Skip to main content

The scrypt Password-Based Key Derivation Function
draft-josefsson-scrypt-kdf-00

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7914.
Authors Colin Percival , Simon Josefsson
Last updated 2012-09-17
RFC stream (None)
Formats
Reviews
Additional resources
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state Became RFC 7914 (Informational)
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-josefsson-scrypt-kdf-00
Network Working Group                                        C. Percival
Internet-Draft                                                   Tarsnap
Intended status: Informational                              S. Josefsson
Expires: March 21, 2013                                           SJD AB
                                                      September 17, 2012

           The scrypt Password-Based Key Derivation Function
                     draft-josefsson-scrypt-kdf-00

Abstract

   This document specify the password-based key derivation function
   scrypt.  The function is used to derive one or more secret keys from
   a secret string.  It is based on memory-hard functions which offers
   some added protection against attacks using custom hardware.  The
   document also provide an ASN.1 schema.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 21, 2013.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as

Percival & Josefsson     Expires March 21, 2013                 [Page 1]
Internet-Draft                   scrypt                   September 2012

   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  The Salsa20/8 core Function  . . . . . . . . . . . . . . . . .  3
   3.  The scryptBlockMix Algorithm . . . . . . . . . . . . . . . . .  4
   4.  The scryptROMix Algorithm  . . . . . . . . . . . . . . . . . .  5
   5.  The scrypt Algorithm . . . . . . . . . . . . . . . . . . . . .  6
   6.  ASN.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  7
     6.1.  ASN.1 Module . . . . . . . . . . . . . . . . . . . . . . .  8
   7.  Test Vectors for Salsa20/8 core  . . . . . . . . . . . . . . .  9
   8.  Test Vectors for scryptBlockMix  . . . . . . . . . . . . . . .  9
   9.  Test Vectors for scryptROMix . . . . . . . . . . . . . . . . . 10
   10. Test Vectors for PBKDF2 with HMAC-SHA-256  . . . . . . . . . . 10
   11. Test Vectors for scrypt  . . . . . . . . . . . . . . . . . . . 11
   12. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 11
   13. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 12
   14. Security Considerations  . . . . . . . . . . . . . . . . . . . 12
   15. References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
     15.1. Normative References . . . . . . . . . . . . . . . . . . . 12
     15.2. Informative References . . . . . . . . . . . . . . . . . . 12
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 13

Percival & Josefsson     Expires March 21, 2013                 [Page 2]
Internet-Draft                   scrypt                   September 2012

1.  Introduction

   Password-based key derivation functions are used in cryptography for
   deriving one or more secret keys from a secret value.  Over the
   years, several password-based key derivation functions have been
   used, including the original DES-based UNIX Crypt-function, FreeBSD
   MD5 crypt, PKCS#5 PBKDF2 [RFC2898] (typically used with SHA-1), GNU
   SHA-256/512 crypt, Windows NT LAN Manager (NTLM) hash, and Blowfish-
   based bcrypt.  These algorithms are based on similar techniques that
   employ a cryptographic primitive, salting and/or iteration.  The
   iteration count is used to slow down the computation.

   Providing that the number of iterations used is increased as computer
   systems get faster, this allows legitimate users to spend a constant
   amount of time on key derivation without losing ground to attackers'
   ever-increasing computing power - as long as attackers are limited to
   the same software implementations as legitimate users.  However, as
   Bernstein famously pointed out in the context of integer
   factorization, while parallelized hardware implementations may not
   change the number of operations performed compared to software
   implementations, this does not prevent them from dramatically
   changing the asymptotic cost, since in many contexts - including the
   embarrassingly parallel task of performing a brute-force search for a
   passphrase - dollar-seconds are the most appropriate units for
   measuring the cost of a computation.  As semiconductor technology
   develops, circuits do not merely become faster; they also become
   smaller, allowing for a larger amount of parallelism at the same
   cost.  Consequently, using existing key derivation algorithms, even
   if the iteration count is increased such that the time taken to
   verify a password remains constant, the cost of finding a password by
   using a brute force attack implemented in hardware drops each year.

   The scrypt function aims to reduce the advantage which attackers can
   gain by using custom-designed parallel circuits for breaking
   password-based key derivation functions.

   For further background, see the original scrypt paper [SCRYPT].

   The rest of this document is divided into sections that each describe
   algorithms needed for the final "scrypt" algorithm.

2.  The Salsa20/8 core Function

   Salsa20/8 core is a round-reduced variant of the Salsa20 core.  It is
   a hash function from 64-octet strings to 64-octet strings.  Note that
   these functions are not cryptographic hash function since they are
   not collision-resistant.  See [SALSA20CORE] for the specification.

Percival & Josefsson     Expires March 21, 2013                 [Page 3]
Internet-Draft                   scrypt                   September 2012

   Below is reference code for the Salsa20/8 core function, for
   illustration.

   #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
   void salsa208_word_specification(uint32 out[16],uint32 in[16])
   {
     int i;
     uint32 x[16];
     for (i = 0;i < 16;++i) x[i] = in[i];
     for (i = 8;i > 0;i -= 2) {
       x[ 4] ^= R(x[ 0]+x[12], 7);  x[ 8] ^= R(x[ 4]+x[ 0], 9);
       x[12] ^= R(x[ 8]+x[ 4],13);  x[ 0] ^= R(x[12]+x[ 8],18);
       x[ 9] ^= R(x[ 5]+x[ 1], 7);  x[13] ^= R(x[ 9]+x[ 5], 9);
       x[ 1] ^= R(x[13]+x[ 9],13);  x[ 5] ^= R(x[ 1]+x[13],18);
       x[14] ^= R(x[10]+x[ 6], 7);  x[ 2] ^= R(x[14]+x[10], 9);
       x[ 6] ^= R(x[ 2]+x[14],13);  x[10] ^= R(x[ 6]+x[ 2],18);
       x[ 3] ^= R(x[15]+x[11], 7);  x[ 7] ^= R(x[ 3]+x[15], 9);
       x[11] ^= R(x[ 7]+x[ 3],13);  x[15] ^= R(x[11]+x[ 7],18);
       x[ 1] ^= R(x[ 0]+x[ 3], 7);  x[ 2] ^= R(x[ 1]+x[ 0], 9);
       x[ 3] ^= R(x[ 2]+x[ 1],13);  x[ 0] ^= R(x[ 3]+x[ 2],18);
       x[ 6] ^= R(x[ 5]+x[ 4], 7);  x[ 7] ^= R(x[ 6]+x[ 5], 9);
       x[ 4] ^= R(x[ 7]+x[ 6],13);  x[ 5] ^= R(x[ 4]+x[ 7],18);
       x[11] ^= R(x[10]+x[ 9], 7);  x[ 8] ^= R(x[11]+x[10], 9);
       x[ 9] ^= R(x[ 8]+x[11],13);  x[10] ^= R(x[ 9]+x[ 8],18);
       x[12] ^= R(x[15]+x[14], 7);  x[13] ^= R(x[12]+x[15], 9);
       x[14] ^= R(x[13]+x[12],13);  x[15] ^= R(x[14]+x[13],18);
     }
     for (i = 0;i < 16;++i) out[i] = x[i] + in[i];
   }

3.  The scryptBlockMix Algorithm

   We now describe the scryptBlockMix algorithm. scryptBlockMix is the
   same as the BlockMix function described in [SCRYPT] but with the
   Salsa20/8 core function used as the hash function H. Below, Salsa(T)
   corresponds to the Salsa20/8 core function applied to the octet
   vector T.

Percival & Josefsson     Expires March 21, 2013                 [Page 4]
Internet-Draft                   scrypt                   September 2012

   Algorithm scryptBlockMix

   Parameters:
            r       Block size parameter.

   Input:
            B[0], ..., B[2 * r - 1]
                    Input vector of 2 * r 64-octet blocks.

   Output:
            B'[0], ..., B'[2 * r - 1]
                    Output vector of 2 * r 64-octet blocks.

   Steps:

     1. X = B[2 * r - 1]

     2. for i = 0 to 2 * r - 1 do
          T = X xor B[i]
          X = Salsa (T)
          Y[i] = X
        end for

     3. B' = (Y[0], Y[2], ..., Y[2 * r - 2],
              Y[1], Y[3], ..., Y[2 * r - 1])

4.  The scryptROMix Algorithm

   We now describe the scryptROMix algorithm. scryptROMix is the same as
   the ROMix function described in [SCRYPT] but with the scryptBlockMix
   algorithm used as the hash function H and the Integerify function
   explained inline.

Percival & Josefsson     Expires March 21, 2013                 [Page 5]
Internet-Draft                   scrypt                   September 2012

   Algorithm scryptROMix

   Input:
            r       Block size parameter.
            B       Input octet vector of length 128 * r octets.
            N       CPU/Memory cost parameter, must be larger than 1,
                    a power of 2 and less than 2^(128 * r / 8).

   Output:
            B'      Output octet vector of length 128 * r octets.

   Steps:

     1. X = B

     2. for i = 0 to N - 1 do
          V[i] = X
          X = scryptBlockMix (X)
        end for

     3. for i = 0 to N - 1 do
          j = Integerify (X) mod N
                 where Integerify (B[0] ... B[2 * r - 1]) is defined
                 as the result of interpreting B[2 * r - 1] as a
                 little-endian integer.
          T = X xor V[j]
          X = scryptBlockMix (T)
        end for

     4. B' = X

5.  The scrypt Algorithm

   We now describe the scrypt algorithm.

   The PBKDF2-HMAC-SHA-256 function used below denote the PBKDF2
   algorithm [RFC2898] used with HMAC-SHA-256 [RFC6234] as the PRF.  The
   HMAC-SHA-256 function generates 32 octet outputs.

Percival & Josefsson     Expires March 21, 2013                 [Page 6]
Internet-Draft                   scrypt                   September 2012

   Algorithm scrypt

   Input:
            P       Passphrase, an octet string.
            S       Salt, an octet string.
            r       Block size parameter.
            N       CPU/Memory cost parameter, must be larger than 1,
                    a power of 2 and less than 2^(128 * r / 8).
            p       Parallelization parameter, a positive integer
                    less than or equal to ((2^32-1) * hLen) / MFLen
                    where hLen is 32 and MFlen is 128 * r.
            dkLen   Intended output length in octets of the derived
                    key; a positive integer less than or equal to
                    (2^32 - 1) * hLen where hLen is 32.

   Output:
            DK      Derived key, of length dkLen octets.

   Steps:

     1. B[0] || B[1] || ... || B[p - 1] =
          PBKDF2-HMAC-SHA256 (P, S, 1, p * 128 * r)

     2. for i = 0 to p - 1 do
          B[i] = scryptROMix (r, B[i], N)
        end for

     3. DK = PBKDF2-HMAC-SHA256 (P, B[0] || B[1] || ... || B[p - 1],
                                 1, dkLen)

6.  ASN.1 Syntax

   This section defines ASN.1 syntax for the scrypt key derivation
   function.  The intended application of these definitions includes
   PKCS #8 and other syntax for key management.  (Various aspects of
   ASN.1 are specified in several ISO/IEC standards.)

   The object identifier id-scrypt identifies the scrypt key derivation
   function.

   id-scrypt OBJECT IDENTIFIER ::= {1 3 6 1 4 1 11591 4 11}

   The parameters field associated with this OID in an
   AlgorithmIdentifier shall have type scrypt-params:

Percival & Josefsson     Expires March 21, 2013                 [Page 7]
Internet-Draft                   scrypt                   September 2012

   scrypt-params ::= SEQUENCE {
          salt OCTET STRING,
          blockSize INTEGER (1..MAX),
          costParameter INTEGER (1..MAX),
          parallelizationParameter INTEGER (1..MAX),
          keyLength INTEGER (1..MAX) OPTIONAL }

   The fields of type scrypt-params have the following meanings:

   - salt specifies the salt value.  It shall be an octet string.

   - blockSize specifies the block size parameter r.

   - costParameter specifies the CPU/Memory cost parameter.

   - parallelizationParameter specifies the parallelization parameter.

   - keyLength, an optional field, is the length in octets of the
   derived key.  The maximum key length allowed depends on the
   implementation; it is expected that implementation profiles may
   further constrain the bounds.  The field is provided for convenience
   only; the key length is not cryptographically protected.

6.1.  ASN.1 Module

   For reference purposes, the ASN.1 syntax is presented as an ASN.1
   module here.

   -- scrypt ASN.1 Module

   scrypt-0 {1 3 6 1 4 1 11591 4 10}

   DEFINITIONS ::= BEGIN

   id-scrypt OBJECT IDENTIFIER ::= {1 3 6 1 4 1 11591 4 11}

   scrypt-params ::= SEQUENCE {
       salt OCTET STRING,
       blockSize INTEGER (1..MAX),
       costParameter INTEGER (1..MAX),
       parallelizationParameter INTEGER (1..MAX),
       keyLength INTEGER (1..MAX) OPTIONAL
   }

   END

Percival & Josefsson     Expires March 21, 2013                 [Page 8]
Internet-Draft                   scrypt                   September 2012

7.  Test Vectors for Salsa20/8 core

   The value is hex encoded and whitespace is inserted for readability.
   The value correspond to the first input and output pair generated by
   the first scrypt test vector below.

   INPUT:
   7e879a21 4f3ec986 7ca940e6 41718f26
   baee555b 8c61c1b5 0df84611 6dcd3b1d
   ee24f319 df9b3d85 14121e4b 5ac5aa32
   76021d29 09c74829 edebc68d b8b8c25e

   OUTPUT:
   a41f859c 6608cc99 3b81cacb 020cef05
   044b2181 a2fd337d fd7b1c63 96682f29
   b4393168 e3c9e6bc fe6bc5b7 a06d96ba
   e424cc10 2c91745c 24ad673d c7618f81

8.  Test Vectors for scryptBlockMix

   The following test vector use a r value of 1.  The value is hex
   encoded and whitespace is inserted for readability.  The value
   correspond to the first input and output pair generated by the first
   scrypt test vector below.

   INPUT
   B[0] =  f7ce0b65 3d2d72a4 108cf5ab e912ffdd
           777616db bb27a70e 8204f3ae 2d0f6fad
           89f68f48 11d1e87b cc3bd740 0a9ffd29
           094f0184 639574f3 9ae5a131 5217bcd7

   B[1] =  89499144 7213bb22 6c25b54d a86370fb
           cd984380 374666bb 8ffcb5bf 40c254b0
           67d27c51 ce4ad5fe d829c90b 505a571b
           7f4d1cad 6a523cda 770e67bc eaaf7e89

   OUTPUT
   B'[0] = a41f859c 6608cc99 3b81cacb 020cef05
           044b2181 a2fd337d fd7b1c63 96682f29
           b4393168 e3c9e6bc fe6bc5b7 a06d96ba
           e424cc10 2c91745c 24ad673d c7618f81

   B'[1] = 20edc975 323881a8 0540f64c 162dcd3c
           21077cfe 5f8d5fe2 b1a4168f 953678b7
           7d3b3d80 3b60e4ab 920996e5 9b4d53b6
           5d2a2258 77d5edf5 842cb9f1 4eefe425

Percival & Josefsson     Expires March 21, 2013                 [Page 9]
Internet-Draft                   scrypt                   September 2012

9.  Test Vectors for scryptROMix

   The following test vector use a r value of 1 and N value of 16.  The
   value is hex encoded and whitespace is inserted for readability.  The
   value correspond to the first input and output pair generated by the
   first scrypt test vector below.

   INPUT:
   B = f7ce0b65 3d2d72a4 108cf5ab e912ffdd
       777616db bb27a70e 8204f3ae 2d0f6fad
       89f68f48 11d1e87b cc3bd740 0a9ffd29
       094f0184 639574f3 9ae5a131 5217bcd7
       89499144 7213bb22 6c25b54d a86370fb
       cd984380 374666bb 8ffcb5bf 40c254b0
       67d27c51 ce4ad5fe d829c90b 505a571b
       7f4d1cad 6a523cda 770e67bc eaaf7e89

   OUTPUT:
   B = 79ccc193 629debca 047f0b70 604bf6b6
       2ce3dd4a 9626e355 fafc6198 e6ea2b46
       d5841367 3b99b029 d665c357 601fb426
       a0b2f4bb a200ee9f 0a43d19b 571a9c71
       ef1142e6 5d5a266f ddca832c e59faa7c
       ac0b9cf1 be2bffca 300d01ee 387619c4
       ae12fd44 38f203a0 e4e1c47e c314861f
       4e9087cb 33396a68 73e8f9d2 539a4b8e

10.  Test Vectors for PBKDF2 with HMAC-SHA-256

   The test vectors below can be used to verify the PBKDF2-HMAC-SHA-256
   [RFC2898] function.  The password and salt strings are passed as
   sequences of ASCII [ANSI.X3-4.1986] octets.

   PBKDF2-HMAC-SHA-256 (P="passwd", S="salt",
                       c=1, dkLen=64) =
   55 ac 04 6e 56 e3 08 9f ec 16 91 c2 25 44 b6 05
   f9 41 85 21 6d de 04 65 e6 8b 9d 57 c2 0d ac bc
   49 ca 9c cc f1 79 b6 45 99 16 64 b3 9d 77 ef 31
   7c 71 b8 45 b1 e3 0b d5 09 11 20 41 d3 a1 97 83

   PBKDF2-HMAC-SHA-256 (P="Password", S="NaCl",
                        c=80000, dkLen=64) =
   4d dc d8 f6 0b 98 be 21 83 0c ee 5e f2 27 01 f9
   64 1a 44 18 d0 4c 04 14 ae ff 08 87 6b 34 ab 56
   a1 d4 25 a1 22 58 33 54 9a db 84 1b 51 c9 b3 17
   6a 27 2b de bb a1 d0 78 47 8f 62 b3 97 f3 3c 8d

Percival & Josefsson     Expires March 21, 2013                [Page 10]
Internet-Draft                   scrypt                   September 2012

11.  Test Vectors for scrypt

   For reference purposes, we provide the following test vectors for
   scrypt, where the password and salt strings are passed as sequences
   of ASCII [ANSI.X3-4.1986] octets.

   The parameters to the scrypt function below are, in order, the
   password (octet string), the salt (octet string), the CPU/Memory cost
   parameter N, the block size parameter r, and the parallelization
   parameter p, and the output size dkLen.  The output is hex encoded
   and whitespace is inserted for readability.

   scrypt (P="", S="",
           r=16, N=1, p=1, dklen=64) =
   77 d6 57 62 38 65 7b 20 3b 19 ca 42 c1 8a 04 97
   f1 6b 48 44 e3 07 4a e8 df df fa 3f ed e2 14 42
   fc d0 06 9d ed 09 48 f8 32 6a 75 3a 0f c8 1f 17
   e8 d3 e0 fb 2e 0d 36 28 cf 35 e2 0c 38 d1 89 06

   scrypt (P="password", S="NaCl",
           r=1024, N=8, p=16, dkLen=64) =
   fd ba be 1c 9d 34 72 00 78 56 e7 19 0d 01 e9 fe
   7c 6a d7 cb c8 23 78 30 e7 73 76 63 4b 37 31 62
   2e af 30 d9 2e 22 a3 88 6f f1 09 27 9d 98 30 da
   c7 27 af b9 4a 83 ee 6d 83 60 cb df a2 cc 06 40

   scrypt (P="pleaseletmein", S="SodiumChloride",
           r=16384, N=8, p=1, dkLen=64) =
   70 23 bd cb 3a fd 73 48 46 1c 06 cd 81 fd 38 eb
   fd a8 fb ba 90 4f 8e 3e a9 b5 43 f6 54 5d a1 f2
   d5 43 29 55 61 3f 0f cf 62 d4 97 05 24 2a 9a f9
   e6 1e 85 dc 0d 65 1e 40 df cf 01 7b 45 57 58 87

   scrypt (P="pleaseletmein", S="SodiumChloride",
           r=1048576, N=8, p=1, dkLen=64) =
   21 01 cb 9b 6a 51 1a ae ad db be 09 cf 70 f8 81
   ec 56 8d 57 4a 2f fd 4d ab e5 ee 98 20 ad aa 47
   8e 56 fd 8f 4b a5 d0 9f fa 1c 6d 92 7c 40 f4 c3
   37 30 40 49 e8 a9 52 fb cb f4 5c 6f a7 7a 41 a4

12.  Acknowledgements

   Text in this document was borrowed from [SCRYPT] and [RFC2898].

Percival & Josefsson     Expires March 21, 2013                [Page 11]
Internet-Draft                   scrypt                   September 2012

13.  IANA Considerations

   None.

14.  Security Considerations

   This document specify a cryptographic algorithm.  The reader must
   follow cryptographic research to notice published attacks.  ROMix has
   been proven sequential memory-hard under the Random Oracle model for
   the hash function.  The security of scrypt relies on the assumption
   that BlockMix with Salsa20/8 does not exhibit any "shortcuts" which
   would allow it to be iterated more easily than a random oracle.  For
   other claims about the security properties see [SCRYPT].

   Passwords and other sensitive data, such as intermediate values, may
   continue to be stored in memory, core dumps, swap areas, etc, a long
   time after the implementation has finished processing them.  This can
   make attacks on the implementation easier.  Thus, implementation
   should consider storing sensitive data in protected memory areas.
   How to achieve that is system dependent.

   By nature and depending on parameters, running the scrypt algorithm
   may require large amounts of memory.  Systems should protect against
   a denial of service attack resulting from attackers presenting
   unreasonable large parameters.

15.  References

15.1.  Normative References

   [RFC2898]  Kaliski, B., "PKCS #5: Password-Based Cryptography
              Specification Version 2.0", RFC 2898, September 2000.

   [RFC6234]  Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

   [SALSA20CORE]
              Bernstein, D., "The Salsa20 core",
              WWW http://cr.yp.to/salsa20.html, March 2005.

15.2.  Informative References

   [ANSI.X3-4.1986]
              American National Standards Institute, "Coded Character
              Set - 7-bit American Standard Code for Information
              Interchange", ANSI X3.4, 1986.

Percival & Josefsson     Expires March 21, 2013                [Page 12]
Internet-Draft                   scrypt                   September 2012

   [SCRYPT]   Percival, C., "Stronger key derivation via sequential
              memory-hard functions",
              BSDCan'09 http://www.tarsnap.com/scrypt/scrypt.pdf,
              May 2009.

Authors' Addresses

   Colin Percival
   Tarsnap

   Email: cperciva@tarsnap.com

   Simon Josefsson
   SJD AB

   Email: simon@josefsson.org
   URI:   http://josefsson.org/

Percival & Josefsson     Expires March 21, 2013                [Page 13]