Reaction of Stateless Address Autoconfiguration (SLAAC) to Flash- Renumbering Events
draft-ietf-v6ops-slaac-renum-02

Document Type Active Internet-Draft (v6ops WG)
Last updated 2020-07-23 (latest revision 2020-05-05)
Replaces draft-gont-v6ops-slaac-renum
Stream IETF
Intended RFC status Informational
Formats plain text pdf htmlized (tools) htmlized bibtex
Stream WG state Submitted to IESG for Publication
Document shepherd Owen DeLong
Shepherd write-up Show (last changed 2020-07-07)
IESG IESG state Publication Requested
Consensus Boilerplate Yes
Telechat date
Responsible AD Warren Kumari
Send notices to Owen DeLong <owen@delong.com>, v6ops@ietf.org
IPv6 Operations Working Group (v6ops)                            F. Gont
Internet-Draft                                              SI6 Networks
Intended status: Informational                                   J. Zorz
Expires: November 6, 2020                                  Go6 Institute
                                                            R. Patterson
                                                                  Sky UK
                                                             May 5, 2020

   Reaction of Stateless Address Autoconfiguration (SLAAC) to Flash-
                           Renumbering Events
                    draft-ietf-v6ops-slaac-renum-02

Abstract

   In scenarios where network configuration information related to IPv6
   prefixes becomes invalid without any explicit signaling of that
   condition (such as when a CPE crashes and reboots without knowledge
   of the previously-employed prefixes), nodes on the local network will
   continue using stale prefixes for an unacceptably long period of
   time, thus resulting in connectivity problems.  This document
   documents this problem, and discusses operational workarounds that
   may help to improve network robustness.  Additionally, it highlights
   areas where further work may be needed.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 6, 2020.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Gont, et al.            Expires November 6, 2020                [Page 1]
Internet-Draft       Reaction to Renumbering Events             May 2020

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Analysis of the Problem . . . . . . . . . . . . . . . . . . .   5
     2.1.  Use of Dynamic Prefixes . . . . . . . . . . . . . . . . .   5
     2.2.  Default Timer Values in IPv6 Stateless Address
           Autoconfiguration (SLAAC) . . . . . . . . . . . . . . . .   5
     2.3.  Recovering from Stale Network Configuration Information .   6
     2.4.  Lack of Explicit Signaling about Stale Information  . . .   7
     2.5.  Interaction Between DHCPv6-PD and SLAAC . . . . . . . . .   7
   3.  Operational Mitigations . . . . . . . . . . . . . . . . . . .   7
     3.1.  Stable Prefixes . . . . . . . . . . . . . . . . . . . . .   7
     3.2.  SLAAC Parameter Tweaking  . . . . . . . . . . . . . . . .   8
   4.  Future Work . . . . . . . . . . . . . . . . . . . . . . . . .   9
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   9
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  10
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   IPv6 largely assumes prefix stability, with network renumbering only
   taking place in a planned manner, with old/stale prefixes being
   phased-out via reduced prefix lifetimes, and new prefixes (with
   longer lifetimes) being introduced at the same time.  However, there
   are a number of scenarios that may lead to the so-called "flash-
   renumbering" events, where the prefix employed by a network suddenly
   becomes invalid and replaced by a new prefix.  In some of these
   scenarios, the local router producing the network renumbering event
   may try to deprecate the currently-employed prefixes (by explicitly
   signaling the network about the renumbering event), whereas in other
   scenarios it may be unable to do so.
Show full document text