Skip to main content

Hypertext Transfer Protocol (HTTP) over QUIC
draft-ietf-quic-http-01

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9114.
Author Mike Bishop
Last updated 2017-01-14
Replaces draft-shade-quic-http2-mapping
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 9114 (Proposed Standard)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-quic-http-01
QUIC                                                      M. Bishop, Ed.
Internet-Draft                                                 Microsoft
Intended status: Standards Track                        January 14, 2017
Expires: July 18, 2017

              Hypertext Transfer Protocol (HTTP) over QUIC
                        draft-ietf-quic-http-01

Abstract

   The QUIC transport protocol has several features that are desirable
   in a transport for HTTP, such as stream multiplexing, per-stream flow
   control, and low-latency connection establishment.  This document
   describes a mapping of HTTP semantics over QUIC.  Specifically, this
   document identifies HTTP/2 features that are subsumed by QUIC, and
   describes how the other features can be implemented atop QUIC.

Note to Readers

   Discussion of this draft takes place on the QUIC working group
   mailing list (quic@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/search/?email_list=quic .

   Working Group information can be found at https://github.com/quicwg ;
   source code and issues list for this draft can be found at
   https://github.com/quicwg/base-drafts/labels/http .

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 18, 2017.

Bishop                    Expires July 18, 2017                 [Page 1]
Internet-Draft               HTTP over QUIC                 January 2017

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Notational Conventions  . . . . . . . . . . . . . . . . .   3
   2.  QUIC Advertisement  . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  QUIC Version Hints  . . . . . . . . . . . . . . . . . . .   4
   3.  Connection Establishment  . . . . . . . . . . . . . . . . . .   4
     3.1.  Draft Version Identification  . . . . . . . . . . . . . .   5
   4.  Stream Mapping and Usage  . . . . . . . . . . . . . . . . . .   5
     4.1.  Stream 3: Connection Control Stream . . . . . . . . . . .   6
     4.2.  HTTP Message Exchanges  . . . . . . . . . . . . . . . . .   6
       4.2.1.  Header Compression  . . . . . . . . . . . . . . . . .   7
       4.2.2.  The CONNECT Method  . . . . . . . . . . . . . . . . .   8
     4.3.  Stream Priorities . . . . . . . . . . . . . . . . . . . .   9
     4.4.  Flow Control  . . . . . . . . . . . . . . . . . . . . . .   9
     4.5.  Server Push . . . . . . . . . . . . . . . . . . . . . . .   9
   5.  HTTP Framing Layer  . . . . . . . . . . . . . . . . . . . . .  10
     5.1.  Frame Layout  . . . . . . . . . . . . . . . . . . . . . .  10
     5.2.  Frame Definitions . . . . . . . . . . . . . . . . . . . .  11
       5.2.1.  DATA  . . . . . . . . . . . . . . . . . . . . . . . .  11
       5.2.2.  HEADERS . . . . . . . . . . . . . . . . . . . . . . .  11
       5.2.3.  PRIORITY  . . . . . . . . . . . . . . . . . . . . . .  12
       5.2.4.  RST_STREAM  . . . . . . . . . . . . . . . . . . . . .  13
       5.2.5.  SETTINGS  . . . . . . . . . . . . . . . . . . . . . .  13
       5.2.6.  PUSH_PROMISE  . . . . . . . . . . . . . . . . . . . .  16
       5.2.7.  PING  . . . . . . . . . . . . . . . . . . . . . . . .  17
       5.2.8.  GOAWAY frame  . . . . . . . . . . . . . . . . . . . .  17
       5.2.9.  WINDOW_UPDATE frame . . . . . . . . . . . . . . . . .  17
       5.2.10. CONTINUATION frame  . . . . . . . . . . . . . . . . .  17
       5.2.11. SETTINGS_ACK Frame  . . . . . . . . . . . . . . . . .  18
   6.  Error Handling  . . . . . . . . . . . . . . . . . . . . . . .  19
     6.1.  HTTP-Defined QUIC Error Codes . . . . . . . . . . . . . .  19
     6.2.  Mapping HTTP/2 Error Codes  . . . . . . . . . . . . . . .  20

Bishop                    Expires July 18, 2017                 [Page 2]
Internet-Draft               HTTP over QUIC                 January 2017

   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
     8.1.  Registration of HTTP/QUIC Identification String . . . . .  21
     8.2.  Registration of Version Hint Alt-Svc Parameter  . . . . .  21
     8.3.  Existing Frame Types  . . . . . . . . . . . . . . . . . .  22
     8.4.  New Frame Types . . . . . . . . . . . . . . . . . . . . .  23
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  23
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  23
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  24
   Appendix A.  Contributors . . . . . . . . . . . . . . . . . . . .  24
   Appendix B.  Change Log . . . . . . . . . . . . . . . . . . . . .  24
     B.1.  Since draft-ietf-quic-http-00:  . . . . . . . . . . . . .  24
     B.2.  Since draft-shade-quic-http2-mapping-00:  . . . . . . . .  25
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  25

1.  Introduction

   The QUIC transport protocol has several features that are desirable
   in a transport for HTTP, such as stream multiplexing, per-stream flow
   control, and low-latency connection establishment.  This document
   describes a mapping of HTTP semantics over QUIC, drawing heavily on
   the existing TCP mapping, HTTP/2.  Specifically, this document
   identifies HTTP/2 features that are subsumed by QUIC, and describes
   how the other features can be implemented atop QUIC.

   QUIC is described in [QUIC-TRANSPORT].  For a full description of
   HTTP/2, see [RFC7540].

1.1.  Notational Conventions

   The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
   document.  It's not shouting; when they are capitalized, they have
   the special meaning defined in [RFC2119].

2.  QUIC Advertisement

   A server advertises that it can speak HTTP/QUIC via the Alt-Svc
   ([RFC7838]) HTTP response header (or the semantically equivalent Alt-
   Svc HTTP/2 Extension Frame Type), using the ALPN token defined in
   Section 3.

   Thus, a server could indicate in an HTTP/1.1 or HTTP/2 response that
   HTTP/QUIC was available on UDP port 443 by including the following
   header in any response:

   Alt-Svc: hq=":443"

Bishop                    Expires July 18, 2017                 [Page 3]
Internet-Draft               HTTP over QUIC                 January 2017

2.1.  QUIC Version Hints

   This document defines the "v" parameter for Alt-Svc, which is used to
   provide version-negotiation hints to HTTP/QUIC clients.  Syntax:

   v = version
   version = DQUOTE ( "c" version-string / "x" version-number ) DQUOTE
   version-string = token; percent-encoded QUIC version
   version-number = 1*8 HEXDIG; hex-encoded QUIC version

   When multiple versions are supported, the "v" parameter MAY be
   repeated multiple times in a single Alt-Svc entry.  For example, if a
   server supported both version "Q034" and version 0x00000001, it would
   specify the following header:

   Alt-Svc: hq=":443";v="x1";v="cQ034"

   Where multiple versions are listed, the order of the values reflects
   the server's preference (with the first value being the most
   preferred version).

   QUIC versions are four-octet sequences with no additional constraints
   on format.  Versions containing octets not allowed in tokens
   ([RFC7230], Section 3.2.6) MUST be encoded using the hexidecimal
   representation.  Versions containing only octets allowed in tokens
   MAY be encoded using either representation.

   On receipt of an Alt-Svc header indicating QUIC support, a client MAY
   attempt to establish a QUIC connection on the indicated port and, if
   successful, send HTTP requests using the mapping described in this
   document.  Servers SHOULD list only versions which they support, but
   MAY omit supported versions for any reason.

   Connectivity problems (e.g. firewall blocking UDP) may result in QUIC
   connection establishment failure, in which case the client should
   gracefully fall back to HTTP/2.

3.  Connection Establishment

   HTTP/QUIC connections are established as described in
   [QUIC-TRANSPORT].  During connection establishment, HTTP/QUIC support
   is indicated by selecting the ALPN token "hq" in the crypto
   handshake.

   While connection-level options pertaining to the core QUIC protocol
   are set in the initial crypto handshake, HTTP-specific settings are
   conveyed in the SETTINGS frame.  After the QUIC connection is

Bishop                    Expires July 18, 2017                 [Page 4]
Internet-Draft               HTTP over QUIC                 January 2017

   established, a SETTINGS frame (Section 5.2.5) MUST be sent as the
   initial frame of the HTTP control stream (StreamID 3, see Section 4).

3.1.  Draft Version Identification

      *RFC Editor's Note:* Please remove this section prior to
      publication of a final version of this document.

   Only implementations of the final, published RFC can identify
   themselves as "hq".  Until such an RFC exists, implementations MUST
   NOT identify themselves using these strings.

   Implementations of draft versions of the protocol MUST add the string
   "-" and the corresponding draft number to the identifier.  For
   example, draft-ietf-quic-http-01 is identified using the string "hq-
   01".

   Non-compatible experiments that are based on these draft versions
   MUST append the string "-" and an experiment name to the identifier.
   For example, an experimental implementation based on draft-ietf-quic-
   http-09 which reserves an extra stream for unsolicited transmission
   of 1980s pop music might identify itself as "hq-09-rickroll".  Note
   that any label MUST conform to the "token" syntax defined in
   Section 3.2.6 of [RFC7230].  Experimenters are encouraged to
   coordinate their experiments on the quic@ietf.org mailing list.

4.  Stream Mapping and Usage

   A QUIC stream provides reliable in-order delivery of bytes, but makes
   no guarantees about order of delivery with regard to bytes on other
   streams.  On the wire, data is framed into QUIC STREAM frames, but
   this framing is invisible to the HTTP framing layer.  A QUIC receiver
   buffers and orders received STREAM frames, exposing the data
   contained within as a reliable byte stream to the application.

   QUIC reserves Stream 1 for crypto operations (the handshake, crypto
   config updates).  Stream 3 is reserved for sending and receiving HTTP
   control frames, and is analogous to HTTP/2's Stream 0.

   When HTTP headers and data are sent over QUIC, the QUIC layer handles
   most of the stream management.  An HTTP request/response consumes a
   pair of streams: This means that the client's first request occurs on
   QUIC streams 5 and 7, the second on stream 9 and 11, and so on.  The
   server's first push consumes streams 2 and 4.  This amounts to the
   second least-significant bit differentiating the two streams in a
   request.

Bishop                    Expires July 18, 2017                 [Page 5]
Internet-Draft               HTTP over QUIC                 January 2017

   The lower-numbered stream is called the message control stream and
   carries frames related to the request/response, including HEADERS.
   All request control streams are exempt from connection-level flow
   control.  The higher-numbered stream is the data stream and carries
   the request/response body with no additional framing.  Note that a
   request or response without a body will cause this stream to be half-
   closed in the corresponding direction without transferring data.

   Pairs of streams must be utilized sequentially, with no gaps.  The
   data stream MUST be reserved with the QUIC implementation when the
   message control stream is opened or reserved, and MUST be closed
   after transferring the body, or else closed immediately after sending
   the request headers if there is no body.

   HTTP does not need to do any separate multiplexing when using QUIC -
   data sent over a QUIC stream always maps to a particular HTTP
   transaction.  Requests and responses are considered complete when the
   corresponding QUIC streams are closed in the appropriate direction.

4.1.  Stream 3: Connection Control Stream

   Since most connection-level concerns from HTTP/2 will be managed by
   QUIC, the primary use of Stream 3 will be for SETTINGS and PRIORITY
   frames.  Stream 3 is exempt from connection-level flow-control.

4.2.  HTTP Message Exchanges

   A client sends an HTTP request on a new pair of QUIC streams.  A
   server sends an HTTP response on the same streams as the request.

   An HTTP message (request or response) consists of:

   1.  for a response only, zero or more header blocks (a sequence of
       HEADERS frames with End Header Block set on the last) on the
       control stream containing the message headers of informational
       (1xx) HTTP responses (see [RFC7230], Section 3.2 and [RFC7231],
       Section 6.2),

   2.  one header block on the control stream containing the message
       headers (see [RFC7230], Section 3.2),

   3.  the payload body (see [RFC7230], Section 3.3), sent on the data
       stream,

   4.  optionally, one header block on the control stream containing the
       trailer-part, if present (see [RFC7230], Section 4.1.2).

Bishop                    Expires July 18, 2017                 [Page 6]
Internet-Draft               HTTP over QUIC                 January 2017

   The data stream MUST be half-closed immediately after the transfer of
   the body.  If the message does not contain a body, the corresponding
   data stream MUST still be half-closed without transferring any data.
   The "chunked" transfer encoding defined in Section 4.1 of [RFC7230]
   MUST NOT be used.

   Trailing header fields are carried in a header block following the
   body.  Such a header block is a sequence of HEADERS frames with End
   Header Block set on the last frame.  Header blocks after the first
   but before the end of the stream are invalid.  These MUST be decoded
   to maintain HPACK decoder state, but the resulting output MUST be
   discarded.

   An HTTP request/response exchange fully consumes a pair of streams.
   After sending a request, a client closes the streams for sending;
   after sending a response, the server closes its streams for sending
   and the QUIC streams are fully closed.

   A server can send a complete response prior to the client sending an
   entire request if the response does not depend on any portion of the
   request that has not been sent and received.  When this is true, a
   server MAY request that the client abort transmission of a request
   without error by sending a RST_STREAM with an error code of NO_ERROR
   after sending a complete response and closing its stream.  Clients
   MUST NOT discard responses as a result of receiving such a
   RST_STREAM, though clients can always discard responses at their
   discretion for other reasons.

4.2.1.  Header Compression

   HTTP/QUIC uses HPACK header compression as described in [RFC7541].
   HPACK was designed for HTTP/2 with the assumption of in- order
   delivery such as that provided by TCP.  A sequence of encoded header
   blocks must arrive (and be decoded) at an endpoint in the same order
   in which they were encoded.  This ensures that the dynamic state at
   the two endpoints remains in sync.

   QUIC streams provide in-order delivery of data sent on those streams,
   but there are no guarantees about order of delivery between streams.
   To achieve in-order delivery of HEADERS frames in QUIC, the HPACK-
   bearing frames contain a counter which can be used to ensure in-order
   processing.  Data (request/response bodies) which arrive out of order
   are buffered until the corresponding HEADERS arrive.

   This does introduce head-of-line blocking: if the packet containing
   HEADERS for stream N is lost or reordered then the HEADERS for stream
   N+4 cannot be processed until it has been retransmitted successfully,
   even though the HEADERS for stream N+4 may have arrived.

Bishop                    Expires July 18, 2017                 [Page 7]
Internet-Draft               HTTP over QUIC                 January 2017

   DISCUSS:  Keep HPACK with HOLB?  Redesign HPACK to be order-
      invariant?  How much do we need to retain compatibility with
      HTTP/2's HPACK?

4.2.2.  The CONNECT Method

   The pseudo-method CONNECT ([RFC7231], Section 4.3.6) is primarily
   used with HTTP proxies to establish a TLS session with an origin
   server for the purposes of interacting with "https" resources.  In
   HTTP/1.x, CONNECT is used to convert an entire HTTP connection into a
   tunnel to a remote host.  In HTTP/2, the CONNECT method is used to
   establish a tunnel over a single HTTP/2 stream to a remote host for
   similar purposes.

   A CONNECT request in HTTP/QUIC functions in the same manner as in
   HTTP/2.  The request MUST be formatted as described in [RFC7540],
   Section 8.3.  A CONNECT request that does not conform to these
   restrictions is malformed.  The message data stream MUST NOT be
   closed at the end of the request.

   A proxy that supports CONNECT establishes a TCP connection
   ([RFC0793]) to the server identified in the ":authority" pseudo-
   header field.  Once this connection is successfully established, the
   proxy sends a HEADERS frame containing a 2xx series status code to
   the client, as defined in [RFC7231], Section 4.3.6, on the message
   control stream.

   All QUIC STREAM frames on the message data stream correspond to data
   sent on the TCP connection.  Any QUIC STREAM frame sent by the client
   is transmitted by the proxy to the TCP server; data received from the
   TCP server is written to the data stream by the proxy.  Note that the
   size and number of TCP segments is not guaranteed to map predictably
   to the size and number of QUIC STREAM frames.

   The TCP connection can be closed by either peer.  When the client
   half-closes the data stream, the proxy will set the FIN bit on its
   connection to the TCP server.  When the proxy receives a packet with
   the FIN bit set, it will half-close the corresponding data stream.
   TCP connections which remain half-closed in a single direction are
   not invalid, but are often handled poorly by servers, so clients
   SHOULD NOT half-close connections on which they are still expecting
   data.

   A TCP connection error is signaled with RST_STREAM.  A proxy treats
   any error in the TCP connection, which includes receiving a TCP
   segment with the RST bit set, as a stream error of type
   HTTP_CONNECT_ERROR (Section 6.1).  Correspondingly, a proxy MUST send

Bishop                    Expires July 18, 2017                 [Page 8]
Internet-Draft               HTTP over QUIC                 January 2017

   a TCP segment with the RST bit set if it detects an error with the
   stream or the QUIC connection.

4.3.  Stream Priorities

   HTTP/QUIC uses the priority scheme described in [RFC7540]
   Section 5.3.  In this priority scheme, a given stream can be
   designated as dependent upon another stream, which expresses the
   preference that the latter stream (the "parent" stream) be allocated
   resources before the former stream (the "dependent" stream).  Taken
   together, the dependencies across all streams in a connection form a
   dependency tree.  The structure of the dependency tree changes as
   HEADERS and PRIORITY frames add, remove, or change the dependency
   links between streams.

   Implicit in this scheme is the notion of in-order delivery of
   priority changes (i.e., dependency tree mutations): since operations
   on the dependency tree such as reparenting a subtree are not
   commutative, both sender and receiver must apply them in the same
   order to ensure that both sides have a consistent view of the stream
   dependency tree.  HTTP/2 specifies priority assignments in PRIORITY
   frames and (optionally) in HEADERS frames.  To achieve in-order
   delivery of priority changes in HTTP/QUIC, PRIORITY frames are sent
   on the connection control stream and the PRIORITY section is removed
   from the HEADERS frame.  The semantics of the Stream Dependency,
   Weight, E flag, and (for HEADERS frames) PRIORITY flag are the same
   as in HTTP/2.

   For consistency's sake, all PRIORITY frames MUST refer to the message
   control stream of the dependent request, not the data stream.

4.4.  Flow Control

   QUIC provides stream and connection level flow control, similar in
   principle to HTTP/2's flow control but with some implementation
   differences.  As flow control is handled by QUIC, the HTTP mapping
   need not concern itself with maintaining flow control state.  The
   HTTP mapping MUST NOT send WINDOW_UPDATE frames at the HTTP level.

4.5.  Server Push

   HTTP/QUIC supports server push as described in [RFC7540].  During
   connection establishment, the client indicates whether it is willing
   to receive server pushes via the SETTINGS_ENABLE_PUSH setting in the
   SETTINGS frame (see Section 3), which defaults to 1 (true).

   As with server push for HTTP/2, the server initiates a server push by
   sending a PUSH_PROMISE frame containing the StreamID of the stream to

Bishop                    Expires July 18, 2017                 [Page 9]
Internet-Draft               HTTP over QUIC                 January 2017

   be pushed, as well as request header fields attributed to the
   request.  The PUSH_PROMISE frame is sent on the control stream of the
   associated (client-initiated) request, while the Promised Stream ID
   field specifies the Stream ID of the control stream for the server-
   initiated request.

   The server push response is conveyed in the same way as a non-server-
   push response, with response headers and (if present) trailers
   carried by HEADERS frames sent on the control stream, and response
   body (if any) sent via the corresponding data stream.

5.  HTTP Framing Layer

   Many framing concepts from HTTP/2 can be elided away on QUIC, because
   the transport deals with them.  Because frames are already on a
   stream, they can omit the stream number.  Because frames do not block
   multiplexing (QUIC's multiplexing occurs below this layer), the
   support for variable-maximum-length packets can be removed.  Because
   stream termination is handled by QUIC, an END_STREAM flag is not
   required.

   Frames are used only on the connection (stream 3) and message
   (streams 5, 9, etc.) control streams.  Other streams carry data
   payload and are not framed at the HTTP layer.

   Frame payloads are largely drawn from [RFC7540].  However, QUIC
   includes some features (e.g. flow control) which are also present in
   HTTP/2.  In these cases, the HTTP mapping need not re-implement them.
   As a result, some frame types are not required when using QUIC.
   Where an HTTP/2-defined frame is no longer used, the frame ID is
   reserved in order to maximize portability between HTTP/2 and HTTP/
   QUIC implementations.  However, equivalent frames between the two
   mappings are not necessarily identical.

   This section describes HTTP framing in QUIC and highlights
   differences from HTTP/2 framing.

5.1.  Frame Layout

   All frames have the following format:

Bishop                    Expires July 18, 2017                [Page 10]
Internet-Draft               HTTP over QUIC                 January 2017

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Length (16)         |     Type (8)  |   Flags (8)   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Frame Payload (*)                     ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          HTTP/QUIC frame format

5.2.  Frame Definitions

5.2.1.  DATA

   DATA frames do not exist.  Frame type 0x0 is reserved.

5.2.2.  HEADERS

   The HEADERS frame (type=0x1) is used to carry part of a header set,
   compressed using HPACK [RFC7541].  Because HEADERS frames from
   different streams will be delivered out-of-order and priority-changes
   are not commutative, the PRIORITY region of HEADERS is not supported.
   A separate PRIORITY frame MUST be used.

   Padding MUST NOT be used.  The flags defined are:

   Reserved (0x1):  Reserved for HTTP/2 compatibility.

   End Header Block (0x4):  This frame concludes a header block.

   Reserved (0x8):  Reserved for HTTP/2 compatibility.

   Reserved (0x20):  Reserved for HTTP/2 compatibility.

   A HEADERS frame with the Reserved bits set MUST be treated as a
   connection error of type HTTP_MALFORMED_HEADERS.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Sequence? (16)          |    Header Block Fragment (*)...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           HEADERS frame payload

   The HEADERS frame payload has the following fields:

Bishop                    Expires July 18, 2017                [Page 11]
Internet-Draft               HTTP over QUIC                 January 2017

   Sequence Number:  Present only on the first frame of a header block
      sequence.  This MUST be set to zero on the first header block
      sequence, and incremented on each header block.

   The next frame on the same stream after a HEADERS frame without the
   EHB flag set MUST be another HEADERS frame.  A receiver MUST treat
   the receipt of any other type of frame as a stream error of type
   HTTP_INTERRUPTED_HEADERS.  (Note that QUIC can intersperse data from
   other streams between frames, or even during transmission of frames,
   so multiplexing is not blocked by this requirement.)

   A full header block is contained in a sequence of zero or more
   HEADERS frames without EHB set, followed by a HEADERS frame with EHB
   set.

   On receipt, header blocks (HEADERS, PUSH_PROMISE) MUST be processed
   by the HPACK decoder in sequence.  If a block is missing, all
   subsequent HPACK frames MUST be held until it arrives, or the
   connection terminated.

5.2.3.  PRIORITY

   The PRIORITY (type=0x02) frame specifies the sender-advised priority
   of a stream and is substantially different from [RFC7540].  In order
   to support ordering, it MUST be sent only on the connection control
   stream.  The format has been modified to accommodate not being sent
   on-stream and the larger stream ID space of QUIC.

   The flags defined are:

   E (0x01):  Indicates that the stream dependency is exclusive (see
      [RFC7540] Section 5.3).

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Prioritized Stream (32)                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Dependent Stream (32)                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Weight (8)  |
      +-+-+-+-+-+-+-+-+

                           HEADERS frame payload

   The HEADERS frame payload has the following fields:

Bishop                    Expires July 18, 2017                [Page 12]
Internet-Draft               HTTP over QUIC                 January 2017

   Prioritized Stream:  A 32-bit stream identifier for the message
      control stream whose priority is being updated.

   Stream Dependency:  A 32-bit stream identifier for the stream that
      this stream depends on (see Section 4.3 and {!RFC7540}}
      Section 5.3).

   Weight:  An unsigned 8-bit integer representing a priority weight for
      the stream (see [RFC7540] Section 5.3).  Add one to the value to
      obtain a weight between 1 and 256.

   A PRIORITY frame MUST have a payload length of nine octets.  A
   PRIORITY frame of any other length MUST be treated as a connection
   error of type HTTP_MALFORMED_PRIORITY.

5.2.4.  RST_STREAM

   RST_STREAM frames do not exist, since QUIC provides stream lifecycle
   management.  Frame type 0x3 is reserved.

5.2.5.  SETTINGS

   The SETTINGS frame (type=0x4) conveys configuration parameters that
   affect how endpoints communicate, such as preferences and constraints
   on peer behavior, and is substantially different from [RFC7540].
   Individually, a SETTINGS parameter can also be referred to as a
   "setting".

   SETTINGS parameters are not negotiated; they describe characteristics
   of the sending peer, which can be used by the receiving peer.
   However, a negotiation can be implied by the use of SETTINGS - a peer
   uses SETTINGS to advertise a set of supported values.  The recipient
   can then choose which entries from this list are also acceptable and
   proceed with the value it has chosen.  (This choice could be
   announced in a field of an extension frame, or in its own value in
   SETTINGS.)

   Different values for the same parameter can be advertised by each
   peer.  For example, a client might permit a very large HPACK state
   table while a server chooses to use a small one to conserve memory.

   A SETTINGS frame MAY be sent at any time by either endpoint over the
   lifetime of the connection.

   Each parameter in a SETTINGS frame replaces any existing value for
   that parameter.  Parameters are processed in the order in which they
   appear, and a receiver of a SETTINGS frame does not need to maintain
   any state other than the current value of its parameters.  Therefore,

Bishop                    Expires July 18, 2017                [Page 13]
Internet-Draft               HTTP over QUIC                 January 2017

   the value of a SETTINGS parameter is the last value that is seen by a
   receiver.

   The SETTINGS frame defines the following flag:

   REQUEST_ACK (0x1):  When set, bit 0 indicates that this frame
      contains values which the sender wants to know were understood and
      applied.  For more information, see Section 5.2.5.3.

   The payload of a SETTINGS frame consists of zero or more parameters,
   each consisting of an unsigned 16-bit setting identifier and a
   length-prefixed binary value.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Identifier (16)        |B|        Length (15)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Contents (?)                       ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 1: SETTINGS value format

   A zero-length content indicates that the setting value is a Boolean
   given by the B bit.  If Length is not zero, the B bit MUST be zero,
   and MUST be ignored by receivers.  The initial value of each setting
   is "false" unless otherwise specified by the definition of the
   setting.

   Non-zero-length values MUST be compared against the remaining length
   of the SETTINGS frame.  Any value which purports to cross the end of
   the frame MUST cause the SETTINGS frame to be considered malformed
   and trigger a connection error.

   An implementation MUST ignore the contents for any SETTINGS
   identifier it does not understand.

   SETTINGS frames always apply to a connection, never a single stream,
   and MUST only be sent on the connection control stream (Stream 3).
   If an endpoint receives an SETTINGS frame whose stream identifier
   field is anything other than 0x0, the endpoint MUST respond with a
   connection error of type HTTP_SETTINGS_ON_WRONG_STREAM.

   The SETTINGS frame affects connection state.  A badly formed or
   incomplete SETTINGS frame MUST be treated as a connection error
   (Section 5.4.1) of type HTTP_MALFORMED_SETTINGS.

Bishop                    Expires July 18, 2017                [Page 14]
Internet-Draft               HTTP over QUIC                 January 2017

5.2.5.1.  Integer encoding

   Settings which are integers are transmitted in network byte order.
   Leading zero octets are permitted, but implementations SHOULD use
   only as many bytes as are needed to represent the value.  An integer
   MUST NOT be represented in more bytes than would be used to transfer
   the maximum permitted value.

5.2.5.2.  Defined SETTINGS Parameters

   Some transport-level options that HTTP/2 specifies via the SETTINGS
   frame are superseded by QUIC transport parameters in HTTP/QUIC.
   Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

   SETTINGS_HEADER_TABLE_SIZE:  An integer with a maximum value of 2^32
      - 1.

   SETTINGS_ENABLE_PUSH:  Transmitted as a Boolean.  The default remains
      "true" as specified in [RFC7540].

   SETTINGS_MAX_CONCURRENT_STREAMS:  QUIC requires the maximum number of
      incoming streams per connection to be specified in the initial
      crypto handshake, using the "MSPC" tag.  Specifying
      SETTINGS_MAX_CONCURRENT_STREAMS in the SETTINGS frame is an error.

   SETTINGS_INITIAL_WINDOW_SIZE:  QUIC requires both stream and
      connection flow control window sizes to be specified in the
      initial crypto handshake, using the "SFCW" and "CFCW" tags,
      respectively.  Specifying SETTINGS_INITIAL_WINDOW_SIZE in the
      SETTINGS frame is an error.

   SETTINGS_MAX_FRAME_SIZE:  This setting has no equivalent in QUIC.
      Specifying it in the SETTINGS frame is an error.

   SETTINGS_MAX_HEADER_LIST_SIZE:  An integer with a maximium value of
      2^32 - 1.

5.2.5.3.  Settings Synchronization

   Some values in SETTINGS benefit from or require an understanding of
   when the peer has received and applied the changed parameter values.
   In order to provide such synchronization timepoints, the recipient of
   a SETTINGS frame MUST apply the updated parameters as soon as
   possible upon receipt.  The values in the SETTINGS frame MUST be
   processed in the order they appear, with no other frame processing
   between values.  Unsupported parameters MUST be ignored.

Bishop                    Expires July 18, 2017                [Page 15]
Internet-Draft               HTTP over QUIC                 January 2017

   Once all values have been processed, if the REQUEST_ACK flag was set,
   the recipient MUST emit the following frames:

   o  On the connection control stream, a SETTINGS_ACK frame
      (Section 5.2.11) listing the identifiers whose values were not
      understood.

   o  On each request control stream which is not in the "half-closed
      (local)" or "closed" state, an empty SETTINGS_ACK frame.

   The SETTINGS_ACK frame on the connection control stream contains the
   highest stream number which was open at the time the SETTINGS frame
   was received.  All streams with higher numbers can safely be assumed
   to have the new settings in effect when they open.

   For already-open streams including the connection control stream, the
   SETTINGS_ACK frame indicates the point at which the new settings took
   effect, if they did so before the peer half-closed the stream.  If
   the peer closed the stream before receiving the SETTINGS frame, the
   previous settings were in effect for the full lifetime of that
   stream.

   In certain conditions, the SETTINGS_ACK frame can be the first frame
   on a given stream - this simply indicates that the new settings apply
   from the beginning of that stream.

   If the sender of a SETTINGS frame with the REQUEST_ACK flag set does
   not receive full acknowledgement within a reasonable amount of time,
   it MAY issue a connection error (Section 6) of type
   HTTP_SETTINGS_TIMEOUT.  A full acknowledgement has occurred when:

   o  All previous SETTINGS frames have been fully acknowledged,

   o  A SETTINGS_ACK frame has been received on the connection control
      stream,

   o  All message control streams with a Stream ID through those given
      in the SETTINGS_ACK frame have either closed or received a
      SETTINGS_ACK frame.

5.2.6.  PUSH_PROMISE

   The PUSH_PROMISE frame (type=0x05) is used to carry a request header
   set from server to client, as in HTTP/2.  It defines no flags.

Bishop                    Expires July 18, 2017                [Page 16]
Internet-Draft               HTTP over QUIC                 January 2017

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Promised Stream ID (32)                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Sequence? (16)          |         Header Block (*)    ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        PUSH_PROMISE frame payload

   The payload consists of:

   Promised Stream ID:  A 32-bit Stream ID indicating the QUIC stream on
      which the response headers will be sent.  (The response body
      stream is implied by the headers stream, as defined in Section 4.)

   HPACK Sequence:  A sixteen-bit counter, equivalent to the Sequence
      field in HEADERS

   Payload:  HPACK-compressed request headers for the promised response.

   TODOs:

   o  QUIC stream space may be enlarged; would need to redefine Promised
      Stream field in this case.

   o  No CONTINUATION - HEADERS have EHB; do we need it here?

5.2.7.  PING

   PING frames do not exist, since QUIC provides equivalent
   functionality.  Frame type 0x6 is reserved.

5.2.8.  GOAWAY frame

   GOAWAY frames do not exist, since QUIC provides equivalent
   functionality.  Frame type 0x7 is reserved.

5.2.9.  WINDOW_UPDATE frame

   WINDOW_UPDATE frames do not exist, since QUIC provides equivalent
   functionality.  Frame type 0x8 is reserved.

5.2.10.  CONTINUATION frame

   CONTINUATION frames do not exist, since larger supported HEADERS/
   PUSH_PROMISE frames provide equivalent functionality.  Frame type 0x9
   is reserved.

Bishop                    Expires July 18, 2017                [Page 17]
Internet-Draft               HTTP over QUIC                 January 2017

5.2.11.  SETTINGS_ACK Frame

   The SETTINGS_ACK frame (id = 0x0b) acknowledges receipt and
   application of specific values in the peer's SETTINGS frame.
   Depending on the stream where it is sent, it takes two different
   forms.

   On the connection control stream, it contains information about how
   and when the sender has processed the most recently-received SETTINGS
   frame, and has the following payload:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Highest Local Stream (32)                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Highest Remote Stream (32)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Unrecognized Identifiers (*)               ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 2: SETTINGS_ACK connection control stream format

   Highest Local Stream (32 bits):  The highest locally-initiated Stream
      ID which is not in the "idle" state

   Highest Remote Stream (32 bits):  The highest peer-initiated Stream
      ID which is not in the "idle" state

   Unrecognized Identifiers:  A list of 16-bit SETTINGS identifiers
      which the sender has not understood and therefore ignored.  This
      list MAY be empty.

   On message control streams, the SETTINGS_ACK frame carries no
   payload, and is strictly a synchronization marker for settings
   application.  See Section 5.2.5.3 for more detail.  A SETTINGS_ACK
   frame with a non-zero length MUST be treated as a connection error of
   type HTTP_MALFORMED_SETTINGS_ACK.

   On the connection control stream, the SETTINGS_ACK frame MUST have a
   length which is a multiple of two octets.  A SETTINGS_ACK frame of
   any other length MUST be treated as a connection error of type
   HTTP_MALFORMED_SETTINGS_ACK.

Bishop                    Expires July 18, 2017                [Page 18]
Internet-Draft               HTTP over QUIC                 January 2017

6.  Error Handling

   This section describes the specific error codes defined by HTTP and
   the mapping of HTTP/2 error codes into the QUIC error code space.

6.1.  HTTP-Defined QUIC Error Codes

   QUIC allocates error codes 0x0000-0x3FFF to application protocol
   definition.  The following error codes are defined by HTTP for use in
   QUIC RST_STREAM, GOAWAY, and CONNECTION_CLOSE frames.

   HTTP_SETTINGS_TIMEOUT (0x00):  After sending a SETTINGS frame which
      requested acknowledgement, the acknowledgement was not completed
      (see Section 5.2.5.3) in a timely manner.

   HTTP_PUSH_REFUSED (0x01):  The server has attempted to push content
      which the client will not accept on this connection.

   HTTP_INTERNAL_ERROR (0x02):  An internal error has occurred in the
      HTTP stack.

   HTTP_PUSH_ALREADY_IN_CACHE (0x03):  The server has attempted to push
      content which the client has cached.

   HTTP_REQUEST_CANCELLED (0x04):  The client no longer needs the
      requested data.

   HTTP_HPACK_DECOMPRESSION_FAILED (0x05):  HPACK failed to decompress a
      frame and cannot continue.

   HTTP_CONNECT_ERROR (0x06):  The connection established in response to
      a CONNECT request was reset or abnormally closed.

   HTTP_EXCESSIVE_LOAD (0x07):  The endpoint detected that its peer is
      exhibiting a behavior that might be generating excessive load.

   HTTP_VERSION_FALLBACK (0x08):  The requested operation cannot be
      served over HTTP/QUIC.  The peer should retry over HTTP/2.

   HTTP_MALFORMED_HEADERS (0x09):  A HEADERS frame has been received
      with an invalid format.

   HTTP_MALFORMED_PRIORITY (0x0A):  A HEADERS frame has been received
      with an invalid format.

   HTTP_MALFORMED_SETTINGS (0x0B):  A HEADERS frame has been received
      with an invalid format.

Bishop                    Expires July 18, 2017                [Page 19]
Internet-Draft               HTTP over QUIC                 January 2017

   HTTP_MALFORMED_PUSH_PROMISE (0x0C):  A HEADERS frame has been
      received with an invalid format.

   HTTP_MALFORMED_SETTINGS_ACK (0x0D):  A HEADERS frame has been
      received with an invalid format.

   HTTP_INTERRUPTED_HEADERS (0x0E):  A HEADERS frame without the End
      Header Block flag was followed by a frame other than HEADERS.

   HTTP_SETTINGS_ON_WRONG_STREAM (0x0F):  A SETTINGS frame was received
      on a request control stream.

6.2.  Mapping HTTP/2 Error Codes

   The HTTP/2 error codes defined in Section 7 of [RFC7540] map to QUIC
   error codes as follows:

   NO_ERROR (0x0):  QUIC_NO_ERROR

   PROTOCOL_ERROR (0x1):  No single mapping.  See new HTTP_MALFORMED_*
      error codes defined in Section 6.1.

   INTERNAL_ERROR (0x2)  HTTP_INTERNAL_ERROR in Section 6.1.

   FLOW_CONTROL_ERROR (0x3):  Not applicable, since QUIC handles flow
      control.  Would provoke a QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA
      from the QUIC layer.

   SETTINGS_TIMEOUT (0x4):  HTTP_SETTINGS_TIMEOUT in Section 6.1.

   STREAM_CLOSED (0x5):  Not applicable, since QUIC handles stream
      management.  Would provoke a QUIC_STREAM_DATA_AFTER_TERMINATION
      from the QUIC layer.

   FRAME_SIZE_ERROR (0x6)  No single mapping.  See new error codes
      defined in Section 6.1.

   REFUSED_STREAM (0x7):  Not applicable, since QUIC handles stream
      management.  Would provoke a QUIC_TOO_MANY_OPEN_STREAMS from the
      QUIC layer.

   CANCEL (0x8):  HTTP_REQUEST_CANCELLED in Section 6.1.

   COMPRESSION_ERROR (0x9):  HTTP_HPACK_DECOMPRESSION_FAILED in
      Section 6.1.

   CONNECT_ERROR (0xa):  HTTP_CONNECT_ERROR in Section 6.1.

Bishop                    Expires July 18, 2017                [Page 20]
Internet-Draft               HTTP over QUIC                 January 2017

   ENHANCE_YOUR_CALM (0xb):  HTTP_EXCESSIVE_LOAD in Section 6.1.

   INADEQUATE_SECURITY (0xc):  Not applicable, since QUIC is assumed to
      provide sufficient security on all connections.

   HTTP_1_1_REQUIRED (0xd):  HTTP_VERSION_FALLBACK in Section 6.1.

   TODO: fill in missing error code mappings.

7.  Security Considerations

   The security considerations of HTTP over QUIC should be comparable to
   those of HTTP/2.

   The modified SETTINGS format contains nested length elements, which
   could pose a security risk to an uncautious implementer.  A SETTINGS
   frame parser MUST ensure that the length of the frame exactly matches
   the length of the settings it contains.

8.  IANA Considerations

8.1.  Registration of HTTP/QUIC Identification String

   This document creates a new registration for the identification of
   HTTP/QUIC in the "Application Layer Protocol Negotiation (ALPN)
   Protocol IDs" registry established in [RFC7301].

   The "hq" string identifies HTTP/QUIC:

   Protocol:  HTTP over QUIC

   Identification Sequence:  0x68 0x71 ("hq")

   Specification:  This document

8.2.  Registration of Version Hint Alt-Svc Parameter

   This document creates a new registration for version-negotiation
   hints in the "Hypertext Transfer Protocol (HTTP) Alt-Svc Parameter"
   registry established in [RFC7838].

   Parameter:  "v"

   Specification:  This document, Section 2.1

Bishop                    Expires July 18, 2017                [Page 21]
Internet-Draft               HTTP over QUIC                 January 2017

8.3.  Existing Frame Types

   This document adds two new columns to the "HTTP/2 Frame Type"
   registry defined in [RFC7540]:

   Supported Protocols:  Indicates which associated protocols use the
      frame type.  Values MUST be one of:

      *  "HTTP/2 only"

      *  "HTTP/QUIC only"

      *  "Both"

   HTTP/QUIC Specification:  Indicates where this frame's behavior over
      QUIC is defined; required if the frame is supported over QUIC.

   Values for existing registrations are assigned by this document:

   +---+---------------+---------------------+-------------------------+
   |   |   Frame Type  | Supported Protocols | HTTP/QUIC Specification |
   +---+---------------+---------------------+-------------------------+
   |   |      DATA     | HTTP/2 only         | N/A                     |
   |   |               |                     |                         |
   |   |    HEADERS    | Both                | Section 5.2.2           |
   |   |               |                     |                         |
   |   |    PRIORITY   | Both                | Section 5.2.3           |
   |   |               |                     |                         |
   |   |   RST_STREAM  | HTTP/2 only         | N/A                     |
   |   |               |                     |                         |
   |   |    SETTINGS   | Both                | Section 5.2.5           |
   |   |               |                     |                         |
   |   |  PUSH_PROMISE | Both                | Section 5.2.6           |
   |   |               |                     |                         |
   |   |      PING     | HTTP/2 only         | N/A                     |
   |   |               |                     |                         |
   |   |     GOAWAY    | HTTP/2 only         | N/A                     |
   |   |               |                     |                         |
   |   | WINDOW_UPDATE | HTTP/2 only         | N/A                     |
   |   |               |                     |                         |
   |   |  CONTINUATION | HTTP/2 only         | N/A                     |
   +---+---------------+---------------------+-------------------------+

   The "Specification" column is renamed to "HTTP/2 specification" and
   is only required if the frame is supported over HTTP/2.

Bishop                    Expires July 18, 2017                [Page 22]
Internet-Draft               HTTP over QUIC                 January 2017

8.4.  New Frame Types

   This document adds one new entry to the "HTTP/2 Frame Type" registry
   defined in [RFC7540]:

   Frame Type:  SETTINGS_ACK

   Code:  0x0b

   HTTP/2 Specification:  N/A

   Supported Protocols:  HTTP/QUIC only

   HTTP/QUIC Specification:  Section 5.2.11

9.  References

9.1.  Normative References

   [QUIC-TLS]
              Thomson, M., Ed. and S. Turner, Ed, Ed., "Using Transport
              Layer Security (TLS) to Secure QUIC".

   [QUIC-TRANSPORT]
              Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
              Multiplexed and Secure Transport".

   [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
              RFC 793, DOI 10.17487/RFC0793, September 1981,
              <http://www.rfc-editor.org/info/rfc793>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <http://www.rfc-editor.org/info/rfc7230>.

   [RFC7231]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
              DOI 10.17487/RFC7231, June 2014,
              <http://www.rfc-editor.org/info/rfc7231>.

Bishop                    Expires July 18, 2017                [Page 23]
Internet-Draft               HTTP over QUIC                 January 2017

   [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
              DOI 10.17487/RFC7540, May 2015,
              <http://www.rfc-editor.org/info/rfc7540>.

   [RFC7541]  Peon, R. and H. Ruellan, "HPACK: Header Compression for
              HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
              <http://www.rfc-editor.org/info/rfc7541>.

   [RFC7838]  Nottingham, M., McManus, P., and J. Reschke, "HTTP
              Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
              April 2016, <http://www.rfc-editor.org/info/rfc7838>.

9.2.  Informative References

   [RFC7301]  Friedl, S., Popov, A., Langley, A., and E. Stephan,
              "Transport Layer Security (TLS) Application-Layer Protocol
              Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
              July 2014, <http://www.rfc-editor.org/info/rfc7301>.

Appendix A.  Contributors

   The original authors of this specification were Robbie Shade and Mike
   Warres.

Appendix B.  Change Log

      *RFC Editor's Note:* Please remove this section prior to
      publication of a final version of this document.

B.1.  Since draft-ietf-quic-http-00:

   o  Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout

   o  Changed from using HTTP/2 framing within Stream 3 to new framing
      format and two-stream-per-request model

   o  Adopted SETTINGS format from draft-bishop-httpbis-extended-
      settings-01

   o  Reworked SETTINGS_ACK to account for indeterminate inter-stream
      order.

   o  Described CONNECT pseudo-method

   o  Updated ALPN token and Alt-Svc guidance

   o  Application-layer-defined error codes

Bishop                    Expires July 18, 2017                [Page 24]
Internet-Draft               HTTP over QUIC                 January 2017

B.2.  Since draft-shade-quic-http2-mapping-00:

   o  Adopted as base for draft-ietf-quic-http.

   o  Updated authors/editors list.

Author's Address

   Mike Bishop (editor)
   Microsoft

   Email: Michael.Bishop@microsoft.com

Bishop                    Expires July 18, 2017                [Page 25]