Network Working Group                                       S. Josefsson
Internet-Draft                                                    SJD AB
Intended status: Informational                          February 7, 2015
Expires: August 11, 2015


                           EdDSA and Ed25519
                    draft-josefsson-eddsa-ed25519-00

Abstract

   The elliptic curve signature scheme EdDSA and one instance of it
   called Ed25519 is described.  An example implementation and test
   vectors are provided.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 11, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.





Josefsson                Expires August 11, 2015                [Page 1]


Internet-Draft                   scrypt                    February 2015


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Notation  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  EdDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Encoding  . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.2.  Keys  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.3.  Sign  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.4.  Verify  . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Ed25519 . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
   5.  Test Vectors for Ed25519  . . . . . . . . . . . . . . . . . .   9
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  10
   Appendix A.  Ed25519 Python Library . . . . . . . . . . . . . . .  11
   Appendix B.  Library driver . . . . . . . . . . . . . . . . . . .  14
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

   The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
   Schnorr's signature system with Twisted Edwards curves.  EdDSA needs
   to be instantiated with certain parameters, and Ed25519 is described
   in this document.  To facilitate adoption in the Internet community
   of Ed25519, this document describe the signature scheme in an
   implementation-oriented way, and we provide sample code and test
   vectors.

   The advantages with EdDSA and Ed25519 include:

   1.  High-performance on a variety of platforms.

   2.  Does not require the use of a unique random number for each
       signature.

   3.  Collision resilience, meaning that hash-function collisions do
       not break this system.

   4.  More resilient to side-channel attacks.

   5.  Small public keys (32 bytes) and signatures (64 bytes).

   For further background, see the original EdDSA paper [EDDSA].





Josefsson                Expires August 11, 2015                [Page 2]


Internet-Draft                   scrypt                    February 2015


2.  Notation

   The following notation is used throughout the document:

   GF(p) finite field with p elements

   x^y x multiplied by itself y times

   h_i the i'th byte of h

   a || b (bit-)string a concatenated with (bit-)string b

3.  EdDSA

   EdDSA has seven parameters:

   1.  an integer b >= 10.

   2.  a cryptographic hash function H producing 2b-bit outputs.

   3.  a prime power q congruent to 1 modulo 4.

   4.  a (b-1)-bit encoding of elements of the finite field GF(q).

   5.  a non-square element d of GF(q)

   6.  a prime l between 2^(b-4) and 2^(b-3) satisfying lB=0 where nB
       means the n'th multiple of B in the group E.

   7.  an element B != (0,1) of the set E = { (x,y) is a member of GF(q)
       x GF(q) such that -x^2 + y^2 = 1 + dx^2y^2 }.

3.1.  Encoding

   An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
   which is the (b-1)-bit encoding of y concatenated with one bit that
   is 1 if x is negative and 0 if x is not negative.  Negative elements
   of GF(q) are those x which the (b-1)-bit encoding of x is
   lexicographically larger than the (b-1)-bit encoding of -x.

3.2.  Keys

   An EdDSA secret key is a b-bit string k.  Let the hash H(k) = (h_0,
   h_1, ..., h_(2b-1)) determine an integer a which is 2^(b-2) plus the
   sum of m = 2^i * h_i for all i equal or larger than 3 and equal to or
   less than b-3 such that m is a member of the set { 2^(b-2), 2^(b-2) +
   8, ..., 2^(b-1) - 8 }.  The EdDSA public key is ENC(A) = ENC(aB).
   The bits h_b, ..., h_(2b-1) is used below during signing.



Josefsson                Expires August 11, 2015                [Page 3]


Internet-Draft                   scrypt                    February 2015


3.3.  Sign

   The signature of a message M under a secret key k is the 2b-bit
   string ENC(R) || ENC'(S), where ENC'(S) is defined as the b-bit
   little-endian encoding of S.  R and S are derived as follows.  First
   define r = H(h_b, ... h_(2b-1)), M) interpreting 2b-bit strings in
   little-endian form as integers in {0, 1, ..., 2^(2b)-1}.  Let R=rB
   and S=(r+H(ENC(R) || ENC(A) || M)a) mod l.

3.4.  Verify

   To verify a signature ENC(R) || ENC'(S) on a message M under a public
   key ENC(A), proceed as follows.  Parse the inputs so that A and R is
   an element of E, and S is a member of the set {0, 1, ..., l-1 }.
   Compute H' = H(ENC(R) || ENC(A) || M) and check the group equation
   8SB = 8R + 8H'A in E.  Verification is rejected if parsing fails or
   the group equation does not hold.

4.  Ed25519

   Ed25519 is EdDSA instantiated with b=256, H being SHA-512 [RFC4634],
   q is the prime 2^255-19, the 255-bit encoding of GF(2^255-19) being
   the little-endian encoding of {0, 1, ..., 2^255-20}, l is the prime
   2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed, d = -121665/121666 which
   is a member of GF(q), and B is the unique point (x, 4/5) in E for
   which x is positive.  The curve q, prime l, d and B follows from
   [I-D.irtf-cfrg-curves].

   The rest of this section describes how Ed25519 can be implemented in
   Python (version 3.2 or later) for illustration.  See appendix A for
   the complete implementation and appendix B for a test-driver to run
   it through some test vectors.

   First some preliminaries that will be needed.

















Josefsson                Expires August 11, 2015                [Page 4]


Internet-Draft                   scrypt                    February 2015


   import hashlib

   def sha512(s):
       return hashlib.sha512(s).digest()

   # Base field Z_p
   p = 2**255 - 19

   def modp_inv(x):
       return pow(x, p-2, p)

   # Curve constant
   d = -121665 * modp_inv(121666) % p

   # Group order
   q = 2**252 + 27742317777372353535851937790883648493

   def sha512_modq(s):
       return int.from_bytes(sha512(s), "little") % q

   Then follows functions to perform point operations.






























Josefsson                Expires August 11, 2015                [Page 5]


Internet-Draft                   scrypt                    February 2015


# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)

# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q

def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

   Now follows functions for point compression.

















Josefsson                Expires August 11, 2015                [Page 6]


Internet-Draft                   scrypt                    February 2015


# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)




Josefsson                Expires August 11, 2015                [Page 7]


Internet-Draft                   scrypt                    February 2015


   These are functions for manipulating the secret.

   def secret_expand(secret):
       if len(secret) != 32:
           raise Exception("Bad size of private key")
       h = sha512(secret)
       a = int.from_bytes(h[:32], "little")
       a &= (1 << 254) - 8
       a |= (1 << 254)
       return (a, h[32:])

   def secret_to_public(secret):
       (a, dummy) = secret_expand(secret)
       return point_compress(point_mul(a, G))

   The signature function works as below.

   def sign(secret, msg):
       a, prefix = secret_expand(secret)
       A = point_compress(point_mul(a, G))
       r = sha512_modq(prefix + msg)
       R = point_mul(r, G)
       Rs = point_compress(R)
       h = sha512_modq(Rs + A + msg)
       s = (r + h * a) % q
       return Rs + int.to_bytes(s, 32, "little")

   And finally the verification function.

   def verify(public, msg, signature):
       if len(public) != 32:
           raise Exception("Bad public-key length")
       if len(signature) != 64:
           Exception("Bad signature length")
       A = point_decompress(public)
       if not A:
           return False
       Rs = signature[:32]
       R = point_decompress(Rs)
       if not R:
           return False
       s = int.from_bytes(signature[32:], "little")
       h = sha512_modq(Rs + public + msg)
       sB = point_mul(s, G)
       hA = point_mul(h, A)
       return point_equal(sB, point_add(R, hA))





Josefsson                Expires August 11, 2015                [Page 8]


Internet-Draft                   scrypt                    February 2015


5.  Test Vectors for Ed25519

   Below is a sequence of octets with test vectors for the the Ed25519
   signature algorithm.  The octets are hex encoded and whitespace is
   inserted for readability.  Private keys are 64 bytes, public keys 32
   bytes, message of arbitrary length, and signatures are 64 bytes.

   -----
   PRIVATE KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60
   d75a980182b10ab7d54bfed3c964073a
   0ee172f3daa62325af021a68f707511a

   PUBLIC KEY:
   d75a980182b10ab7d54bfed3c964073a
   0ee172f3daa62325af021a68f707511a

   MESSAGE (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b
   -----
   PRIVATE KEY:
   4ccd089b28ff96da9db6c346ec114e0f
   5b8a319f35aba624da8cf6ed4fb8a6fb
   3d4017c3e843895a92b70aa74d1b7ebc
   9c982ccf2ec4968cc0cd55f12af4660c

   PUBLIC KEY:
   3d4017c3e843895a92b70aa74d1b7ebc
   9c982ccf2ec4968cc0cd55f12af4660c

   MESSAGE (length 1 byte):
   72

   SIGNATURE:
   92a009a9f0d4cab8720e820b5f642540
   a2b27b5416503f8fb3762223ebdb69da
   085ac1e43e15996e458f3613d0f11d8c
   387b2eaeb4302aeeb00d291612bb0c00
   -----
   PRIVATE KEY:
   c5aa8df43f9f837bedb7442f31dcb7b1
   66d38535076f094b85ce3a2e0b4458f7



Josefsson                Expires August 11, 2015                [Page 9]


Internet-Draft                   scrypt                    February 2015


   fc51cd8e6218a1a38da47ed00230f058
   0816ed13ba3303ac5deb911548908025

   PUBLIC KEY:
   fc51cd8e6218a1a38da47ed00230f058
   0816ed13ba3303ac5deb911548908025

   MESSAGE (length 2 bytes):
   af82

   SIGNATURE:
   6291d657deec24024827e69c3abe01a3
   0ce548a284743a445e3680d7db5ac3ac
   18ff9b538d16f290ae67f760984dc659
   4a7c15e9716ed28dc027beceea1ec40a
   -----

6.  Acknowledgements

   The Python code was written by Niels Moeller.

7.  IANA Considerations

   None.

8.  Security Considerations

   TBA.

9.  References

9.1.  Normative References

   [RFC4634]  Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and HMAC-SHA)", RFC 4634, July 2006.

   [I-D.irtf-cfrg-curves]
              Langley, A., Salz, R., and S. Turner, "Elliptic Curves for
              Security", draft-irtf-cfrg-curves-01 (work in progress),
              January 2015.

9.2.  Informative References

   [EDDSA]    Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
              Yang, "High-speed high-security signatures", WWW
              http://ed25519.cr.yp.to/ed25519-20110926.pdf, September
              2011.




Josefsson                Expires August 11, 2015               [Page 10]


Internet-Draft                   scrypt                    February 2015


Appendix A.  Ed25519 Python Library

   Below is an example implementation of Ed25519 written in Python,
   version 3.2 or higher is required.

# Loosely based on the public domain code at
# http://ed25519.cr.yp.to/software.html
#
# Needs python-3.2

import hashlib


def sha512(s):
    return hashlib.sha512(s).digest()

# Base field Z_p
p = 2**255 - 19


def modp_inv(x):
    return pow(x, p-2, p)

# Curve constant
d = -121665 * modp_inv(121666) % p

# Group order
q = 2**252 + 27742317777372353535851937790883648493


def sha512_modq(s):
    return int.from_bytes(sha512(s), "little") % q

# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z


def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)




Josefsson                Expires August 11, 2015               [Page 11]


Internet-Draft                   scrypt                    February 2015


# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q


def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)


# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)



Josefsson                Expires August 11, 2015               [Page 12]


Internet-Draft                   scrypt                    February 2015


G = (g_x, g_y, 1, g_x * g_y % p)


def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")


def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)


def secret_expand(secret):
    if len(secret) != 32:
        raise Exception("Bad size of private key")
    h = sha512(secret)
    a = int.from_bytes(h[:32], "little")
    a &= (1 << 254) - 8
    a |= (1 << 254)
    return (a, h[32:])


def secret_to_public(secret):
    (a, dummy) = secret_expand(secret)
    return point_compress(point_mul(a, G))


def sign(secret, msg):
    a, prefix = secret_expand(secret)
    A = point_compress(point_mul(a, G))
    r = sha512_modq(prefix + msg)
    R = point_mul(r, G)
    Rs = point_compress(R)
    h = sha512_modq(Rs + A + msg)
    s = (r + h * a) % q
    return Rs + int.to_bytes(s, 32, "little")



Josefsson                Expires August 11, 2015               [Page 13]


Internet-Draft                   scrypt                    February 2015


def verify(public, msg, signature):
    if len(public) != 32:
        raise Exception("Bad public-key length")
    if len(signature) != 64:
        Exception("Bad signature length")
    A = point_decompress(public)
    if not A:
        return False
    Rs = signature[:32]
    R = point_decompress(Rs)
    if not R:
        return False
    s = int.from_bytes(signature[32:], "little")
    h = sha512_modq(Rs + public + msg)
    sB = point_mul(s, G)
    hA = point_mul(h, A)
    return point_equal(sB, point_add(R, hA))

Appendix B.  Library driver

   Below is a command-line tool that uses the library above to perform
   computations, for interactive use or for self-checking.

   import sys
   import binascii

   from ed25519 import *

   def point_valid(P):
       zinv = modp_inv(P[2])
       x = P[0] * zinv % p
       y = P[1] * zinv % p
       assert (x*y - P[3]*zinv) % p == 0
       return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0

   assert point_valid(G)
   Z = (0, 1, 1, 0)
   assert point_valid(Z)

   assert point_equal(Z, point_add(Z, Z))
   assert point_equal(G, point_add(Z, G))
   assert point_equal(Z, point_mul(0, G))
   assert point_equal(G, point_mul(1, G))
   assert point_equal(point_add(G, G), point_mul(2, G))
   for i in range(0, 100):
       assert point_valid(point_mul(i, G))
   assert point_equal(Z, point_mul(q, G))




Josefsson                Expires August 11, 2015               [Page 14]


Internet-Draft                   scrypt                    February 2015


   def munge_string(s, pos, change):
       return (s[:pos] +
               int.to_bytes(s[pos] ^ change, 1, "little") +
               s[pos+1:])

   # Read a file in the format of
   # http://ed25519.cr.yp.to/python/sign.input
   lineno = 0
   while True:
       line = sys.stdin.readline()
       if not line:
           break
       lineno = lineno + 1
       print(lineno)
       fields = line.split(":")
       secret = (binascii.unhexlify(fields[0]))[:32]
       public = binascii.unhexlify(fields[1])
       msg = binascii.unhexlify(fields[2])
       signature = binascii.unhexlify(fields[3])[:64]

       assert public == secret_to_public(secret)
       assert signature == sign(secret, msg)
       assert verify(public, msg, signature)
       if len(msg) == 0:
           bad_msg = b"x"
       else:
           bad_msg = munge_string(msg, len(msg) // 3, 4)
       assert not verify(public, bad_msg, signature)
       bad_signature = munge_string(signature, 20, 8)
       assert not verify(public, msg, bad_signature)
       bad_signature = munge_string(signature, 40, 16)
       assert not verify(public, msg, bad_signature)

Author's Address

   Simon Josefsson
   SJD AB

   Email: simon@josefsson.org
   URI:   http://josefsson.org/











Josefsson                Expires August 11, 2015               [Page 15]