Skip to main content

TURN Extension for Third Party Authorization
draft-ietf-tram-turn-third-party-authz-01

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7635.
Authors Tirumaleswar Reddy.K , Prashanth Patil , Ram R , Justin Uberti
Last updated 2014-07-30
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 7635 (Proposed Standard)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-tram-turn-third-party-authz-01
TRAM                                                            T. Reddy
Internet-Draft                                                  P. Patil
Intended status: Standards Track                         R. Ravindranath
Expires: January 31, 2015                                          Cisco
                                                               J. Uberti
                                                                  Google
                                                           July 30, 2014

              TURN Extension for Third Party Authorization
               draft-ietf-tram-turn-third-party-authz-01

Abstract

   This document proposes the use of OAuth to obtain and validate
   ephemeral tokens that can be used for TURN authentication.  The usage
   of ephemeral tokens ensure that access to a TURN server can be
   controlled even if the tokens are compromised.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 31, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of

Reddy, et al.           Expires January 31, 2015                [Page 1]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Solution Overview . . . . . . . . . . . . . . . . . . . . . .   3
   4.  Obtaining a Token Using OAuth . . . . . . . . . . . . . . . .   5
     4.1.  Key Establishment . . . . . . . . . . . . . . . . . . . .   7
       4.1.1.  DSKPP . . . . . . . . . . . . . . . . . . . . . . . .   8
       4.1.2.  HTTP interactions . . . . . . . . . . . . . . . . . .   8
       4.1.3.  Manual provisioning . . . . . . . . . . . . . . . . .   9
   5.  Forming a Request . . . . . . . . . . . . . . . . . . . . . .  10
   6.  STUN Attributes . . . . . . . . . . . . . . . . . . . . . . .  10
     6.1.  THIRD-PARTY-AUTHORIZATION . . . . . . . . . . . . . . . .  10
     6.2.  ACCESS-TOKEN  . . . . . . . . . . . . . . . . . . . . . .  10
   7.  Receiving a request with ACCESS-TOKEN attribute . . . . . . .  12
   8.  Changes to TURN Client  . . . . . . . . . . . . . . . . . . .  13
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   11. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     12.1.  Normative References . . . . . . . . . . . . . . . . . .  14
     12.2.  Informative References . . . . . . . . . . . . . . . . .  14
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

   Traversal Using Relay NAT (TURN) TURN [RFC5766] is a protocol that is
   often used to improve the connectivity of P2P applications.  By
   providing a cloud-based relay service, TURN ensures that a connection
   can be established even when one or both sides is incapable of a
   direct P2P connection.  However, as a relay service, it imposes a
   nontrivial cost on the service provider.  Therefore, access to a TURN
   service is almost always access-controlled.

   TURN provides a mechanism to control access via "long-term" username/
   password credentials that are provided as part of the TURN protocol.
   It is expected that these credentials will be kept secret; if the
   credentials are discovered, the TURN server could be used by
   unauthorized users or applications.  However, in web applications,
   ensuring this secrecy is typically impossible.  To address this
   problem and the ones described in [I-D.ietf-tram-auth-problems], this
   document proposes the use of third party authorization using OAuth
   for TURN.

Reddy, et al.           Expires January 31, 2015                [Page 2]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   To achieve third party authorization, a resource owner e.g.  WebRTC
   server, authorizes a TURN client to access resources on the TURN
   server.

   Using OAuth, a client obtains an ephemeral token from an
   authorization server e.g.  WebRTC server, and the token is presented
   to the TURN server instead of the traditional mechanism of presenting
   username/password credentials.  The TURN server validates the
   authenticity of the token and provides required services.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   o  WebRTC Server: A web server that supports WebRTC
      [I-D.ietf-rtcweb-overview].

   o  Access Token: OAuth 2.0 access token.

   o  mac_key: The session key generated by the authorization server.
      This session key has a lifetime that corresponds to the lifetime
      of the access token, is generated by the authorization server and
      bound to the access token.

   o  kid: An ephemeral and unique key identifier.  The kid also allows
      the resource server to select the appropriate keying material for
      decryption.

3.  Solution Overview

   This specification uses the token type 'Assertion' (aka self-
   contained token) described in [RFC6819] where all the information
   necessary to authenticate the validity of the token is contained
   within the token itself.  This approach has the benefit of avoiding a
   protocol between the TURN server and the authorization server for
   token validation, thus reducing latency.  The exact mechanism used by
   a client to obtain a token from the OAuth authorization server is
   outside the scope of this document.  For example, a client could make
   an HTTP request to an authorization server to obtain a token that can
   be used to avail TURN services.  The TURN token is returned in JSON,
   along with other OAuth Parameters like token type, mac_key, kid,
   token lifetime etc.  The client is oblivious to the content of the
   token.  The token is embedded within a TURN request sent to the TURN
   server.  Once the TURN server has determined the token is valid, TURN
   services are offered for a determined period of time.

Reddy, et al.           Expires January 31, 2015                [Page 3]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   +-------------------+                         +--------+  +---------+
   | .........  TURN   |                         |  TURN  |  |  WebRTC |
   | .WebRTC .  Client |                         |        |  |         |
   | .Client .         |                         | Server |  |  Server |
   | .........         |                         |        |  |         |
   +-------------------+                         +--------+  +---------+
     |       |           Allocate request                |         |
     |       |------------------------------------------>|         |
     |       |                                           |         |
     |       |         Allocate error response           |         |
     |       |<------------------------------------------|         |
     |       |         THIRD-PARTY-AUTHORIZATION         |         |
     |       |                                           |         |
     |       |                                           |         |
     |       |      HTTP Request for token               |         |
     |------------------------------------------------------------>|
     |       |      HTTP Response with token parameters  |         |
     |<------------------------------------------------------------|
     |OAuth  |                                           |         |
      Attributes                                         |         |
     |------>|                                           |         |
     |       |    Allocate request ACCESS-TOKEN          |         |
     |       |------------------------------------------>|         |
     |       |                                           |         |
     |       |         Allocate success response         |         |
     |       |<------------------------------------------|         |
     |       |             TURN Messages                 |         |
     |       |      ////// integrity protected //////    |         |
     |       |      ////// integrity protected //////    |         |
     |       |      ////// integrity protected //////    |         |

                 Figure 1: TURN Third Party Authorization

   Note : An implementation may choose to contact the WebRTC server to
   obtain a token even before it makes an allocate request, if it knows
   the server details before hand.  For example, once a client has
   learnt that a TURN server supports Third Party authorization from a
   WebRTC server, the client can obtain the token before making
   subsequent allocate requests.

   [I-D.ietf-oauth-pop-key-distribution] describes the interaction
   between the client and the authorization server.  For example, the
   client learns the TURN server name "turn1@example.com" from THIRD-
   PARTY-AUTHORIZATION attribute value and makes the following HTTP
   request for the access token using transport-layer security (with
   extra line breaks for display purposes only):

Reddy, et al.           Expires January 31, 2015                [Page 4]
Internet-Draft      TURN for 3rd party Authorization           July 2014

        POST /o/oauth2/token HTTP/1.1
        Host: server.example.com
        Content-Type: application/x-www-form-urlencoded
        aud=turn1@example.com
        timestamp=1361471629
        grant_type=implicit
        token_type=pop

                             Figure 2: Request

   If the client is authorized then the authorization server issues an
   access token.  An example of successful response:

        HTTP/1.1 200 OK
        Content-Type: application/json
        Cache-Control: no-store

        {
          "access_token":
   "U2FsdGVkX18qJK/kkWmRcnfHglrVTJSpS6yU32kmHmOrfGyI3m1gQj1jRPsr0uBb
   HctuycAgsfRX7nJW2BdukGyKMXSiNGNnBzigkAofP6+Z3vkJ1Q5pWbfSRroOkWBn",
          "token_type":"pop",
          "expires_in":1800,
          "kid":"22BIjxU93h/IgwEb",
          "mac_key":"v51N62OM65kyMvfTI08O"
        }

                            Figure 3: Response

   Access token and other attributes issued by the authorization server
   are explained in Section 6.2.

4.  Obtaining a Token Using OAuth

   A TURN client should know the authentication capability of the TURN
   server before deciding to use third party authorization with it.  A
   TURN client initially makes a request without any authorization.  If
   the TURN server supports or mandates third party authorization, it
   will return an error message indicating support for third party
   authorization.  The TURN server includes an ERROR-CODE attribute with
   a value of 401 (Unauthorized), a nonce value in a NONCE attribute and
   a SOFTWARE attribute that gives information about the TURN server's
   software.  The TURN servers also includes additional STUN attribute
   THIRD-PARTY-AUTHORIZATION signaling the TURN client that the TURN
   server supports third party authorization.

Reddy, et al.           Expires January 31, 2015                [Page 5]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   The following mapping of OAuth concepts to WebRTC is used :

                 +----------------------+----------------------------+
                 |         OAuth        |            WebRTC          |
                 +======================+============================+
                 | Client               | WebRTC client              |
                 +----------------------+----------------------------+
                 | Resource owner       | WebRTC server              |
                 +----------------------+----------------------------+
                 | Authorization server | Authorization server       |
                 +----------------------+----------------------------+
                 | Resource server      | TURN Server                |
                 +----------------------+----------------------------+

         Figure 4: OAuth terminology mapped to WebRTC terminology

   Using the OAuth 2.0 authorization framework, a WebRTC client (third-
   party application) obtains limited access to a TURN (resource server)
   on behalf of the WebRTC server (resource owner or authorization
   server).  The WebRTC client requests access to resources controlled
   by the resource owner (WebRTC server) and hosted by the resource
   server (TURN server).  The WebRTC client obtains access token,
   lifetime, session key (in the mac_key parameter) and key id (kid).
   The TURN client conveys the access token and other OAuth parameters
   learnt from the authorization server to the resource server (TURN
   server).  The TURN server obtains the session key from the access
   token.  The TURN server validates the token, computes the message
   integrity of the request and takes appropriate action i.e permits the
   TURN client to create allocations.  This is shown in an abstract way
   in Figure 5.

Reddy, et al.           Expires January 31, 2015                [Page 6]
Internet-Draft      TURN for 3rd party Authorization           July 2014

                           +---------------+
                           |               +<******+
            +------------->| Authorization |       *
            |              | Server        |       *
            |   +----------|(WebRTC Server)|       *  AS-RS,
            |   |          |               |       *  AUTH keys
   (2)      |   |           +---------------+      *   (1)
   Access   |   |  (3)                             *
   Token    |   | Access Token                     *
   Request  |   |    +                             *
            |   | Session Key                      *
            |   |                                  *
            |   V                                  V
        +-------+---+                       +-+----=-----+
        |           |         (4)           |            |
        |           | TURN Request + Access |            |
        | WebRTC    | Token                 | TURN       |
        | Client    |---------------------->| Server     |
        | (Alice)   | Allocate Response (5) |            |
        |           |<----------------------|            |
        +-----------+                       +------------+

   User : Alice
   ****: Out-of-Band Long-Term Key Establishment

                          Figure 5: Interactions

   OAuth in [RFC6749] defines four grant types.  This specification uses
   the OAuth grant type "Implicit" explained in section 1.3.2 of
   [RFC6749] where the WebRTC client is issued an access token directly.
   The scope of the access token explained in section 3.3 of [RFC6749]
   MUST be TURN.

4.1.  Key Establishment

   The TURN and authorization servers MUST establish a symmetric key
   (K), using an out of band mechanism.  Symmetric key MUST be chosen to
   ensure that the size of encrypted token is not large because usage of
   asymmetric keys will result in large encrypted tokens which may not
   fit into a single STUN message.  The AS-RS, AUTH keys will be derived
   from K.  AS-RS key is used for encrypting the self-contained token
   and message integrity of the encrypted token is calculated using the
   AUTH key.  The TURN and authorization servers MUST establish the
   symmetric key over an authenticated secure channel.  The
   establishment of symmetric key is outside the scope of this
   specification.  For example, implementations could use one of the
   following mechanisms in to establish a symmetric key.

Reddy, et al.           Expires January 31, 2015                [Page 7]
Internet-Draft      TURN for 3rd party Authorization           July 2014

4.1.1.  DSKPP

   The two servers could choose to use Dynamic Symmetric Key
   Provisioning Protocol (DSKPP) [RFC6063] to establish a symmetric key
   (K).  The encryption and MAC algorithms will be negotiated using the
   KeyProvClientHello, KeyProvServerHello messages.  A unique key
   identifier (referred to as KeyID) for the symmetric key is generated
   by the DSKPP server (i.e.  Authorization server) and signalled to the
   DSKPP client (i.e TURN server) which is equivalent to the kid defined
   in this specification.  The AS-RS, AUTH keys would be derived from
   the symmetric key using (HMAC)-based key derivation function (HKDF)
   [RFC5869] and the default hash function is SHA-256.  For example if
   the input symmetric key (K) is 32 octets length, encryption algorithm
   is AES_128_CBC and HMAC algorithm is HMAC-SHA-256-128 then the
   secondary keys AS-RS, AUTH are generated from the input key K as
   follows

   1.  HKDF-Extract(zero, K) -> PRK

   2.  HKDF-Expand(PRK, zero, 16) -> AS-RS key

   3.  HKDF-Expand(PRK, zero, 32) -> AUTH key

4.1.2.  HTTP interactions

   The two servers could choose to use REST API to establish a symmetric
   key.  To retrieve a new symmetric key, the TURN server makes an HTTP
   GET request to the authorization server, specifying TURN as the
   service to allocate the symmetric keys for, and specifying the name
   of the TURN server.  The response is returned with content-type
   "application/json", and consists of a JSON object containing the
   symmetric key.

Reddy, et al.           Expires January 31, 2015                [Page 8]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   Request
   -------

   service - specifies the desired service (turn)
   name    -  TURN server name be associated with the key

   example: GET /?service=turn&name=turn1@example.com

   Response
   --------

   key - Long-term key (K)
   ttl - the duration for which the key is valid, in seconds.

   example:
   {
      "key" :
   "ESIzRFVmd4iZABEiM0RVZgKn6WjLaTC1FXAghRMVTzkBGNaaN496523WIISKerLi",
      "ttl" : 86400,
      "kid" :"22BIjxU93h/IgwEb"
     }

   The AS-RS, AUTH keys are derived from K using HKDF as discussed in
   Section 4.1.1.  Authorization server must also signal a unique key
   identifier (kid) to the TURN server which will be used to select the
   appropriate keying material for decryption.  The default encryption
   algorithm to encrypt the self-contained token could be Advanced
   Encryption Standard (AES) in Cipher Block Chaining (CBC) mode
   (AES_128_CBC).  The default HMAC algorithm to calculate the integrity
   of the token could be HMAC-SHA-256-128.  In this case AS-RS key
   length must be 128-bit, AUTH key length must be 256-bit (section 2.6
   of [RFC4868]).

4.1.3.  Manual provisioning

   TURN and authorization servers could be manually configured with a
   symmetric key (K) and kid.  The default encryption and HMAC
   algorithms could be AES_256_CBC, HMAC-SHA-256-128.

   Note : The mechanisms specified in Section 4.1.2 Section 4.1.3 are
   easy to implement and deploy compared to DSKPP but lack encryption
   and HMAC algorithm agility.

Reddy, et al.           Expires January 31, 2015                [Page 9]
Internet-Draft      TURN for 3rd party Authorization           July 2014

5.  Forming a Request

   When a TURN server responds that third party authorization is
   required, a TURN client re-attempts the request, this time including
   access token and kid values in ACCESS-TOKEN and USERNAME STUN
   attributes.  The TURN client includes a MESSAGE-INTEGRITY attribute
   as the last attribute in the message over the contents of the TURN
   message.  The HMAC for the MESSAGE-INTEGRITY attribute is computed as
   described in section 15.4 of [RFC5389] where the mac_key is used as
   the input key for the HMAC computation.  The TURN client and server
   will use the mac_key to compute the message integrity and doesn't
   have to perform MD5 hash on the credentials.

6.  STUN Attributes

   The following new STUN attributes are introduced by this
   specification to accomplish third party authorization.

6.1.  THIRD-PARTY-AUTHORIZATION

   This attribute is used by the TURN server to inform the client that
   it supports third party authorization.  This attribute value contains
   the TURN server name.  The TURN server may have tie-up with multiple
   authorization servers and vice versa, so the client MUST provide the
   TURN server name to the authorization server so that it can select
   the appropriate keying material to generate the self-contained token.
   The THIRD-PARTY-AUTHORIZATION attribute is a comprehension-optional
   attribute (see Section 15 from [RFC5389]).

6.2.  ACCESS-TOKEN

   The access token is issued by the authorization server.  OAuth does
   not impose any limitation on the length of the access token but if
   path MTU is unknown then STUN messages over IPv4 would need to be
   less than 548 bytes (Section 7.1 of [RFC5389]), access token length
   needs to be restricted to fit within the maximum STUN message size.
   Note that the self-contained token is opaque to the client and it
   MUST NOT examine the ticket.  The ACCESS-TOKEN attribute is a
   comprehension-optional attribute (see Section 15 from [RFC5389]).

   The token is structured as follows:

Reddy, et al.           Expires January 31, 2015               [Page 10]
Internet-Draft      TURN for 3rd party Authorization           July 2014

         struct {
             opaque {
                 ushort key_length;
                 opaque mac_key[key_length];
                 opaque timestamp[8];
                 long   lifetime;
             } encrypted_block;
             opaque mac[mac_length];
         } token;

                   Figure 6: Self-contained token format

   The fields are described below:

   key_length:  Length of the session key.  Key length of 160-bits MUST
      be supported (i.e only 160-bit key is used by HMAC-SHA-1 for
      message integrity of STUN message).  The key length facilitates
      the hash agility plan discussed in section 16.3 of [RFC5389].

   mac_key:  The session key generated by the authorization server.

   Timestamp:  64-bit unsigned integer field containing a timestamp.
      The value indicates the time since January 1, 1970, 00:00 UTC, by
      using a fixed point format.  In this format, the integer number of
      seconds is contained in the first 48 bits of the field, and the
      remaining 16 bits indicate the number of 1/64K fractions of a
      second (Native format - Unix).

   Lifetime:  The lifetime of the access token, in seconds.  For
      example, the value 3600 indicates one hour.  The Lifetime value
      SHOULD be equal to the "expires_in" parameter defined in section
      4.2.2 of [RFC6749].

   mac:  The Hashed Message Authentication Code (HMAC) is calculated
      with AUTH key over the encrypted portion of the token and the TURN
      server name (N) conveyed in the THIRD-PARTY-AUTHORIZATION
      response.  Encryption is applied before authentication on the
      sender side and conversely on the receiver side.  The length of
      the mac field is known to the TURN and authorization server based
      on the negotiated MAC algorithm.

   For example the encryption process can be illustrated as follows.
   Here C, N denote the ciphertext and TURN server name.

   o  C = AES_128_CBC(AS-RS, encrypted_block)

   o  mac = HMAC-SHA-256-128(AUTH, C | | N)

Reddy, et al.           Expires January 31, 2015               [Page 11]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   The token MUST be encoded as defined in Section 4 of [RFC4648] and
   then encrypted using the symmetric long-term key established between
   the resource server and the authorization server, as shown in
   Figure 5 as AS-RS key.  HMAC is computed using the encrypted portion
   of the token and TURN server name to ensure that the client does not
   use the same token to gain illegal access to other TURN servers
   provided by the same administrative domain.  This attack is possible
   when multiple TURN servers in a single administrative domain share
   the same symmetric key with the authorization server.  Since the
   access token is valid for a specific period of time the resource
   server MUST cache it so that it need not to be provided in every
   request within an existing allocation.  The access token can be re-
   used for multiple Allocate requests to the same TURN server.

   The TURN client MUST include the ACCESS-TOKEN attribute only in
   Allocate and Refresh requests.

7.  Receiving a request with ACCESS-TOKEN attribute

   The TURN server, on receiving a request with ACCESS-TOKEN attribute,
   performs checks listed in section 10.2.2 of [RFC5389] in addition to
   the following steps to verify that the access token is valid:

   o  TURN server selects the keying material based on kid signalled in
      the USERNAME attribute.

   o  It performs the verification of the token message integrity by
      calculating HMAC over the encrypted portion in the self-contained
      token and TURN server name using AUTH key and if the resulting
      value does not match the mac field in the self-contained token
      then it rejects the request with an error response 401
      (Unauthorized).

   o  TURN server obtains the mac_key by retrieving the content of the
      access token (which requires decryption of the self-contained
      token using the AS-RS key).

   o  The TURN server verifies that no replay took place by performing
      the following check:

      *  The access token is accepted if the timestamp field (TS) in the
         self-contained token is recent enough to the reception time of
         the TURN request (RDnew) using the following formula: Lifetime
         + Delta > abs(RDnew - TS).  The RECOMMENDED value for the
         allowed Delta is 5 seconds.  If the timestamp is NOT within the
         boundaries then the TURN server discards the request with error
         response 401 (Unauthorized).

Reddy, et al.           Expires January 31, 2015               [Page 12]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   o  The TURN server uses the mac_key to compute the message integrity
      over the request and if the resulting value does not match the
      contents of the MESSAGE-INTEGRITY attribute then it rejects the
      request with an error response 401 (Unauthorized).

   o  If all the checks pass, the TURN server continues to process the
      request.  Any response generated by the server MUST include the
      MESSAGE-INTEGRITY attribute, computed using the mac_key.

   The lifetime provided by the TURN server in the Allocate and Refresh
   responses MUST be less than or equal to the lifetime of the token.

8.  Changes to TURN Client

   o  A TURN response is discarded by the client if the value computed
      for message integrity using mac_key does not match the contents of
      the MESSAGE-INTEGRITY attribute.

   o  If the access token expires then the client MUST obtain a new
      token from the authorization server and use it for new
      allocations.  The client MUST also use the new token to refresh
      existing allocations.  This way client has to maintain only one
      token per TURN server.

9.  Security Considerations

   When OAuth is used the interaction between the client and the
   authorization server requires Transport Layer Security (TLS) with a
   ciphersuite offering confidentiality protection.  The session key
   MUST NOT be transmitted in clear since this would completely destroy
   the security benefits of the proposed scheme.  If an attacker tries
   to replay message with ACCESS-TOKEN attribute then the server can
   detect that the transaction ID as used for an old request and thus
   prevent the replay attack.

   Threat mitigation discussed in section 5 of
   [I-D.ietf-oauth-pop-architecture] and security considerations in
   [RFC5766] are to be taken into account.

10.  IANA Considerations

   IANA is requested to add the following attributes to the STUN
   attribute registry [iana-stun],

   o  THIRD-PARTY-AUTHORIZATION

   o  ACCESS-TOKEN

Reddy, et al.           Expires January 31, 2015               [Page 13]
Internet-Draft      TURN for 3rd party Authorization           July 2014

11.  Acknowledgements

   Authors would like to thank Dan Wing, Pal Martinsen, Oleg Moskalenko
   and Charles Eckel for comments and review.  The authors would like to
   give special thanks to Brandon Williams for his help.

12.  References

12.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, October 2006.

   [RFC4868]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
              384, and HMAC-SHA-512 with IPsec", RFC 4868, May 2007.

   [RFC5389]  Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
              "Session Traversal Utilities for NAT (STUN)", RFC 5389,
              October 2008.

   [RFC6749]  Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
              6749, October 2012.

   [iana-stun]
              IANA, , "IANA: STUN Attributes", April 2011,
              <http://www.iana.org/assignments/stun-parameters/stun-pa
              rameters.xml>.

12.2.  Informative References

   [I-D.ietf-oauth-pop-architecture]
              Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
              Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
              Architecture", draft-ietf-oauth-pop-architecture-00 (work
              in progress), July 2014.

   [I-D.ietf-oauth-pop-key-distribution]
              Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
              "OAuth 2.0 Proof-of-Possession: Authorization Server to
              Client Key Distribution", draft-ietf-oauth-pop-key-
              distribution-00 (work in progress), July 2014.

Reddy, et al.           Expires January 31, 2015               [Page 14]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   [I-D.ietf-rtcweb-overview]
              Alvestrand, H., "Overview: Real Time Protocols for
              Browser-based Applications", draft-ietf-rtcweb-overview-10
              (work in progress), June 2014.

   [I-D.ietf-tram-auth-problems]
              Reddy, T., R, R., Perumal, M., and A. Yegin, "Problems
              with STUN long-term Authentication for TURN", draft-ietf-
              tram-auth-problems-04 (work in progress), July 2014.

   [RFC5766]  Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
              Relays around NAT (TURN): Relay Extensions to Session
              Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

   [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869, May 2010.

   [RFC6063]  Doherty, A., Pei, M., Machani, S., and M. Nystrom,
              "Dynamic Symmetric Key Provisioning Protocol (DSKPP)", RFC
              6063, December 2010.

   [RFC6819]  Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
              Threat Model and Security Considerations", RFC 6819,
              January 2013.

Authors' Addresses

   Tirumaleswar Reddy
   Cisco Systems, Inc.
   Cessna Business Park, Varthur Hobli
   Sarjapur Marathalli Outer Ring Road
   Bangalore, Karnataka  560103
   India

   Email: tireddy@cisco.com

   Prashanth Patil
   Cisco Systems, Inc.
   Bangalore
   India

   Email: praspati@cisco.com

Reddy, et al.           Expires January 31, 2015               [Page 15]
Internet-Draft      TURN for 3rd party Authorization           July 2014

   Ram Mohan Ravindranath
   Cisco Systems, Inc.
   Cessna Business Park,
   Kadabeesanahalli Village, Varthur Hobli,
   Sarjapur-Marathahalli Outer Ring Road
   Bangalore, Karnataka  560103
   India

   Email: rmohanr@cisco.com

   Justin Uberti
   Google
   747 6th Ave S
   Kirkland, WA
   98033
   USA

   Email: justin@uberti.name

Reddy, et al.           Expires January 31, 2015               [Page 16]