20, 2015               [Page 15]


Internet-Draft               EdDSA & Ed25519               February 2015


    return pow(x, p-2, p)

# Curve constant
d = -121665 * modp_inv(121666) % p

# Group order
q = 2**252 + 27742317777372353535851937790883648493


def sha512_modq(s):
    return int.from_bytes(sha512(s), "little") % q

# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z


def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)


# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q


def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True




Josefsson & Moeller      Expires August 20, 2015               [Page 16]


Internet-Draft               EdDSA & Ed25519               February 2015


# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)


# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)


def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")


def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None



Josefsson & Moeller      Expires August 20, 2015               [Page 17]


Internet-Draft               EdDSA & Ed25519               February 2015


    else:
        return (x, y, 1, x*y % p)


def secret_expand(secret):
    if len(secret) != 32:
        raise Exception("Bad size of private key")
    h = sha512(secret)
    a = int.from_bytes(h[:32], "little")
    a &= (1 << 254) - 8
    a |= (1 << 254)
    return (a, h[32:])


def secret_to_public(secret):
    (a, dummy) = secret_expand(secret)
    return point_compress(point_mul(a, G))


def sign(secret, msg):
    a, prefix = secret_expand(secret)
    A = point_compress(point_mul(a, G))
    r = sha512_modq(prefix + msg)
    R = point_mul(r, G)
    Rs = point_compress(R)
    h = sha512_modq(Rs + A + msg)
    s = (r + h * a) % q
    return Rs + int.to_bytes(s, 32, "little")


def verify(public, msg, signature):
    if len(public) != 32:
        raise Exception("Bad public-key length")
    if len(signature) != 64:
        Exception("Bad signature length")
    A = point_decompress(public)
    if not A:
        return False
    Rs = signature[:32]
    R = point_decompress(Rs)
    if not R:
        return False
    s = int.from_bytes(signature[32:], "little")
    h = sha512_modq(Rs + public + msg)
    sB = point_mul(s, G)
    hA = point_mul(h, A)
    return point_equal(sB, point_add(R, hA))




Josefsson & Moeller      Expires August 20, 2015               [Page 18]


Internet-Draft               EdDSA & Ed25519               February 2015


Appendix B.  Library driver

   Below is a command-line tool that uses the library above to perform
   computations, for interactive use or for self-checking.

   import sys
   import binascii

   from ed25519 import *

   def point_valid(P):
       zinv = modp_inv(P[2])
       x = P[0] * zinv % p
       y = P[1] * zinv % p
       assert (x*y - P[3]*zinv) % p == 0
       return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0

   assert point_valid(G)
   Z = (0, 1, 1, 0)
   assert point_valid(Z)

   assert point_equal(Z, point_add(Z, Z))
   assert point_equal(G, point_add(Z, G))
   assert point_equal(Z, point_mul(0, G))
   assert point_equal(G, point_mul(1, G))
   assert point_equal(point_add(G, G), point_mul(2, G))
   for i in range(0, 100):
       assert point_valid(point_mul(i, G))
   assert point_equal(Z, point_mul(q, G))

   def munge_string(s, pos, change):
       return (s[:pos] +
               int.to_bytes(s[pos] ^ change, 1, "little") +
               s[pos+1:])

   # Read a file in the format of
   # http://ed25519.cr.yp.to/python/sign.input
   lineno = 0
   while True:
       line = sys.stdin.readline()
       if not line:
           break
       lineno = lineno + 1
       print(lineno)
       fields = line.split(":")
       secret = (binascii.unhexlify(fields[0]))[:32]
       public = binascii.unhexlify(fields[1])
       msg = binascii.unhexlify(fields[2])



Josefsson & Moeller      Expires August 20, 2015               [Page 19]


Internet-Draft               EdDSA & Ed25519               February 2015


       signature = binascii.unhexlify(fields[3])[:64]

       assert public == secret_to_public(secret)
       assert signature == sign(secret, msg)
       assert verify(public, msg, signature)
       if len(msg) == 0:
           bad_msg = b"x"
       else:
           bad_msg = munge_string(msg, len(msg) // 3, 4)
       assert not verify(public, bad_msg, signature)
       bad_signature = munge_string(signature, 20, 8)
       assert not verify(public, msg, bad_signature)
       bad_signature = munge_string(signature, 40, 16)
       assert not verify(public, msg, bad_signature)

Authors' Addresses

   Simon Josefsson
   SJD AB

   Email: simon@josefsson.org
   URI:   http://josefsson.org/


   Niels Moeller

   Email: nisse@lysator.liu.se
























Josefsson & Moeller      Expires August 20, 2015               [Page 20]