Skip to main content

6top Protocol (6P)
draft-ietf-6tisch-6top-protocol-06

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 8480.
Authors Qin Wang , Xavier Vilajosana , Thomas Watteyne
Last updated 2017-06-22 (Latest revision 2017-05-24)
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 8480 (Proposed Standard)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-6tisch-6top-protocol-06
#x27;s SF wants to relocate NumCells cells.  Node A creates a 6P
   RELOCATE Request, and indicates the cells to relocate in the
   Relocation CellList.  It also selects NumCandidate cells from its
   schedule as candidate cells for node B, and puts those in the
   Candidate CellList.  The CellOptions field specifies the type of the
   cell(s) to relocate.  NumCandidate MUST be larger or equal to
   NumCells.  How many cells it selects (NumCandidate) and how that
   selection is done is specified in the SF and out of scope of this
   document.  Node A sends the 6P RELOCATE Request to node B.

   Upon receiving the request, node B's SF verifies that all the cells
   in the Relocation CellList are indeed scheduled with node A, and are
   associate the options specified in the CellOptions field.  If that
   check fails, node B MUST send a 6P Response to node A with return
   code CELLLIST_ERR.  If that check passes, node B's SF verifies which
   of the cells in the Candidate CellList it can install in its
   schedule.  How that selection is done is specified in the SF and out
   of scope of this document.  That verification on Candidate CellList
   can succeed (NumCells cells from the Candidate CellList can be used),
   fail (none of the cells from the Candidate CellList can be used) or
   partially succeed (less than NumCells cells from the Candidate
   CellList can be used).  In all cases, node B MUST send a 6P Response
   with return code set to SUCCESS, and which specifies the list of
   cells that were scheduled following the CellOptions field.  That can
   contain 0 elements (when the verification failed), NumCells elements
   (succeeded) or between 0 and NumCells elements (partially succeeded).
   If N < NumCells cells appear in the CellList, this means first N
   cells in the Relocation CellList have been relocated, the remainder
   have not.

   Upon receiving the response, node A relocates the cells specified in
   Relocation CellList of its RELOCATE Request to the new location
   specified in the CellList of the 6P Response.

Wang, et al.            Expires December 24, 2017              [Page 17]
Internet-Draft            6tisch-6top-protocol                 June 2017

           +----------+                           +----------+
           |  Node A  |                           |  Node B  |
           +----+-----+                           +-----+----+
                |                                       |
                | 6P RELOCATE Request                   |
                |   Type         = REQUEST              |
                |   Code         = RELOCATE             |
                |   NumCells     = 2                    |
                |   R.CellList   = [(1,2),(2,2)]        |
                |   C.CellList   = [(3,2),(4,2),(6,5)]  |
                |-------------------------------------->| B relocates
                |                                       | (1,2)->(4,2)
                | 6P Response                           | but cannot
                |   Type         = RESPONSE             | relocate (2,2)
                |   Code         = SUCCESS              |
                |   CellList     = [(4,2)]              |
    A relocates |<--------------------------------------|
    (1,2)->(4,2)|                                       |

                      Figure 15: 6P RELOCATE Example.

4.3.4.  Counting Cells

   To retrieve the number of scheduled cells at B, node A issues a 6P
   COUNT command.  The Type field (T) is set to REQUEST.  The Code field
   is set to COUNT.  Figure 16 defines the format of a 6P COUNT Request.

                        1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| T | R |     Code      |     SFID      | SeqNum|  GEN  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Metadata            |  CellOptions  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 16: 6P COUNT Request Format.

   Metadata:  Same usage as for the 6P ADD command, see Section 4.3.1.
         Its format is same as that in 6P ADD command, but content could
         be different.
   CellOptions:  Specifies which types of cells to be counted.

   Figure 17 defines the format of a 6P COUNT Response.

Wang, et al.            Expires December 24, 2017              [Page 18]
Internet-Draft            6tisch-6top-protocol                 June 2017

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| T | R |     Code      |     SFID      | SeqNum|  GEN  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           NumCells            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 17: 6P COUNT Response Format.

   NumCells:  The number of cells which correspond to the fields of the
         request.

   Node A issues a COUNT command to node B, specifying a set of cell
   options.  Upon receiving the 6P COUNT request, node B goes through
   its schedule and counts the number of cells scheduled with node A in
   its own schedule, and which match the cell options in the CellOptions
   field of the request.  Section 4.2.3 details the use of the
   CellOptions field.

   Node B issues a 6P response to node A with return code set to
   SUCCESS, and with NumCells containing the number of cells that match
   the request.

4.3.5.  Listing Cells

   To retrieve the list of scheduled cells at B, node A issues a 6P LIST
   command.  The Type field (T) is set to REQUEST.  The Code field is
   set to LIST.  Figure 18 defines the format of a 6P LIST Request.

                        1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| T | R |     Code      |     SFID      | SeqNum|  GEN  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Metadata            |  CellOptions  |    Reserved   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Offset              |          MaxNumCells          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 18: 6P LIST Request Format.

   Metadata:  Same usage as for the 6P ADD command, see Section 4.3.1.
         Its format is same as that in 6P ADD command, but content could
         be different.
   CellOptions:  Specifies which types of cells to be listed.
   Reserved:  Set to 0.

Wang, et al.            Expires December 24, 2017              [Page 19]
Internet-Draft            6tisch-6top-protocol                 June 2017

   Offset:  The Offset of the first scheduled cell that is requested.
         The mechanism assumes cells are ordered according to a rule
         defined in the SF.  The rule MUST always order the cells in the
         same way.
   MaxNumCells:  The maximum number of cells to be listed.  Node B MAY
         returns less than MaxNumCells cells, for example if MaxNumCells
         cells do not fit in the frame.

   Figure 19 defines the format of a 6P LIST Response.

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| T | R |     Code      |     SFID      | SeqNum|  GEN  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | CellList ...
     +-+-+-+-+-+-+-+-+-

                    Figure 19: 6P LIST Response Format.

   CellList:  A list of 0, 1 or multiple 6P Cells.

   When receiving a LIST command, node B returns the cells in its
   schedule that match the CellOptions field as specified in
   Section 4.2.3

   When node B receives a LIST request, the returned CellList in the 6P
   Response contains between 1 and MaxNumCells cells, starting from the
   specified offset.  Node B SHOULD include as many cells as fit in the
   frame.  If the response contains the last cell, Node B MUST set the
   Code field in the response to EOL, indicating to Node A that there no
   more cells that match the request.  Node B MUST return at least one
   cell, unless the specified Offset is beyond the end of B's cell list
   in its schedule.  If node B has less than Offset cells that match the
   request, node B returns an empty CellList and a Code field set to
   EOL.

4.3.6.  Clearing the Schedule

   To clear the schedule between nodes A and B (for example after a
   schedule inconsistency is detected), node A issues a CLEAR command.
   The Type field (T) is set to 6P Request.  The Code field is set to
   CLEAR.  Figure 20 defines the format of a 6P CLEAR Request.

Wang, et al.            Expires December 24, 2017              [Page 20]
Internet-Draft            6tisch-6top-protocol                 June 2017

                        1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| T | R |     Code      |     SFID      | SeqNum|  GEN  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Metadata            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 20: 6P CLEAR Request Format.

   Metadata:  Same usage as for the 6P ADD command, see Section 4.3.1.
         Its format is same as that in 6P ADD command, but content could
         be different.

   Figure 21 defines the format of a 6P CLEAR Response.

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| T | R |     Code      |     SFID      | SeqNum|  GEN  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 21: 6P CLEAR Response Format.

   When a 6P CLEAR command is issued from node A to node B, both nodes A
   and B MUST remove all the cells scheduled between them.  That is,
   node A MUST remove all the cells scheduled with B, and node B MUST
   remove all the cells scheduled with A.  In a 6P CLEAR command, the
   generation counter GEN MUST NOT be checked.  That is, its value is
   "don't care".  In particular, even if the request contains a GEN
   value that would normally cause node B to detect a schedule
   generation mismatch, the transaction MUST NOT be aborted.

4.4.  Protocol Functional Details

4.4.1.  Version Checking

   All messages contain a Version field.  If multiple Versions of the 6P
   protocol have been defined (in future specifications for Version
   values different from 0), a node MAY implement multiple protocol
   versions at the same time.  When receiving a 6P message with a
   Version number it does not implement, a node MUST reply with a 6P
   Response with a Return Code field set to VER_ERR.  The Version field
   in the 6P Response MUST be the same as the Version field in the
   corresponding 6P Request.  In a 3-step transaction, the Version field
   in the 6P Confirmation MUST match that of the 6P Request and 6P
   Response in the same transaction.

Wang, et al.            Expires December 24, 2017              [Page 21]
Internet-Draft            6tisch-6top-protocol                 June 2017

4.4.2.  SFID Checking

   All messages contain a SFID field.  A node MAY support multiple SFs
   at the same time.  When receiving a 6P message with an unsupported
   SFID, a node MUST reply with a 6P Response and a return code of
   SFID_ERR.  The SFID field in the 6P Response MUST be the same as the
   SFID field in the corresponding 6P Request.  In a 3-step transaction,
   the SFID field in the 6P Confirmation MUST match that of the 6P
   Request and 6P Response in the same transaction.

4.4.3.  Concurrent 6P Transactions

   Only a single 6P Transaction between two neighbors, in a given
   direction, can take place at the same time.  That is, a node MUST NOT
   issue a new 6P Request to a given neighbor before having received the
   6P Response for a previous request to that neighbor, except when the
   previous 6P Transaction has timed out.  If a node receives a 6P
   Request from a given neighbor before having sent the 6P Response to
   the previous 6P Request from that neighbor, it MUST send back a 6P
   Response with a return code of RESET.  A node receiving RESET code
   MUST abort the transaction and consider it never happened.

   Nodes A and B MAY support having two transactions going on at the
   same time, one in each direction.  Similarly, a node MAY support
   concurrent 6P Transactions from different neighbors.  In this case,
   the cells involved in an ongoing 6P Transaction MUST be locked until
   the transaction finishes.  For example, in Figure 1, node C can have
   a different ongoing 6P Transaction with nodes B and R.  In case a
   node does not have enough resources to handle concurrent 6P
   Transactions from different neighbors it MUST reply with a 6P
   Response with return code NORES.  In case the requested cells are
   locked, it MUST reply to that request with a 6P Response with return
   code BUSY.  The node receiving BUSY or an NORES MAY implement a retry
   mechanism, defined by the SF.

4.4.4.  Timeout

   A timeout occurs when the node sending the 6P Request has not
   received the 6P Response within a specified amount of time determined
   by the SF.  In a 3-step transaction, a timeout also occurs when the
   node sending the 6P Response has not received the 6P Confirmation.
   The timeout should be longer than the longest possible time it can
   take for the exchange to finish.  The value of the timeout hence
   depends on the number of cells scheduled between the neighbor nodes,
   the maximum number of link-layer retransmissions, etc.  The SF MUST
   determine the value of the timeout.  The value of the timeout is out
   of scope of this document.

Wang, et al.            Expires December 24, 2017              [Page 22]
Internet-Draft            6tisch-6top-protocol                 June 2017

4.4.5.  SeqNum Mismatch

   A SeqNum mismatch happens when a node receives a 6P Response or 6P
   Confirmation with SeqNum value different from the SeqNum value in the
   6P Request.  When it detects a SeqNum mismatch, the node MUST drop
   the packet and consider the 6P Transaction as having failed.

4.4.6.  Aborting a 6P Transaction

   In case the receiver of a 6P Request fails during a 6P Transaction
   and is unable to complete it, it SHOULD reply to that Request with a
   6P Response with return code RESET.  Upon receiving this 6P Response,
   the initiator of the 6P Transaction MUST consider the 6P Transaction
   as failed.

   Similarly, in the case of 3-step transaction, when the receiver of a
   6P Response fails during the 6P Transaction and is unable to complete
   it, it SHOULD reply to that 6P Response with a 6P Confirmation with
   return code RESET.  Upon receiving this 6P Confirmation, the sender
   of the 6P Response MUST consider the 6P Transaction as failed.

4.4.7.  Generation Management

   For each neighbor, a node maintains a 4-bit generation number.  The
   generation number counts the number of transactions that have
   modified the schedule with the particular neighbor so far.  This
   number is a variable internal to the node.

4.4.7.1.  Incrementing the Generation Number

   The generation number is incremented as a 4-bit lollipop counter.
   Its possible values are:

                  +---------+---------------------------+
                  | Value   | Meaning                   |
                  +---------+---------------------------+
                  |     0x0 | Clear or never scheduled  |
                  | 0x1-0x9 | Lollipop Counter values   |
                  | 0xa-0xf | Reserved                  |
                  +---------+---------------------------+

           Figure 22: Possible values of the generation number.

   The generation number is set to 0 upon initialization, and after a 6P
   CLEAR command.  The generation number is incremented by exactly 1
   each time a cell with that neighbor is added/deleted/relocated from
   the schedule (e.g. after a successful 6P ADD, 6P DELETE or 6P
   RELOCATE transaction).  The value rolls from 0x9 to 0x1 (i.e. not

Wang, et al.            Expires December 24, 2017              [Page 23]
Internet-Draft            6tisch-6top-protocol                 June 2017

   0x0).  This results in a lollipop counter with 0x0 the start value,
   and 0x1-0x9 the count values.  Values from 0xa to 0xf are reserved
   and MUST NOT be used.

4.4.7.2.  Setting GEN field in the 6P Message Header

   Each 6P message contains a GEN field, used to indicate the current
   generation number of the node transmitting the message.  The value of
   the GEN field MUST be set according to the following rules:

   o  When node A sends a 6P Request or 6P Confirmation to node B, node
      A sets GEN to its generation number for Node B.
   o  When node B sends a 6P Response to node A, node B sets GEN to its
      generation number for node A.

4.4.7.3.  Detecting and Handling Schedule Generation Inconsistencies

   Upon receiving a 6P message, a node MUST do the following checks:

   o  When node B receives a 6P Request or 6P Confirmation from node A,
      it verifies that the value of the GEN field in the 6P message is
      equal to its internal generation number.
   o  When node A receives a 6P Response from node B, it verifies that
      the value of the GEN field in the 6P message is equal to its
      internal generation number.

   If any of these comparisons is false, the node has detected a
   schedule generation inconsistency.

   When a schedule generation inconsistency is detected:

   o  If the code of the 6P Request is different from CLEAR, the node
      MUST reply with error code GEN_ERR.
   o  If the code of the 6P Request is CLEAR, the schedule generation
      inconsistency MUST be ignored.

   It is up to the Scheduling Function to define the action to take when
   an schedule generation inconsistency is detected.  The RECOMMENDED
   action is to issue a 6P CLEAR command.

4.4.8.  Handling Error Responses

   A return code marked as YES in the "Is Error" column in Figure 27
   indicates an error.  When a node receives a 6P Response or 6P
   Confirmation with such an error, it MUST consider the 6P Transaction
   failed.  In particular, if this was a response to a 6P ADD/DELETE/
   RELOCATE Request, the node MUST NOT add/delete/relocate any of the
   cells involved in this 6P Transaction.  Similarly, a node sending a

Wang, et al.            Expires December 24, 2017              [Page 24]
Internet-Draft            6tisch-6top-protocol                 June 2017

   6P Response or a 6P Confirmation with an error code MUST NOT
   add/delete/relocate any cells as part of that 6P Transaction.
   Defining what to do after an error has occurred is out of scope of
   this document.  The SF defines what to do after an error has
   occurred.

4.5.  Security

   6P messages are secured through link-layer security.  When link-layer
   security is enabled, the 6P messages MUST be secured.  This is
   possible because 6P messages are carried as Payload IE.

5.  Guidelines for 6top Scheduling Functions (SF)

5.1.  SF Identifier (SFID)

   Each SF has a 1-byte identifier.  Section 8.2.5 defines the rules for
   applying for an SFID.

5.2.  Requirements for an SF

   The specification for an SF

   o  MUST specify an identifier for that SF.
   o  MUST specify the rule for a node to decide when to add/delete one
      or more cells to a neighbor.
   o  MUST specify the rule for a Transaction source to select cells to
      add to the CellList field in the 6P ADD Request.
   o  MUST specify the rule for a Transaction destination to select
      cells from CellList to add to its schedule.
   o  MUST specify a value for the 6P Timeout, or a rule/equation to
      calculate it.
   o  MUST specify the rule for ordering cells.
   o  MUST specify a meaning for the "Metadata" field in the 6P ADD
      Request.
   o  MUST specify the SF behavior of a node when it boots.
   o  MUST specify what to do after an error has occurred (either the
      node sent a 6P Response with an error code, or received one).
   o  MUST specify the list of statistics to gather.  An example
      statistic is the number of transmitted frames to each neighbor.
      In case the SF requires no statistics to be gathered, the specific
      of the SF MUST explicitly state so.

   o  SHOULD clearly state the application domain the SF is created for.
   o  SHOULD contain examples which highlight normal and error
      scenarios.
   o  SHOULD contain a list of current implementations, at least during
      the I-D state of the document, per [RFC6982].

Wang, et al.            Expires December 24, 2017              [Page 25]
Internet-Draft            6tisch-6top-protocol                 June 2017

   o  SHOULD contain a performance evaluation of the scheme, possibly
      through references to external documents.

   o  MAY redefine the format of the CellList field.
   o  MAY redefine the format of the CellOptions field.
   o  MAY redefine the meaning of the CellOptions field.

5.3.  Recommended Structure of an SF Specification

   The following section structure for a SF document is RECOMMENDED:

   o  Introduction
   o  Scheduling Function Identifier
   o  Rules for Adding/Deleting Cells
   o  Rules for CellList
   o  6P Timeout Value
   o  Rule for Ordering Cells
   o  Meaning of the Metadata Field
   o  Node Behavior at Boot
   o  6P Error Handling
   o  Examples
   o  Implementation Status
   o  Security Considerations
   o  IANA Considerations

6.  Implementation Status

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC6982].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.

   According to [RFC6982], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

Wang, et al.            Expires December 24, 2017              [Page 26]
Internet-Draft            6tisch-6top-protocol                 June 2017

   ETSI 6TiSCH/6lo plugtests:  6P was one of the protocols addressed
      during the ETSI 6TiSCH #3 plugtests organized on 15-17 July 2016
      in Berlin, Germany.  15 entities participated in this event,
      verifying the compliance and interoperability of their
      implementation of 6P.  This event happened under NDA, so neither
      the name of the entities nor the test results are public.  This
      event is, however, a clear indication of the maturity of 6P, and
      the interest it generates.  More information about the event at
      http://www.etsi.org/news-events/events/1077-6tisch-6lo-plugtests.
   ETSI 6TiSCH #2 plugtests:  6P was one of two protocols addressed
      during the ETSI 6TiSCH #2 plugtests organized on 2-4 February 2016
      in Paris, France.  14 entities participated in this event,
      verifying the compliance and interoperability of their
      implementation of 6P.  This event happened under NDA, so neither
      the name of the entities nor the test results are public.  This
      event is, however, a clear indication of the maturity of 6P, and
      the interest it generates.  More information about the event at
      http://www.etsi.org/news-events/events/1022-6TiSCH-2-plugtests.
   OpenWSN:  6P is implemented in the OpenWSN project [OpenWSN] under a
      BSD open-source license.  The authors of this document are
      collaborating with the OpenWSN community to gather feedback about
      the status and performance of the protocols described in this
      document.  Results from that discussion will appear in this
      section in future revision of this specification.  More
      information about this implementation at http://www.openwsn.org/.
   Wireshark Dissector:  A Wireshark dissector for 6P is implemented
      under a BSD open-source license.  It is developed and maintained
      at https://github.com/openwsn-berkeley/dissectors/, and regularly
      merged into the main Wireshark repository.  Please see the
      Wireshark documentation to see what version of 6P it supports.

7.  Security Considerations

   6P messages are carried inside 802.15.4 Payload Information Elements
   (IEs).  Those Payload IEs are encrypted and authenticated at the link
   layer through CCM*.  6P benefits from the same level of security as
   any other Payload IE.  The 6P protocol does not define its own
   security mechanisms.  A key management solution is out of scope for
   this document.  The 6P protocol will benefit for the key management
   solution used in the network.

8.  IANA Considerations

8.1.  IETF IE Subtype '6P'

   This document adds the following number to the "IEEE Std 802.15.4
   IETF IE subtype IDs" registry defined by [I-D.kivinen-802-15-ie]:

Wang, et al.            Expires December 24, 2017              [Page 27]
Internet-Draft            6tisch-6top-protocol                 June 2017

                  +--------------------+------+-----------+
                  | Subtype            | Name | Reference |
                  +--------------------+------+-----------+
                  | IANA_6TOP_SUBIE_ID | 6P   | RFCXXXX   |
                  +--------------------+------+-----------+

                     Figure 23: IETF IE Subtype '6P'.

8.2.  6TiSCH parameters sub-registries

   This section defines sub-registries within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry, hereafter
   referred to as the "6TiSCH parameters" registry.  Each sub-registry
   is described in a subsection.

8.2.1.  6P Version Numbers

   The name of the sub-registry is "CoAP Version Numbers".

   A Note included in this registry should say: "In the 6top Protocol
   (6P) [RFCXXXX] there is a field to identify the version of the
   protocol.  This field is 4 bits in size."

   Each entry in the sub-registry must include the Version in the range
   0-15, and a reference to the 6P version's documentation.

   The initial entry in this sub-registry is as follows:

                          +---------+------------+
                          | Version | Reference  |
                          +---------+------------+
                          |       0 | RFCXXXX    |
                          +---------+------------+

                      Figure 24: 6P Version Numbers.

   All other Version Numbers are Unassigned.

   The IANA policy for future additions to this sub-registry is "IETF
   Review or IESG Approval" as described in [RFC5226].

8.2.2.  6P Message Types

   The name of the sub-registry is "6P Message Types".

   A Note included in this registry should say: "In the 6top Protocol
   (6P) version 0 [RFCXXXX], there is a field to identify the type of
   message.  This field is 2 bits in size."

Wang, et al.            Expires December 24, 2017              [Page 28]
Internet-Draft            6tisch-6top-protocol                 June 2017

   Each entry in the sub-registry must include the Type in the range
   b00-b11, the corresponding Name, and a reference to the 6P message
   type's documentation.

   Initial entries in this sub-registry are as follows:

                  +------+--------------+-----------+
                  | Type | Name         | Reference |
                  +------+--------------+-----------+
                  | b00  | REQUEST      | RFCXXXX   |
                  | b01  | RESPONSE     | RFCXXXX   |
                  | b10  | CONFIRMATION | RFCXXXX   |
                  +------+--------------+-----------+

                       Figure 25: 6P Message Types.

   All other Message Types are Reserved.

   The IANA policy for future additions to this sub-registry is "IETF
   Review or IESG Approval" as described in [RFC5226].

8.2.3.  6P Command Identifiers

   The name of the sub-registry is "6P Command Identifiers".

   A Note included in this registry should say: "In the 6top Protocol
   (6P) version 0 [RFCXXXX], there is a Code field which is 8 bits in
   size.  In a 6P Request, the value of this Code field is used to
   identify the command."

   Each entry in the sub-registry must include the Identifier in the
   range 0-255, the corresponding Name, and a reference to the 6P
   command identifier's documentation.

   Initial entries in this sub-registry are as follows:

Wang, et al.            Expires December 24, 2017              [Page 29]
Internet-Draft            6tisch-6top-protocol                 June 2017

                   +------------+------------+-----------+
                   | Identifier | Name       | Reference |
                   +------------+------------+-----------+
                   |          0 | Reserved   |           |
                   |          1 | ADD        | RFCXXXX   |
                   |          2 | DELETE     | RFCXXXX   |
                   |          3 | RELOCATE   | RFCXXXX   |
                   |          4 | COUNT      | RFCXXXX   |
                   |          5 | LIST       | RFCXXXX   |
                   |          6 | CLEAR      | RFCXXXX   |
                   |      7-254 | Unassigned |           |
                   |        255 | Reserved   |           |
                   +------------+------------+-----------+

                    Figure 26: 6P Command Identifiers.

   The IANA policy for future additions to this sub-registry is "IETF
   Review or IESG Approval" as described in [RFC5226].

8.2.4.  6P Return Codes

   The name of the sub-registry is "6P Return Codes".

   A Note included in this registry should say: "In the 6top Protocol
   (6P) version 0 [RFCXXXX], there is a Code field which is 8 bits in
   size.  In a 6P Response or 6P Confirmation, the value of this Code
   field is used to identify the return code."

   Each entry in the sub-registry must include the Code in the range
   0-255, the corresponding Name, the corresponding Description, and a
   reference to the 6P return code's documentation.

   Initial entries in this sub-registry are as follows:

Wang, et al.            Expires December 24, 2017              [Page 30]
Internet-Draft            6tisch-6top-protocol                 June 2017

       +--------+-------------+---------------------------+-----------+
       |   Code | Name        | Description               | Is Error? |
       +--------+-------------+---------------------------+-----------+
       |      0 | SUCCESS     | operation succeeded       |    No     |
       |      1 | ERROR       | generic error             |   Yes     |
       |      2 | EOL         | end of list               |    No     |
       |      3 | RESET       | critical error, reset     |   Yes     |
       |      4 | VER_ERR     | unsupported 6P version    |   Yes     |
       |      5 | SFID_ERR    | unsupported SFID          |   Yes     |
       |      6 | GEN_ERR     | wrong schedule generation |   Yes     |
       |      7 | BUSY        | busy                      |   Yes     |
       |      8 | NORES       | not enough resources      |   Yes     |
       |      9 | CELLLIST_ERR| cellList error            |   Yes     |
       +--------+-------------+---------------------------+-----------+

                        Figure 27: 6P Return Codes.

   All other Message Types are Unassigned.

   The IANA policy for future additions to this sub-registry is "IETF
   Review or IESG Approval" as described in [RFC5226].

8.2.5.  6P Scheduling Function Identifiers

   6P Scheduling Function Identifiers.

   A Note included in this registry should say: "In the 6top Protocol
   (6P) version 0 [RFCXXXX], there is a field to identify the scheduling
   function to handle the message.  This field is 8 bits in size."

   Each entry in the sub-registry must include the SFID in the range
   0-255, the corresponding Name, and a reference to the 6P Scheduling
   Function's documentation.

   The initial entry in this sub-registry is as follows:

      +-------+--------------------------+----------------------------+
      |  SFID | Name                     | Reference                  |
      +-------+--------------------------+----------------------------+
      |     0 | Scheduling Function Zero | draft-ietf-6tisch-6top-sf0 |
      +-------+--------------------------+----------------------------+

                     Figure 28: SF Identifiers (SFID).

   All other Message Types are Unassigned.

Wang, et al.            Expires December 24, 2017              [Page 31]
Internet-Draft            6tisch-6top-protocol                 June 2017

   The IANA policy for future additions to this sub-registry depends on
   the value of the SFID, as defined in Figure 29.  These specifications
   must follow the guidelines of Section 5.

                +-----------+------------------------------+
                |     Range | Registration Procedures      |
                +-----------+------------------------------+
                |     0-128 | IETF Review or IESG Approval |
                |   128-255 | Expert Review                |
                +-----------+------------------------------+

         Figure 29: SF Identifier (SFID): Registration Procedures.

8.2.6.  6P CellOptions bitmap

   The name of the sub-registry is "6P CellOptions bitmap".

   A Note included in this registry should say: "In the 6top Protocol
   (6P) version 0 [RFCXXXX], there is an optional CellOptions field
   which is 8 bits in size."

   Each entry in the sub-registry must include the bit position in the
   range 0-7, the corresponding Name, and a reference to the bit's
   documentation.

   Initial entries in this sub-registry are as follows:

                    +-----+---------------+-----------+
                    | bit | Name          | Reference |
                    +-----+---------------+-----------+
                    |   0 | TX (Transmit) | RFCXXXX   |
                    |   1 | RX (Receive)  | RFCXXXX   |
                    |   2 | SHARED        | RFCXXXX   |
                    | 3-7 | Reserved      |           |
                    +-----+---------------+-----------+

                     Figure 30: 6P CellOptions bitmap.

   All other Message Types are Reserved.

   The IANA policy for future additions to this sub-registry is "IETF
   Review or IESG Approval" as described in [RFC5226].

9.  References

Wang, et al.            Expires December 24, 2017              [Page 32]
Internet-Draft            6tisch-6top-protocol                 June 2017

9.1.  Normative References

   [I-D.kivinen-802-15-ie]
              Kivinen, T. and P. Kinney, "IEEE 802.15.4 Information
              Element for IETF", draft-kivinen-802-15-ie-06 (work in
              progress), March 2017.

   [IEEE802154-2015]
              IEEE standard for Information Technology, "IEEE Std
              802.15.4-2015 - IEEE Standard for Low-Rate Wireless
              Personal Area Networks (WPANs)", October 2015.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

9.2.  Informative References

   [I-D.ietf-6tisch-minimal]
              Vilajosana, X., Pister, K., and T. Watteyne, "Minimal
              6TiSCH Configuration", draft-ietf-6tisch-minimal-21 (work
              in progress), February 2017.

   [OpenWSN]  Watteyne, T., Vilajosana, X., Kerkez, B., Chraim, F.,
              Weekly, K., Wang, Q., Glaser, S., and K. Pister, "OpenWSN:
              a Standards-Based Low-Power Wireless Development
              Environment", Transactions on Emerging Telecommunications
              Technologies , August 2012.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC6982]  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", RFC 6982,
              DOI 10.17487/RFC6982, July 2013,
              <http://www.rfc-editor.org/info/rfc6982>.

   [RFC7554]  Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
              IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
              Internet of Things (IoT): Problem Statement", RFC 7554,
              DOI 10.17487/RFC7554, May 2015,
              <http://www.rfc-editor.org/info/rfc7554>.

Wang, et al.            Expires December 24, 2017              [Page 33]
Internet-Draft            6tisch-6top-protocol                 June 2017

Appendix A.  [TEMPORARY] Changelog

   o  draft-ietf-6tisch-6top-protocol-05

      *  complete reorder of sections.  Merged protocol behavior and
         command description
      *  STATUS to COUNT
      *  written-out IANA section
      *  complete proof-read
   o  draft-ietf-6tisch-6top-protocol-04

      *  recommendation on which cells to use for 6P traffic
      *  relocation format: added numberofCells field
      *  created separate section about "cell suggestion"
      *  Added RC_ERR_CELLLIST and RC_ERR_EOL error codes
      *  Added example for two step with the failure
      *  Recommended numbers in IANA section
      *  single generation number
      *  IEEE802.15.4 -> IEEE Std 802.15.4 or 802.15.4
      *  complete proof-read
   o  draft-ietf-6tisch-6top-protocol-03

      *  Added a reference to [I-D.kivinen-802-15-ie].
      *  Added the Type field.
      *  Editorial changes (figs, typos, ...)
   o  draft-ietf-6tisch-6top-protocol-02

      *  Rename COUNT to STATUS
      *  Split LIST to LIST AB and LIST BA
      *  Added generation counters and describing generation tracking of
         the schedule
      *  Editorial changes (figs, typos, ...)
   o  draft-ietf-6tisch-6top-protocol-01

      *  Clarifying locking of resources in concurrent transactions
      *  Clarifying return of RC_ERR_BUSY in case of concurrent
         transactions without enough resources
   o  draft-ietf-6tisch-6top-protocol-00

      *  Informational to Std track
   o  draft-wang-6tisch-6top-protocol-00

      *  Editorial overhaul: fixing typos, increasing readability,
         clarifying figures.
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/47
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/54

Wang, et al.            Expires December 24, 2017              [Page 34]
Internet-Draft            6tisch-6top-protocol                 June 2017

      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/55
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/49
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/53
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/44
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/48
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/43
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/52
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/45
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/51
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/50
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/46
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/41
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/42
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/39
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/40
   o  draft-wang-6tisch-6top-sublayer-05

      *  Specifies format of IE
      *  Adds token in messages to match request and response
   o  draft-wang-6tisch-6top-sublayer-04

      *  Renames IANA_6TOP_IE_GROUP_ID to IANA_IETF_IE_GROUP_ID.
      *  Renames IANA_CMD and IANA_RC to IANA_6TOP_CMD and IANA_6TOP_RC.
      *  Proposes IANA_6TOP_SUBIE_ID with value 0x00 for the 6top sub-
         IE.
   o  draft-wang-6tisch-6top-sublayer-03

      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/32/missing-command-list
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/31/missing-command-count
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/30/missing-command-clear

Wang, et al.            Expires December 24, 2017              [Page 35]
Internet-Draft            6tisch-6top-protocol                 June 2017

      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/37/6top-atomic-transaction-6p-transaction
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/35/separate-opcode-from-rc
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/36/add-length-field-in-ie
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/27/differentiate-rc_err_busy-and
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/29/missing-rc-rc_reset
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/28/the-sf-must-specify-the-behavior-of-a-mote
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/26/remove-including-their-number
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-protocol/
         issues/34/6of-sf
      *  https://bitbucket.org/6tisch/draft-wang-6tisch-6top-
         protocol/issues/33/add-a-figure-showing-the-negociation
   o  draft-wang-6tisch-6top-sublayer-02

      *  introduces the 6P protocol and the notion of 6top Transaction.
      *  introduces the concept of 6OF and its 6OFID.

Authors' Addresses

   Qin Wang (editor)
   Univ. of Sci. and Tech. Beijing
   30 Xueyuan Road
   Beijing, Hebei  100083
   China

   Email: wangqin@ies.ustb.edu.cn

   Xavier Vilajosana
   Universitat Oberta de Catalunya
   156 Rambla Poblenou
   Barcelona, Catalonia  08018
   Spain

   Email: xvilajosana@uoc.edu

Wang, et al.            Expires December 24, 2017              [Page 36]
Internet-Draft            6tisch-6top-protocol                 June 2017

   Thomas Watteyne
   Analog Devices
   32990 Alvarado-Niles Road, Suite 910
   Union City, CA  94587
   USA

   Email: twatteyne@linear.com

Wang, et al.            Expires December 24, 2017              [Page 37]