Skip to main content

Mobility with TURN
draft-wing-tram-turn-mobility-01

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Expired".
Authors Dan Wing , Prashanth Patil , Tirumaleswar Reddy.K , Paal-Erik Martinsen
Last updated 2014-08-25
RFC stream (None)
Formats
Additional resources
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-wing-tram-turn-mobility-01
TRAM                                                             D. Wing
Internet-Draft                                                  P. Patil
Intended status: Standards Track                                T. Reddy
Expires: February 26, 2015                                  P. Martinsen
                                                                   Cisco
                                                         August 25, 2014

                           Mobility with TURN
                    draft-wing-tram-turn-mobility-01

Abstract

   It is desirable to minimize traffic disruption caused by changing IP
   address during a mobility event.  One mechanism to minimize
   disruption is to expose a shorter network path to the mobility event
   so only the local network elements are aware of the changed IP
   address but the remote peer is unaware of the changed IP address.

   This draft provides such an IP address mobility solution using TURN.
   This is achieved by allowing a client to retain an allocation on the
   TURN server when the IP address of the client changes.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 26, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of

Wing, et al.            Expires February 26, 2015               [Page 1]
Internet-Draft             Mobility with TURN                August 2014

   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Notational Conventions  . . . . . . . . . . . . . . . . . . .   3
   3.  Mobility using TURN . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Creating an Allocation  . . . . . . . . . . . . . . . . .   4
       3.1.1.  Sending an Allocate Request . . . . . . . . . . . . .   4
       3.1.2.  Receiving an Allocate Request . . . . . . . . . . . .   4
       3.1.3.  Receiving an Allocate Success Response  . . . . . . .   5
       3.1.4.  Receiving an Allocate Error Response  . . . . . . . .   5
     3.2.  Refreshing an Allocation  . . . . . . . . . . . . . . . .   5
       3.2.1.  Sending a Refresh Request . . . . . . . . . . . . . .   5
       3.2.2.  Receiving a Refresh Request . . . . . . . . . . . . .   6
       3.2.3.  Receiving a Refresh Response  . . . . . . . . . . . .   7
     3.3.  New STUN Attribute MOBILITY-TICKET  . . . . . . . . . . .   7
     3.4.  New STUN Error Response Code  . . . . . . . . . . . . . .   7
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   5.  Implementation Status . . . . . . . . . . . . . . . . . . . .   7
     5.1.  open-sys  . . . . . . . . . . . . . . . . . . . . . . . .   8
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   8
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   When moving between networks, the endpoint's IP address can change or
   (due to NAT) the endpoint's public IP address can change.  Such a
   change of IP address breaks upper layer protocols such as TCP and
   RTP.  Various techniques exist to prevent this breakage, all tied to
   making the endpoint's IP address static (e.g., Mobile IP, Proxy
   Mobile IP, LISP).  Other techniques exist, which make the change in
   IP address agnostic to the upper layer protocol (e.g., SCTP).  The
   mechanism described in this document are in that last category.

   A TURN [RFC5766] server relays media packets and is used for a
   variety of purposes, including overcoming NAT and firewall traversal
   issues.  The existing TURN specification does not permit a TURN
   client to reuse an allocation across client IP address changes.  Due

Wing, et al.            Expires February 26, 2015               [Page 2]
Internet-Draft             Mobility with TURN                August 2014

   to this, when the IP address of the client changes, the TURN client
   has to request for a new allocation, create permissions for the
   remote peer, create channels etc.  In addition to notifying the
   remote peer of the address change, and punching new pinholes through
   any NAT/FW that might be on the path.

   This specification describes a mechanism to seamlessly reuse
   allocations across client IP address changes without any of the
   hassles described above.  A critical benefit of this technique is
   that the remote peer does not have to support mobility, or deal with
   any of the address changes.  The client, that is subject to IP
   address changes, does all the work.  The mobility technique works
   across and between network types (e.g., between 3G and wired Internet
   access), so long as the client can still access the TURN server.  The
   technique should also work seamlessly when (D)TLS is used as a
   transport protocol for STUN.  When there is a change in IP address,
   the client uses (D)TLS Session Resumption without Server-Side State
   as described in [RFC5077] to resume secure communication with the
   TURN server, using the changed client IP address.

2.  Notational Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This note uses terminology defined in [RFC5245], and the following
   additional terminology:

3.  Mobility using TURN

   To achieve mobility, a TURN client should be able to retain an
   allocation on the TURN server across changes in the client IP address
   as a consequence of movement to other networks.

   When the client sends the initial Allocate request to the TURN
   server, it will include a new STUN attribute MOBILITY-TICKET (with
   zero length value), which indicates that the client is capable of
   mobility and desires a ticket.  The TURN server provisions a ticket
   that is sent inside the new STUN attribute MOBILITY-TICKET in the
   Allocate Success response to the client.  The ticket will be used by
   the client when it wants to refresh the allocation but with a new
   client IP address and port.  This ensures that an allocation can only
   be refreshed by the same client that allocated relayed transport
   address.  When a client's IP address changes due to mobility, it
   presents the previously obtained ticket in a Refresh Request to the
   TURN server.  If the ticket is found to be valid, the TURN server
   will retain the same relayed address/port for the new IP address/port

Wing, et al.            Expires February 26, 2015               [Page 3]
Internet-Draft             Mobility with TURN                August 2014

   allowing the client to continue using previous channel bindings --
   thus, the TURN client does not need to obtain new channel bindings.
   Any data from external peer will be delivered by the TURN server to
   this new IP address/port of the client.  The TURN client will
   continue to send application data to its peers using the previously
   allocated channelBind Requests.

     TURN                                 TURN           Peer
     client                               server          A
       |-- Allocate request --------------->|             |
       |   + MOBILITY-TICKET (length=0)     |             |
       |                                    |             |
       |<--------------- Allocate failure --|             |
       |                 (401 Unauthorized) |             |
       |                                    |             |
       |-- Allocate request --------------->|             |
       |   + MOBILITY-TICKET (length=0)     |             |
       |                                    |             |
       |<---------- Allocate success resp --|             |
       |            + MOBILITY-TICKET       |             |
      ...                                  ...           ...
   (changes IP address)
       |                                    |             |
       |-- Refresh request ---------------->|             |
       |   + MOBILITY-TICKET                |             |
       |                                    |             |
       |<----------- Refresh success resp --|             |
       |   + MOBILITY-TICKET                |             |
       |                                    |             |

3.1.  Creating an Allocation

3.1.1.  Sending an Allocate Request

   In addition to the process described in Section 6.1 of [RFC5766], the
   client includes the MOBILITY-TICKET attribute with length 0.  This
   indicates the client is a mobile node and wants a ticket.

3.1.2.  Receiving an Allocate Request

   In addition to the process described in Section 6.2 of [RFC5766], the
   server does the following:

   If the MOBILITY-TICKET attribute is included, and has length zero,
   but TURN session mobility is forbidden by local policy, the server
   MUST reject the request with the new Mobility Forbidden error code.
   If the MOBILITY-TICKET attribute is included and has non-zero length
   then the server MUST generate an error response with an error code of

Wing, et al.            Expires February 26, 2015               [Page 4]
Internet-Draft             Mobility with TURN                August 2014

   400 (Bad Request).  Following the rules specified in [RFC5389], if
   the server does not understand the MOBILITY-TICKET attribute, it
   ignores the attribute.

   If the server can successfully process the request create an
   allocation, the server replies with a success response that includes
   a STUN MOBILITY-TICKET attribute.  TURN server can store system
   internal data into the ticket that is encrypted by a key known only
   to the TURN server and sends the ticket in the STUN MOBILITY-TICKET
   attribute as part of Allocate success response.

   The ticket is opaque to the client, so the structure is not subject
   to interoperability concerns, and implementations may diverge from
   this format.  TURN Allocation state information is encrypted using
   128-bit key for Advance Encryption Standard (AES) and 256-bit key for
   HMAC-SHA-256 for integrity protection.

3.1.3.  Receiving an Allocate Success Response

   In addition to the process described in Section 6.3 of [RFC5766], the
   client will store the MOBILITY-TICKET attribute, if present, from the
   response.  This attribute will be presented by the client to the
   server during a subsequent Refresh request to aid mobility.

3.1.4.  Receiving an Allocate Error Response

   If the client receives an Allocate error response with error code TBD
   (Mobility Forbidden), the error is processed as follows:

   o TBD (Mobility Forbidden): The request is valid, but the server is
   refusing to perform it, likely due to administrative restrictions.
   The client considers the current transaction as having failed.  The
   client MAY notify the user or operator and SHOULD NOT retry the same
   request with this server until it believes the problem has been
   fixed.

   All other error responses must be handled as described in [RFC5766].

3.2.  Refreshing an Allocation

3.2.1.  Sending a Refresh Request

   If a client wants to refresh an existing allocation and update its
   time-to-expiry or delete an existing allocation, it will send a
   Refresh Request as described in Section 7.1 of [RFC5766].  If the
   client wants to retain the existing allocation in case of IP change,
   it will include the MOBILITY-TICKET attribute received in the
   Allocate Success response.  If a Refresh transaction was previously

Wing, et al.            Expires February 26, 2015               [Page 5]
Internet-Draft             Mobility with TURN                August 2014

   made, the MOBILITY-TICKET attribute received in the Refresh Success
   response of the transaction must be used.

3.2.2.  Receiving a Refresh Request

   In addition to the process described in Section 7.2 of [RFC5766], the
   server does the following:

   If the STUN MOBILITY-TICKET attribute is included in the Refresh
   Request then the server will not retrieve the 5-tuple from the packet
   to identify an associated allocation.  Instead the TURN server will
   decrypt the received ticket, verify the ticket's validity and
   retrieve the 5-tuple allocation using the ticket.  If this 5-tuple
   obtained does not identify an existing allocation then the server
   MUST reject the request with an error.

   If the source IP address and port of the Refresh Request is different
   from the stored 5-tuple allocation, the TURN server proceeds with
   MESSAGE-INTEGRITY validation to identify the that it is the same user
   which had previously created the TURN allocation.  If the above
   checks are not successful then server MUST reject the request with a
   441 (Wrong Credentials) error.

   If all of the above checks pass, the TURN server understands that the
   client has moved to a new network and acquired a new IP address.  The
   source IP address of the request could either be the host transport
   address or server-reflexive transport address.  The server then
   updates it's 5-tuple with the new client IP address and port.  TURN
   server calculates the ticket with the new 5-tuple and sends the new
   ticket in the STUN MOBILITY-TICKET attribute as part of Refresh
   Success response.  If the TURN server has not received a Refresh
   Request with STUN MOBILITY-TICKET attribute but receives Send
   indications or ChannelData messages from a client, the TURN server
   may discard or queue those Send indications or ChannelData messages
   (at its discretion).  Thus, it is RECOMMENDED that the client avoid
   transmitting a Send indication or ChannelData message until it has
   received an acknowledgement for the Refresh Request with STUN
   MOBILITY-TICKET attribute.

   To accommodate for loss of Refresh responses, a server must retain
   the old STUN MOBILITY-TICKET attribute for a period of at least 30
   seconds to be able recognize a retransmission of Refresh request with
   the old STUN MOBILITY-TICKET attribute from the client.

Wing, et al.            Expires February 26, 2015               [Page 6]
Internet-Draft             Mobility with TURN                August 2014

3.2.3.  Receiving a Refresh Response

   In addition to the process described in Section 7.3 of [RFC5766], the
   client will store the MOBILITY-TICKET attribute, if present, from the
   response.  This attribute will be presented by the client to the
   server during a subsequent Refresh Request to aid mobility.

3.3.  New STUN Attribute MOBILITY-TICKET

   This attribute is used to retain an Allocation on the TURN server.
   It is exchanged between the client and server to aid mobility.  The
   value of MOBILITY-TICKET is encrypted and is of variable-length.

3.4.  New STUN Error Response Code

   This document defines the following new error response code:

      Mobility Forbidden: Mobility request was valid but cannot be
      performed due to administrative or similar restrictions.

4.  IANA Considerations

   IANA is requested to add the following attributes to the STUN
   attribute registry [iana-stun],

   o  MOBILITY-TICKET (0x802E, in the comprehension-optional range)

   and to add a new STUN error code "Mobility Forbidden" with the value
   405 to the STUN Error Codes registry [iana-stun].

5.  Implementation Status

   [Note to RFC Editor: Please remove this section and reference to
   [RFC6982] prior to publication.]

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC6982].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.

Wing, et al.            Expires February 26, 2015               [Page 7]
Internet-Draft             Mobility with TURN                August 2014

   According to [RFC6982], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

5.1.  open-sys

   Organization:   This is a public project, the full list of authors
      and contributors here: http://turnserver.open-sys.org/downloads/
      AUTHORS

   Description:   A mature open-source TURN server specs implementation
      (RFC 5766, RFC 6062, RFC 6156, etc) designed for high-performance
      applications, especially geared for WebRTC.

   Implementation:   http://code.google.com/p/rfc5766-turn-server/

   Level of maturity:   The Mobile ICE feature implementation can be
      qualified as "production" - it is well tested and fully
      implemented, but not widely used, yet..

   Coverage:   Fully implements MICE with TURN protocol.

   Licensing:   BSD: http://turnserver.open-sys.org/downloads/LICENSE

   Implementation experience:   MICE implementation is somewhat
      challenging for a multi-threaded performance-oriented application
      (because the mobile ticket information must be shared between the
      threads) but it is doable.

   Contact:   Oleg Moskalenko <mom040267@gmail.com>.

6.  Security Considerations

   TURN server MUST use strong encryption and integrity protection for
   the ticket to prevent an attacker from using a brute force mechanism
   to obtain the ticket's contents or refreshing allocations.

   Security considerations described in [RFC5766] are also applicable to
   this mechanism.

7.  Acknowledgements

   Thanks to Alfred Heggestad, Lishitao, Sujing Zhou, Martin Thomson,
   Emil Ivov, Oleg Moskalenko and Brandon Williams for review and
   comments.

Wing, et al.            Expires February 26, 2015               [Page 8]
Internet-Draft             Mobility with TURN                August 2014

8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
              "Transport Layer Security (TLS) Session Resumption without
              Server-Side State", RFC 5077, January 2008.

   [RFC5245]  Rosenberg, J., "Interactive Connectivity Establishment
              (ICE): A Protocol for Network Address Translator (NAT)
              Traversal for Offer/Answer Protocols", RFC 5245, April
              2010.

   [RFC5389]  Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
              "Session Traversal Utilities for NAT (STUN)", RFC 5389,
              October 2008.

   [RFC5766]  Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
              Relays around NAT (TURN): Relay Extensions to Session
              Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

8.2.  Informative References

   [RFC6982]  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", RFC 6982, July
              2013.

   [iana-stun]
              IANA, , "IANA: STUN Attributes", April 2011,
              <http://www.iana.org/assignments/stun-parameters/stun-pa
              rameters.xml>.

Authors' Addresses

   Dan Wing
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, California  95134
   USA

   Email: dwing@cisco.com

Wing, et al.            Expires February 26, 2015               [Page 9]
Internet-Draft             Mobility with TURN                August 2014

   Prashanth Patil
   Cisco Systems, Inc.
   Bangalore
   India

   Email: praspati@cisco.com

   Tirumaleswar Reddy
   Cisco Systems, Inc.
   Cessna Business Park, Varthur Hobli
   Sarjapur Marathalli Outer Ring Road
   Bangalore, Karnataka  560103
   India

   Email: tireddy@cisco.com

   Paal-Erik Martinsen
   Cisco Systems, Inc.
   Philip Pedersens vei 22
   Lysaker, Akershus  1325
   Norway

   Email: palmarti@cisco.com

Wing, et al.            Expires February 26, 2015              [Page 10]