Packet Loss Signaling for Encrypted Protocols
draft-ferrieuxhamchaoui-tsvwg-lossbits-01

Document Type Active Internet-Draft (individual)
Last updated 2019-07-21
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
TSVWG                                                        A. Ferrieux
Internet-Draft                                              I. Hamchaoui
Intended status: Informational                               Orange Labs
Expires: January 21, 2020                                    I. Lubashev
                                                     Akamai Technologies
                                                           July 20, 2019

             Packet Loss Signaling for Encrypted Protocols
               draft-ferrieuxhamchaoui-tsvwg-lossbits-01

Abstract

   This document describes a protocol-independent method that employs
   two bits to allow endpoints to signal packet loss in a way that can
   be used by network devices to measure and locate the source of the
   loss.  The signaling method applies to all protocols with a protocol-
   specific way to identify packet loss.  The method is especially
   valuable when applied to protocols that encrypt transport header and
   do not allow an alternative method for loss detection.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 21, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Ferrieux, et al.        Expires January 21, 2020                [Page 1]
Internet-Draft                  loss-bits                      July 2019

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Notational Conventions  . . . . . . . . . . . . . . . . . . .   3
   3.  Loss Bits . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Setting the sQuare Bit on Outgoing Packets  . . . . . . .   3
     3.2.  Setting the Loss Event Bit on Outgoing Packets  . . . . .   4
   4.  Using the Loss Bits for Passive Loss Measurement  . . . . . .   4
     4.1.  End-To-End Loss . . . . . . . . . . . . . . . . . . . . .   5
     4.2.  Upstream Loss . . . . . . . . . . . . . . . . . . . . . .   5
     4.3.  Correlating End-to-End and Upstream Loss  . . . . . . . .   5
     4.4.  Downstream Loss . . . . . . . . . . . . . . . . . . . . .   6
     4.5.  Observer Loss . . . . . . . . . . . . . . . . . . . . . .   6
   5.  Ossification Considerations . . . . . . . . . . . . . . . . .   7
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   7.  Privacy Considerations  . . . . . . . . . . . . . . . . . . .   7
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   9.  Change Log  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     9.1.  Since version 00  . . . . . . . . . . . . . . . . . . . .   8
   10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   8
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     11.1.  Normative References . . . . . . . . . . . . . . . . . .   8
     11.2.  Informative References . . . . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   Packet loss is a pervasive problem of day-to-day network operation,
   and proactively detecting, measuring, and locating it is crucial to
   maintaining high QoS and timely resolution of crippling end-to-end
   throughput issues.  To this effect, in a TCP-dominated world, network
   operators have been heavily relying on information present in the
   clear in TCP headers: sequence and acknowledgment numbers and SACKs
   when enabled (see [RFC8517]).  These allow for quantitative
   estimation of packet loss by passive on-path observation, and the
   lossy segment (upstream or downstream from the observation point) can
   be quickly identified by moving the passive observer around.

   With encrypted protocols, the equivalent transport headers are
Show full document text