Skip to main content

Minimal Security Framework for 6TiSCH
draft-ietf-6tisch-minimal-security-11

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9031.
Authors Mališa Vučinić , Jonathan Simon , Kris Pister , Michael Richardson
Last updated 2019-07-11 (Latest revision 2019-06-13)
Replaces draft-vucinic-6tisch-minimal-security
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Pascal Thubert
Shepherd write-up Show Last changed 2019-06-21
IESG IESG state Became RFC 9031 (Proposed Standard)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Suresh Krishnan
Send notices to Pascal Thubert <pthubert@cisco.com>
draft-ietf-6tisch-minimal-security-11
|                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   | 6TiSCH-K1-MIC32 | 6   |  IEEE802154-AES- | Use MIC-32  | [[this d |
   |                 |     |          CCM-128 | for EBs.    | ocument] |
   |                 |     |                  |             | ]        |
   |                 |     |                  |             |          |
   | 6TiSCH-K1-MIC64 | 7   |  IEEE802154-AES- | Use MIC-64  | [[this d |
   |                 |     |          CCM-128 | for EBs.    | ocument] |
   |                 |     |                  |             | ]        |
   |                 |     |                  |             |          |
   | 6TiSCH-K1-MIC12 | 8   |  IEEE802154-AES- | Use MIC-128 | [[this d |
   |               8 |     |          CCM-128 | for EBs.    | ocument] |
   |                 |     |                  |             | ]        |
   |                 |     |                  |             |          |
   | 6TiSCH-K2-MIC32 | 9   |  IEEE802154-AES- | Use MIC-32  | [[this d |
   |                 |     |          CCM-128 | for DATA    | ocument] |
   |                 |     |                  | and ACKNOWL | ]        |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   | 6TiSCH-K2-MIC64 | 10  |  IEEE802154-AES- | Use MIC-64  | [[this d |
   |                 |     |          CCM-128 | for DATA    | ocument] |
   |                 |     |                  | and ACKNOWL | ]        |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   | 6TiSCH-K2-MIC12 | 11  |  IEEE802154-AES- | Use MIC-128 | [[this d |
   |               8 |     |          CCM-128 | for DATA    | ocument] |
   |                 |     |                  | and ACKNOWL | ]        |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   |  6TiSCH-K2-ENC- | 12  |  IEEE802154-AES- | Use ENC-    | [[this d |
   |           MIC32 |     |          CCM-128 | MIC-32 for  | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   |  6TiSCH-K2-ENC- | 13  |  IEEE802154-AES- | Use ENC-    | [[this d |
   |           MIC64 |     |          CCM-128 | MIC-64 for  | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   |  6TiSCH-K2-ENC- | 14  |  IEEE802154-AES- | Use ENC-    | [[this d |
   |          MIC128 |     |          CCM-128 | MIC-128 for | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   +-----------------+-----+------------------+-------------+----------+

Vucinic, et al.         Expires December 15, 2019              [Page 31]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

                        Table 3: Key Usage values.

8.4.3.1.  Rekeying of (6LoWPAN) Border Routers (6LBR)

   When the 6LoWPAN Border Router (6LBR) receives the Configuration
   object containing a link-layer key set, it MUST immediately install
   and start using the new keys for all outgoing traffic, and remove any
   old keys it has installed from the previous key set after a delay of
   COJP_REKEYING_GUARD_TIME has passed.  This mechanism is used by the
   JRC to force the 6LBR to start sending traffic with the new key.  The
   decision is taken by the JRC when it has determined that the new key
   has been made available to all (or some overwhelming majority) of
   nodes.  Any node that the JRC has not yet reached at that point is
   either non-functional or in extended sleep such that it will not be
   reached.  To get the key update, such node needs to go through the
   join process anew.

8.4.3.2.  Rekeying of regular (6LoWPAN) Nodes (6LN)

   When a regular 6LN node receives the Configuration object with a
   link-layer key set, it MUST install the new keys.  The 6LN will use
   both the old and the new keys to decrypt and authenticate any
   incoming traffic that arrives based upon the key identifier in the
   packet.  It MUST continue to use the old keys for all outgoing
   traffic until it has detected that the network has switched to the
   new key set.

   The detection of network switch is based upon the receipt of traffic
   secured with the new keys.  Upon reception and successful security
   processing of a link-layer frame secured with a key from the new key
   set, a 6LN node MUST then switch to sending outgoing traffic using
   the keys from the new set for all outgoing traffic.  The 6LN node
   MUST remove any old keys it has installed from the previous key set
   after a delay of COJP_REKEYING_GUARD_TIME has passed after it starts
   using the new key set.

   Sending of traffic with the new keys signals to other downstream
   nodes to switch to their new key, and the affect is that there is a
   ripple of key updates in outward concentric circles around each 6LBR.

8.4.3.3.  Use in IEEE Std 802.15.4

   When Link_Layer_Key is used in the context of [IEEE802.15.4], the
   following considerations apply.

   Signaling of different keying modes of [IEEE802.15.4] is done based
   on the parameter values present in a Link_Layer_Key object.

Vucinic, et al.         Expires December 15, 2019              [Page 32]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   o  Key ID Mode 0x00 (Implicit, pairwise): key_id parameter MUST be
      set to 0.  key_addinfo parameter MUST be present.  key_addinfo
      parameter MUST be set to the link-layer address(es) of a single
      peer with whom the key should be used.  Depending on the
      configuration of the network, key_addinfo may carry the peer's
      long link-layer address (i.e. pledge identifier), short link-layer
      address, or their concatenation with the long address being
      encoded first.  Which address is carried is determined from the
      length of the byte string.

   o  Key ID Mode 0x01 (Key Index): key_id parameter MUST be set to a
      value different than 0.  key_addinfo parameter MUST NOT be
      present.

   o  Key ID Mode 0x02 (4-byte Explicit Key Source): key_id parameter
      MUST be set to a value different than 0.  key_addinfo parameter
      MUST be present.  key_addinfo parameter MUST be set to a byte
      string, exactly 4 bytes long.  key_addinfo parameter carries the
      Key Source parameter used to configure [IEEE802.15.4].

   o  Key ID Mode 0x03 (8-byte Explicit Key Source): key_id parameter
      MUST be set to a value different than 0.  key_addinfo parameter
      MUST be present.  key_addinfo parameter MUST be set to a byte
      string, exactly 8 bytes long.  key_addinfo parameter carries the
      Key Source parameter used to configure [IEEE802.15.4].

   In all cases, key_usage parameter determines how a particular key
   should be used in respect to incoming and outgoing security policies.

   For Key ID Modes 0x01 - 0x03, parameter key_id sets the "secKeyIndex"
   parameter of {{IEEE802.15.4} that is signaled in all outgoing frames
   secured with a given key.  The maximum value key_id can have is 254.
   The value of 255 is reserved in {{IEEE802.15.4} and is therefore
   considered invalid.

   Key ID Mode 0x00 (Implicit, pairwise) enables the JRC to act as a
   trusted third party and assign pairwise keys between nodes in the
   network.  How JRC learns about the network topology is out of scope
   of this specification, but could be done through 6LBR - JRC signaling
   for example.  Pairwise keys could also be derived through a key
   agreement protocol executed between the peers directly, where the
   authentication is based on the symmetric cryptographic material
   provided to both peers by the JRC.  Such a protocol is out of scope
   of this specification.

Vucinic, et al.         Expires December 15, 2019              [Page 33]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

8.4.4.  Short Identifier

   The Short_Identifier object represents an identifier assigned to the
   pledge.  It is encoded as a CBOR array object, containing, in order:

   o  identifier: The short identifier assigned to the pledge, encoded
      as a byte string.  This parameter MUST be included.  The
      identifier MUST be unique in the set of all identifiers assigned
      in a network that is managed by a JRC.  In case the identifier is
      invalid, the decoder MUST silently ignore the Short_Identifier
      object.

   o  lease_time: The validity of the identifier in hours after the
      reception of the CBOR object, encoded as a CBOR unsigned integer.
      This parameter MAY be included.  The node MUST stop using the
      assigned short identifier after the expiry of the lease_time
      interval.  It is up to the JRC to renew the lease before the
      expiry of the previous interval.  The JRC updates the lease by
      executing the Parameter Update exchange with the node and
      including the Short_Identifier in the Configuration object, as
      described in Section 8.2.  In case the lease expires, the node
      SHOULD initiate a new join exchange, as described in Section 8.1.
      In case this parameter is omitted, the value of positive infinity
      MUST be assumed, meaning that the identifier is valid for as long
      as the node participates in the network.

   The CDDL fragment that represents the text above for the
   Short_Identifier follows.

   Short_Identifier = [
         identifier        : bstr,
       ? lease_time        : uint
   ]

8.4.4.1.  Use in IEEE Std 802.15.4

   When Short_Identifier is used in the context of [IEEE802.15.4], the
   following considerations apply.

   The identifier MUST be used to set the short address of IEEE Std
   802.15.4 module.  When operating in TSCH mode, the identifier MUST be
   unique in the set of all identifiers assigned in multiple networks
   that share link-layer key(s).  If the length of the byte string
   corresponding to the identifier parameter is different than 2, the
   identifier is considered invalid.  The values 0xfffe and 0xffff are
   reserved by [IEEE802.15.4] and their use is considered invalid.

Vucinic, et al.         Expires December 15, 2019              [Page 34]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   The security properties offered by the [IEEE802.15.4] link-layer in
   TSCH mode are conditioned on the uniqueness requirement of the short
   identifier (i.e. short address).  The short address is one of the
   inputs in the construction of the nonce, which is used to protect
   link-layer frames.  If a misconfiguration occurs, and the same short
   address is assigned twice under the same link-layer key, the loss of
   security properties is eminent.  For this reason, practices where the
   pledge generates the short identifier locally are not safe and are
   likely to result in the loss of link-layer security properties.

   The JRC MUST ensure that at any given time there are never two same
   short identifiers being used under the same link-layer key.  If the
   lease_time parameter of a given Short_Identifier object is set to
   positive infinity, care needs to be taken that the corresponding
   identifier is not assigned to another node until the JRC is certain
   that it is no longer in use, potentially through out-of-band
   signaling.  If the lease_time parameter expires for any reason, the
   JRC should take into consideration potential ongoing transmissions by
   the joined node, which may be hanging in the queues, before assigning
   the same identifier to another node.

8.4.5.  Unsupported Configuration Object

   The Unsupported_Configuration object is encoded as a CBOR array,
   containing at least one Unsupported_Parameter object.  Each
   Unsupported_Parameter object is a sequence of CBOR elements without
   an enclosing top-level CBOR object for compactness.  The set of
   parameters that appear in an Unsupported_Parameter object is
   summarized below, in order:

   o  code: Indicates the capability of acting on the parameter signaled
      by parameter_label, encoded as an integer.  This parameter MUST be
      included.  Possible values of this parameter are specified in the
      IANA "CoJP Unsupported Configuration Code Registry"
      (Section 11.3).

   o  parameter_label: Indicates the parameter.  This parameter MUST be
      included.  Possible values of this parameter are specified in the
      label column of the IANA "CoJP Parameters" registry
      (Section 11.1).

   o  parameter_addinfo: Additional information about the parameter that
      cannot be acted upon.  This parameter MUST be included.  In case
      the code is set to "Unsupported", parameter_addinfo gives
      additional information to the JRC.  If the parameter indicated by
      parameter_label cannot be acted upon regardless of its value,
      parameter_addinfo MUST be set to null, signaling to the JRC that
      it SHOULD NOT attempt to configure the parameter again.  If the

Vucinic, et al.         Expires December 15, 2019              [Page 35]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

      pledge can act on the parameter, but cannot configure the setting
      indicated by the parameter value, the pledge can hint this to the
      JRC.  In this case, parameter_addinfo MUST be set to the value of
      the parameter that cannot be acted upon following the normative
      parameter structure specified in this document.  For example, it
      is possible to include only a subset of the link-layer key set
      object, signaling the keys that cannot be acted upon, or the
      entire key set that was received.  In case the code is set to
      "Malformed", parameter_addinfo MUST be set to null, signaling to
      the JRC that it SHOULD NOT attempt to configure the parameter
      again.

   The CDDL fragment that represents the text above for
   Unsupported_Configuration and Unsupported_Parameter objects follows.

   Unsupported_Configuration = [
          + parameter           : Unsupported_Parameter
   ]

   Unsupported_Parameter = (
            code                : int,
            parameter_label     : int,
            parameter_addinfo   : nil / any
   )

   +-------------+-------+--------------------------------+------------+
   |        Name | Value |                    Description | Reference  |
   +-------------+-------+--------------------------------+------------+
   | Unsupported | 0     |   The indicated setting is not | [[this     |
   |             |       |    supported by the networking | document]] |
   |             |       |          stack implementation. |            |
   |             |       |                                |            |
   |   Malformed | 1     |  The indicated parameter value | [[this     |
   |             |       |                  is malformed. | document]] |
   +-------------+-------+--------------------------------+------------+

              Table 4: Unsupported Configuration code values.

8.5.  Recommended Settings

   This section gives RECOMMENDED values of CoJP settings.

Vucinic, et al.         Expires December 15, 2019              [Page 36]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

               +--------------------------+---------------+
               |                     Name | Default Value |
               +--------------------------+---------------+
               |   COJP_MAX_JOIN_ATTEMPTS | 4             |
               |                          |               |
               | COJP_REKEYING_GUARD_TIME | 12 seconds    |
               +--------------------------+---------------+

                        Recommended CoJP settings.

   The COJP_REKEYING_GUARD_TIME value SHOULD take into account possible
   retransmissions at the link layer due to imperfect wireless links.

9.  Security Considerations

   Since this document uses the pledge identifier to set the ID Context
   parameter of OSCORE, an important security requirement is that the
   pledge identifier is unique in the set of all pledge identifiers
   managed by a JRC.  The uniqueness of the pledge identifier ensures
   unique (key, nonce) pairs for AEAD algorithm used by OSCORE.  It also
   allows the JRC to retrieve the correct security context, upon the
   reception of a Join Request message.  The management of pledge
   identifiers is simplified if the globally unique EUI-64 is used, but
   this comes with privacy risks, as discussed in Section 10.

   This document further mandates that the (6LBR) pledge and the JRC are
   provisioned with unique PSKs.  The PSK is used to set the OSCORE
   Master Secret during security context derivation.  This derivation
   process results in OSCORE keys that are important for mutual
   authentication of the (6LBR) pledge and the JRC.  Should an attacker
   come to know the PSK, then a man-in-the-middle attack is possible.

   Many vendors are known to use unsafe practices when generating and
   provisioning PSKs.  The use of a single PSK shared among a group of
   devices is a common pitfall that results in poor security.  In this
   case, the compromise of a single device is likely to lead to a
   compromise of the entire batch, with the attacker having the ability
   to impersonate a legitimate device and join the network, generate
   bogus data and disturb the network operation.  As a reminder, recall
   the well-known problem with Bluetooth headsets with a "0000" pin.
   Additionally, some vendors use methods such as scrambling or hashing
   of device serial numbers or their EUI-64 to generate "unique" PSKs.
   Without any secret information involved, the effort that the attacker
   needs to invest into breaking these unsafe derivation methods is
   quite low, resulting in the possible impersonation of any device from
   the batch, without even needing to compromise a single device.  The
   use of cryptographically secure random number generators to generate

Vucinic, et al.         Expires December 15, 2019              [Page 37]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   the PSK is RECOMMENDED, see [NIST800-90A] for different mechanisms
   using deterministic methods.

   The JP forwards the unauthenticated join traffic into the network.  A
   data cap on the JP prevents it from forwarding more traffic than the
   network can handle.  The data cap can be configured by the JRC by
   including a join rate parameter in the Join Response and it is
   implemented through the CoAP's PROBING_RATE setting.  The use of a
   data cap at a JP forces attackers to use more than one JP if they
   wish to overwhelm the network.  Marking the join traffic packets with
   a non-zero DSCP allows the network to carry the traffic if it has
   capacity, but encourages the network to drop the extra traffic rather
   than add bandwidth due to that traffic.

   The shared nature of the "minimal" cell used for the join traffic
   makes the network prone to a DoS attack by congesting the JP with
   bogus traffic.  Such an attacker is limited by its maximum transmit
   power.  The redundancy in the number of deployed JPs alleviates the
   issue and also gives the pledge a possibility to use the best
   available link for joining.  How a network node decides to become a
   JP is out of scope of this specification.

   At the beginning of the join process, the pledge has no means of
   verifying the content in the EB, and has to accept it at "face
   value".  In case the pledge tries to join an attacker's network, the
   Join Response message will either fail the security check or time
   out.  The pledge may implement a temporary blacklist in order to
   filter out undesired EBs and try to join using the next seemingly
   valid EB.  This blacklist alleviates the issue, but is effectively
   limited by the node's available memory.  Note that this temporary
   blacklist is different from the one communicated as part of the CoJP
   Configuration object as it helps pledge fight a DoS attack.  These
   bogus beacons prolong the join time of the pledge, and so the time
   spent in "minimal" [RFC8180] duty cycle mode.  The blacklist
   communicated as part of the CoJP Configuration object helps JP fight
   a DoS attack by a malicious pledge.

10.  Privacy Considerations

   The join solution specified in this document relies on the uniqueness
   of the pledge identifier in the set of all pledge identifiers managed
   by a JRC.  This identifier is transferred in clear as an OSCORE kid
   context.  The use of the globally unique EUI-64 as pledge identifier
   simplifies the management but comes with certain privacy risks.  The
   implications are thoroughly discussed in [RFC7721] and comprise
   correlation of activities over time, location tracking, address
   scanning and device-specific vulnerability exploitation.  Since the
   join process occurs rarely compared to the network lifetime, long-

Vucinic, et al.         Expires December 15, 2019              [Page 38]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   term threats that arise from using EUI-64 as the pledge identifier
   are minimal.  In addition, the Join Response message contains a short
   address which is assigned by the JRC to the (6LBR) pledge.  The
   assigned short address SHOULD be uncorrelated with the long-term
   pledge identifier.  The short address is encrypted in the response.
   Once the join process completes, the new node uses the short
   addresses for all further layer 2 (and layer-3) operations.  This
   reduces the aforementioned privacy risks as the short layer-2 address
   (visible even when the network is encrypted) is not traceable between
   locations and does not disclose the manufacturer, as is the case of
   EUI-64.  However, an eavesdropper with access to the radio medium
   during the join process may be able to correlate the assigned short
   address with the extended address based on timing information with a
   non-negligible probability.  This probability decreases with an
   increasing number of pledges joining concurrently.

11.  IANA Considerations

   Note to RFC Editor: Please replace all occurrences of "[[this
   document]]" with the RFC number of this specification.

   This document allocates a well-known name under the .arpa name space
   according to the rules given in [RFC3172].  The name "6tisch.arpa" is
   requested.  No subdomains are expected.  No A, AAAA or PTR record is
   requested.

11.1.  CoJP Parameters Registry

   This section defines a sub-registry within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
   "Constrained Join Protocol Parameters Registry".

   The columns of the registry are:

   Name: This is a descriptive name that enables an easier reference to
   the item.  It is not used in the encoding.

   Label: The value to be used to identify this parameter.  The label is
   an integer.

   CBOR type: This field contains the CBOR type for the field.

   Description: This field contains a brief description for the field.

   Reference: This field contains a pointer to the public specification
   for the field, if one exists.

   This registry is to be populated with the values in Table 2.

Vucinic, et al.         Expires December 15, 2019              [Page 39]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   The amending formula for this sub-registry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

11.2.  CoJP Key Usage Registry

   This section defines a sub-registry within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
   "Constrained Join Protocol Key Usage Registry".

   The columns of this registry are:

   Name: This is a descriptive name that enables easier reference to the
   item.  The name MUST be unique.  It is not used in the encoding.

   Value: This is the value used to identify the key usage setting.
   These values MUST be unique.  The value is an integer.

   Algorithm: This is a descriptive name of the link-layer algorithm in
   use and uniquely determines the key length.  The name is not used in
   the encoding.

   Description: This field contains a description of the key usage
   setting.  The field should describe in enough detail how the key is
   to be used with different frame types, specific for the link-layer
   technology in question.

   Reference: This contains a pointer to the public specification for
   the field, if one exists.

   This registry is to be populated with the values in Table 3.

   The amending formula for this sub-registry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

Vucinic, et al.         Expires December 15, 2019              [Page 40]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

11.3.  CoJP Unsupported Configuration Code Registry

   This section defines a sub-registry within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
   "Constrained Join Protocol Unsupported Configuration Code Registry".

   The columns of this registry are:

   Name: This is a descriptive name that enables easier reference to the
   item.  The name MUST be unique.  It is not used in the encoding.

   Value: This is the value used to identify the diagnostic code.  These
   values MUST be unique.  The value is an integer.

   Description: This is a descriptive human-readable name.  The
   description MUST be unique.  It is not used in the encoding.

   Reference: This contains a pointer to the public specification for
   the field, if one exists.

   This registry is to be populated with the values in Table 4.

   The amending formula for this sub-registry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

12.  Acknowledgments

   The work on this document has been partially supported by the
   European Union's H2020 Programme for research, technological
   development and demonstration under grant agreements: No 644852,
   project ARMOUR; No 687884, project F-Interop and open-call project
   SPOTS; No 732638, project Fed4FIRE+ and open-call project SODA.

   The following individuals provided input to this document (in
   alphabetic order): Christian Amsuss, Tengfei Chang, Klaus Hartke,
   Tero Kivinen, Jim Schaad, Goeran Selander, Yasuyuki Tanaka, Pascal
   Thubert, William Vignat, Xavier Vilajosana, Thomas Watteyne.

13.  References

Vucinic, et al.         Expires December 15, 2019              [Page 41]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

13.1.  Normative References

   [I-D.ietf-core-object-security]
              Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", draft-ietf-core-object-security-16 (work in
              progress), March 2019.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2597]  Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
              "Assured Forwarding PHB Group", RFC 2597,
              DOI 10.17487/RFC2597, June 1999,
              <https://www.rfc-editor.org/info/rfc2597>.

   [RFC3172]  Huston, G., Ed., "Management Guidelines & Operational
              Requirements for the Address and Routing Parameter Area
              Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,
              September 2001, <https://www.rfc-editor.org/info/rfc3172>.

   [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8152]  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Vucinic, et al.         Expires December 15, 2019              [Page 42]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

13.2.  Informative References

   [I-D.ietf-6tisch-architecture]
              Thubert, P., "An Architecture for IPv6 over the TSCH mode
              of IEEE 802.15.4", draft-ietf-6tisch-architecture-20 (work
              in progress), March 2019.

   [I-D.ietf-6tisch-terminology]
              Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
              "Terms Used in IPv6 over the TSCH mode of IEEE 802.15.4e",
              draft-ietf-6tisch-terminology-10 (work in progress), March
              2018.

   [I-D.ietf-cbor-cddl]
              Birkholz, H., Vigano, C., and C. Bormann, "Concise data
              definition language (CDDL): a notational convention to
              express CBOR and JSON data structures", draft-ietf-cbor-
              cddl-08 (work in progress), March 2019.

   [I-D.ietf-core-stateless]
              Hartke, K., "Extended Tokens and Stateless Clients in the
              Constrained Application Protocol (CoAP)", draft-ietf-core-
              stateless-01 (work in progress), March 2019.

   [IEEE802.15.4]
              IEEE standard for Information Technology, ., "IEEE Std
              802.15.4 Standard for Low-Rate Wireless Networks", n.d..

   [NIST800-90A]
              NIST Special Publication 800-90A, Revision 1, ., Barker,
              E., and J. Kelsey, "Recommendation for Random Number
              Generation Using Deterministic Random Bit Generators",
              2015.

   [RFC4231]  Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
              224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
              RFC 4231, DOI 10.17487/RFC4231, December 2005,
              <https://www.rfc-editor.org/info/rfc4231>.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
              <https://www.rfc-editor.org/info/rfc4944>.

   [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869,
              DOI 10.17487/RFC5869, May 2010,
              <https://www.rfc-editor.org/info/rfc5869>.

Vucinic, et al.         Expires December 15, 2019              [Page 43]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   [RFC6550]  Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
              Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
              JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
              Low-Power and Lossy Networks", RFC 6550,
              DOI 10.17487/RFC6550, March 2012,
              <https://www.rfc-editor.org/info/rfc6550>.

   [RFC7554]  Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
              IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
              Internet of Things (IoT): Problem Statement", RFC 7554,
              DOI 10.17487/RFC7554, May 2015,
              <https://www.rfc-editor.org/info/rfc7554>.

   [RFC7721]  Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
              Considerations for IPv6 Address Generation Mechanisms",
              RFC 7721, DOI 10.17487/RFC7721, March 2016,
              <https://www.rfc-editor.org/info/rfc7721>.

   [RFC8180]  Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
              IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
              Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
              May 2017, <https://www.rfc-editor.org/info/rfc8180>.

   [RFC8480]  Wang, Q., Ed., Vilajosana, X., and T. Watteyne, "6TiSCH
              Operation Sublayer (6top) Protocol (6P)", RFC 8480,
              DOI 10.17487/RFC8480, November 2018,
              <https://www.rfc-editor.org/info/rfc8480>.

   [RFC8505]  Thubert, P., Ed., Nordmark, E., Chakrabarti, S., and C.
              Perkins, "Registration Extensions for IPv6 over Low-Power
              Wireless Personal Area Network (6LoWPAN) Neighbor
              Discovery", RFC 8505, DOI 10.17487/RFC8505, November 2018,
              <https://www.rfc-editor.org/info/rfc8505>.

Appendix A.  Example

   Figure 3 illustrates a successful join protocol exchange.  The pledge
   instantiates the OSCORE context and derives the OSCORE keys and
   nonces from the PSK.  It uses the instantiated context to protect the
   Join Request addressed with a Proxy-Scheme option, the well-known
   host name of the JRC in the Uri-Host option, and its EUI-64 as pledge
   identifier and OSCORE kid context.  Triggered by the presence of a
   Proxy-Scheme option, the JP forwards the request to the JRC and sets
   the CoAP token to the internally needed state.  The JP has learned
   the IPv6 address of the JRC when it acted as a pledge and joined the
   network.  Once the JRC receives the request, it looks up the correct
   context based on the kid context parameter.  The OSCORE data
   authenticity verification ensures that the request has not been

Vucinic, et al.         Expires December 15, 2019              [Page 44]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   modified in transit.  In addition, replay protection is ensured
   through persistent handling of mutable context parameters.

   Once the JP receives the Join Response, it authenticates the state
   within the CoAP token before deciding where to forward.  The JP sets
   its internal state to that found in the token, and forwards the Join
   Response to the correct pledge.  Note that the JP does not possess
   the key to decrypt the CBOR object (configuration) present in the
   payload.  The Join Response is matched to the Join Request and
   verified for replay protection at the pledge using OSCORE processing
   rules.  In this example, the Join Response does not contain the IPv6
   address of the JRC, the pledge hence understands the JRC is co-
   located with the 6LBR.

Vucinic, et al.         Expires December 15, 2019              [Page 45]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

      <---E2E OSCORE-->
    Client      Proxy     Server
    Pledge       JP        JRC
      |          |          |
      |  Join    |          |            Code: 0.02 (POST)
      | Request  |          |           Token: -
      +--------->|          |    Proxy-Scheme: coap
      |          |          |        Uri-Host: 6tisch.arpa
      |          |          |          OSCORE: kid: -,
      |          |          |                  kid_context: EUI-64,
      |          |          |                  Partial IV: 1
      |          |          |         Payload: { Code: 0.02 (POST),
      |          |          |                    Uri-Path: "j",
      |          |          |                    join_request, <Tag> }
      |          |          |
      |          |  Join    |            Code: 0.02 (POST)
      |          | Request  |           Token: opaque state
      |          +--------->|          OSCORE: kid: -,
      |          |          |                  kid_context: EUI-64,
      |          |          |                  Partial IV: 1
      |          |          |         Payload: { Code: 0.02 (POST),
      |          |          |                    Uri-Path: "j",
      |          |          |                    join_request, <Tag> }
      |          |          |
      |          |          |
      |          |  Join    |            Code: 2.04 (Changed)
      |          | Response |           Token: opaque state
      |          |<---------+          OSCORE: -
      |          |          |         Payload: { Code: 2.04 (Changed),
      |          |          |                    configuration, <Tag> }
      |          |          |
      |          |          |
      |  Join    |          |            Code: 2.04 (Changed)
      | Response |          |           Token: -
      |<---------+          |          OSCORE: -
      |          |          |         Payload: { Code: 2.04 (Changed),
      |          |          |                    configuration, <Tag> }
      |          |          |

     Figure 3: Example of a successful join protocol exchange. { ... }
    denotes authenticated encryption, <Tag> denotes the authentication
                                   tag.

   Where the join_request object is:

Vucinic, et al.         Expires December 15, 2019              [Page 46]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

  join_request:
  {
      5 : h'cafe' / PAN ID of the network pledge is attempting to join /
  }

   Since the role parameter is not present, the default role of "6TiSCH
   Node" is implied.

   The join_request object encodes to h'a10542cafe' with a size of 5
   bytes.

   And the configuration object is:

   configuration:
   {
       2 : [           / link-layer key set /
             1,        / key_id /
             h'e6bf4287c2d7618d6a9687445ffd33e6' / key_value /
           ],
       3 : [           / short identifier /
             h'af93'   / assigned short address /
           ]
   }

   Since the key_usage parameter is not present in the link-layer key
   set object, the default value of "6TiSCH-K1K2-ENC-MIC32" is implied.
   Since key_addinfo parameter is not present and key_id is different
   than 0, Key ID Mode 0x01 (Key Index) is implied.  Similarly, since
   the lease_time parameter is not present in the short identifier
   object, the default value of positive infinity is implied.

   The configuration object encodes to

   h'a202820150e6bf4287c2d7618d6a9687445ffd33e6038142af93' with a size
   of 26 bytes.

Appendix B.  Lightweight Implementation Option

   In environments where optimizing the implementation footprint is
   important, it is possible to implement this specification without
   having the implementations of HKDF [RFC5869] and SHA [RFC4231] on
   constrained devices.  HKDF and SHA are used during the OSCORE
   security context derivation phase.  This derivation can also be done
   by the JRC or a provisioning device, on behalf of the (6LBR) pledge
   during the provisioning phase.  In that case, the derived OSCORE
   security context parameters are written directly into the (6LBR)
   pledge, without requiring the PSK be provisioned to the (6LBR)
   pledge.

Vucinic, et al.         Expires December 15, 2019              [Page 47]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   The use of HKDF to derive OSCORE security context parameters ensures
   that the resulting OSCORE keys have good security properties, and are
   unique as long as the input for different pledges varies.  This
   specification ensures the uniqueness by mandating unique pledge
   identifiers and a unique PSK for each (6LBR) pledge.  From the AEAD
   nonce reuse viewpoint, having a unique pledge identifier is a
   sufficient condition.  However, as discussed in Section 9, the use of
   a single PSK shared among many devices is a common security pitfall.
   The compromise of this shared PSK on a single device would lead to
   the compromise of the entire batch.  When using the implementation/
   deployment scheme outlined above, the PSK does not need to be written
   to individual pledges.  As a consequence, even if a shared PSK is
   used, the scheme offers the same level of security as in the scenario
   where each pledge is provisioned with a unique PSK.

Authors' Addresses

   Malisa Vucinic (editor)
   Inria
   2 Rue Simone Iff
   Paris  75012
   France

   Email: malisa.vucinic@inria.fr

   Jonathan Simon
   Analog Devices
   32990 Alvarado-Niles Road, Suite 910
   Union City, CA  94587
   USA

   Email: jonathan.simon@analog.com

   Kris Pister
   University of California Berkeley
   512 Cory Hall
   Berkeley, CA  94720
   USA

   Email: pister@eecs.berkeley.edu

Vucinic, et al.         Expires December 15, 2019              [Page 48]
Internet-Draft    Minimal Security Framework for 6TiSCH        June 2019

   Michael Richardson
   Sandelman Software Works
   470 Dawson Avenue
   Ottawa, ON  K1Z5V7
   Canada

   Email: mcr+ietf@sandelman.ca

Vucinic, et al.         Expires December 15, 2019              [Page 49]