Skip to main content

Captive-Portal Identification in DHCP / RA
draft-ekwk-capport-rfc7710bis-00

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Replaced".
Author Warren "Ace" Kumari
Last updated 2018-07-15
Replaced by draft-ietf-capport-rfc7710bis, RFC 8910
RFC stream (None)
Formats
Additional resources
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ekwk-capport-rfc7710bis-00
Network Working Group                                          W. Kumari
Internet-Draft                                                    Google
Updates: 7710 (if approved)                                     E. Kline
Intended status: Standards Track                            Google Japan
Expires: January 16, 2019                                  July 15, 2018

               Captive-Portal Identification in DHCP / RA
                    draft-ekwk-capport-rfc7710bis-00

Abstract

   In many environments offering short-term or temporary Internet access
   (such as coffee shops), it is common to start new connections in a
   captive portal mode.  This highly restricts what the customer can do
   until the customer has authenticated.

   This document describes a DHCP option (and a Router Advertisement
   (RA) extension) to inform clients that they are behind some sort of
   captive-portal device, and that they will need to authenticate to get
   Internet access.  It is not a full solution to address all of the
   issues that clients may have with captive portals; it is designed to
   be used in larger solutions.  The method of authenticating to, and
   interacting with the captive portal is out of scope of this document.

   [ This document is being collaborated on in Github at:
   https://github.com/wkumari/draft-ekwk-capport-rfc7710bis.  The most
   recent version of the document, open issues, etc should all be
   available here.  The authors (gratefully) accept pull requests.  Text
   in square brackets will be removed before publication. ]

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 16, 2019.

Kumari & Kline          Expires January 16, 2019                [Page 1]
Internet-Draft             DHCP Captive-Portal                 July 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Notation . . . . . . . . . . . . . . . . . .   3
   2.  The Captive-Portal Option . . . . . . . . . . . . . . . . . .   3
     2.1.  IPv4 DHCP Option  . . . . . . . . . . . . . . . . . . . .   4
     2.2.  IPv6 DHCP Option  . . . . . . . . . . . . . . . . . . . .   4
     2.3.  The Captive-Portal IPv6 RA Option . . . . . . . . . . . .   5
   3.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   5
     3.1.  IETF params Registration  . . . . . . . . . . . . . . . .   5
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   5.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   6
   6.  Normative References  . . . . . . . . . . . . . . . . . . . .   7
   Appendix A.  Changes / Author Notes.  . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   In many environments, users need to connect to a captive-portal
   device and agree to an Acceptable Use Policy (AUP) and / or provide
   billing information before they can access the Internet.  It is
   anticipated that the IETF will work on a more fully featured protocol
   at some point, to ease interaction with Captive Portals.  Regardless
   of how that protocol operates, it is expected that this document will
   provide needed functionality because the client will need to know
   when it is behind a captive portal and how to contact it.

   In order to present users with the payment or AUP pages, the captive-
   portal device has to intercept the user's connections and redirect
   the user to the captive portal, using methods that are very similar
   to man-in-the-middle (MITM) attacks.  As increasing focus is placed
   on security, and end nodes adopt a more secure stance, these

Kumari & Kline          Expires January 16, 2019                [Page 2]
Internet-Draft             DHCP Captive-Portal                 July 2018

   interception techniques will become less effective and/or more
   intrusive.

   This document describes a DHCP ([RFC2131]) option (Captive-Portal)
   and an IPv6 Router Advertisement (RA) ([RFC4861]) extension that
   informs clients that they are behind a captive-portal device and how
   to contact it.

1.1.  Requirements Notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  The Captive-Portal Option

   The Captive Portal DHCP / RA Option informs the client that it is
   behind a captive portal and provides the URI to access an
   authentication page.  This is primarily intended to improve the user
   experience by getting them to the captive portal faster; for the
   foreseeable future, captive portals will still need to implement the
   interception techniques to serve legacy clients, and clients will
   need to perform probing to detect captive portals.

   In order to support multiple "classes" of clients (e.g.  IPv4 only,
   IPv6 only with DHCPv6 ([RFC3315]), IPv6 only with RA) the captive
   portal can provide the URI via multiple methods (IPv4 DHCP, IPv6
   DHCP, IPv6 RA).  The captive portal operator should ensure that the
   URIs handed out are equivalent to reduce the chance of operational
   problems.  The maximum length of the URI that can be carried in IPv4
   DHCP is 255 bytes, so URIs longer than 255 bytes should not be used
   in IPv6 DHCP or IPv6 RA.

   In all variants of this option, the URI SHOULD be that of the captive
   portal API endpoint, conforming to the recommendations for such URIs
   [cite:API] (i.e. the URI SHOULD contain a DNS name and SHOULD
   reference a secure transport, e.g. https).  A captive portal MAY do
   content negotiation [citation?] and attempt to redirect clients
   querying without an explicit indication of support for the captive
   portal API content type (i.e. without application/capport+json listed
   explicitly anywhere within an Accepts header [citation]).  In so
   doing, the captive portal SHOULD redirect the client to the value
   associated with the "user-portal-url" API key.

   The URI SHOULD NOT contain an IP address literal.

   The URI parameter is not null terminated.

Kumari & Kline          Expires January 16, 2019                [Page 3]
Internet-Draft             DHCP Captive-Portal                 July 2018

   Networks with no captive portals MAY explicitly indicate this
   condition by using this option with the IANA-assigned URI for this
   purpose <iana>.  Clients observing the URI value
   "urn:ietf:params:capport-unrestricted" MAY forego time-consuming
   forms of captive portal detection.

2.1.  IPv4 DHCP Option

   The format of the IPv4 Captive-Portal DHCP option is shown below.

       Code   Len           Data
      +------+------+------+------+------+--   --+-----+
      | code | len  |  URI                  ...        |
      +------+------+------+------+------+--   --+-----+

   o  Code: The Captive-Portal DHCPv4 Option (160) (one octet)

   o  Len: The length, in octets of the URI.

   o  URI: The URI for the captive portal API endpoint to which the user
      should connect (encoded following the rules in [RFC3986]).

2.2.  IPv6 DHCP Option

   The format of the IPv6 Captive-Portal DHCP option is shown below.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          option-code          |          option-len           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                      URI (variable length)                    .
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   o  option-code: The Captive-Portal DHCPv6Option (103) (two octets)

   o  option-len: The length, in octets of the URI.

   o  URI: The URI for the captive portal API endpoint to which the user
      should connect (encoded following the rules in [RFC3986]).

   See [RFC7227], Section 5.7 for more examples of DHCP Options with
   URIs.

Kumari & Kline          Expires January 16, 2019                [Page 4]
Internet-Draft             DHCP Captive-Portal                 July 2018

2.3.  The Captive-Portal IPv6 RA Option

   This section describes the Captive-Portal Router Advertisement
   option.

    0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Length    |              URI              .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               .
      .                                                               .
      .                                                               .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               Figure 2: Captive-Portal RA Option Format

   Type  37

   Length  8-bit unsigned integer.  The length of the option (including
      the Type and Length fields) in units of 8 bytes.

   URI  The URI for the captive portal API endpoint to which the user
      should connect.  This MUST be padded with NULL (0x00) to make the
      total option length (including the Type and Length fields) a
      multiple of 8 bytes.

3.  IANA Considerations

   This document requests one new IETF URN protocol parameter
   ([RFC3553]) entry.

   Thanks IANA!

3.1.  IETF params Registration

   Registry name: Captive Portal Unrestricted Identifier

   URN: urn:ietf:params:capport-unrestricted

   Specification: RFC TBD (this document)

   Repository: RFC TBD (this document)

   Index value: Only one value is defined (see URN above).  No hierarchy
   is defined and therefore no sub-namespace registrations are possible.

Kumari & Kline          Expires January 16, 2019                [Page 5]
Internet-Draft             DHCP Captive-Portal                 July 2018

4.  Security Considerations

   An attacker with the ability to inject DHCP messages could include
   this option and so force users to contact an address of his choosing.
   As an attacker with this capability could simply list himself as the
   default gateway (and so intercept all the victim's traffic); this
   does not provide them with significantly more capabilities, but
   because this document removes the need for interception, the attacker
   may have an easier time performing the attack.  As the operating
   systems and application that make use of this information know that
   they are connecting to a captive-portal device (as opposed to
   intercepted connections) they can render the page in a sandboxed
   environment and take other precautions, such as clearly labeling the
   page as untrusted.  The means of sandboxing and user interface
   presenting this information is not covered in this document - by its
   nature it is implementation specific and best left to the application
   and user interface designers.

   Devices and systems that automatically connect to an open network
   could potentially be tracked using the techniques described in this
   document (forcing the user to continually authenticate, or exposing
   their browser fingerprint).  However, similar tracking can already be
   performed with the standard captive portal mechanisms, so this
   technique does not give the attackers more capabilities.

   Captive portals are increasingly hijacking TLS connections to force
   browsers to talk to the portal.  Providing the portal's URI via a
   DHCP or RA option is a cleaner technique, and reduces user
   expectations of being hijacked - this may improve security by making
   users more reluctant to accept TLS hijacking, which can be performed
   from beyond the network associated with the captive portal.

   By simplifying the interaction with the captive portal systems, and
   doing away with the need for interception, we think that users will
   be less likely to disable useful security safeguards like DNSSEC
   validation, VPNs, etc.  In addition, because the system knows that it
   is behind a captive portal, it can know not to send cookies,
   credentials, etc.  By handing out a URI using which is protected with
   TLS, the captive portal operator can attempt to reassure the user
   that the captive portal is not malicious.

5.  Acknowledgements

   This document is a -bis of RFC7710.  Thanks to all of the original
   authors (Warren Kumari, Olafur Gudmundsson, Paul Ebersman, Steve
   Sheng), and original contributors.

Kumari & Kline          Expires January 16, 2019                [Page 6]
Internet-Draft             DHCP Captive-Portal                 July 2018

   Also thanks to the CAPPORT WG for all of the discussion and
   improvements.

6.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
              editor.org/info/rfc2119>.

   [RFC2131]  Droms, R., "Dynamic Host Configuration Protocol",
              RFC 2131, DOI 10.17487/RFC2131, March 1997,
              <https://www.rfc-editor.org/info/rfc2131>.

   [RFC2939]  Droms, R., "Procedures and IANA Guidelines for Definition
              of New DHCP Options and Message Types", BCP 43, RFC 2939,
              DOI 10.17487/RFC2939, September 2000, <https://www.rfc-
              editor.org/info/rfc2939>.

   [RFC3315]  Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
              C., and M. Carney, "Dynamic Host Configuration Protocol
              for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
              2003, <https://www.rfc-editor.org/info/rfc3315>.

   [RFC3553]  Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
              IETF URN Sub-namespace for Registered Protocol
              Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
              2003, <https://www.rfc-editor.org/info/rfc3553>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
              "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
              DOI 10.17487/RFC4861, September 2007, <https://www.rfc-
              editor.org/info/rfc4861>.

   [RFC7227]  Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
              S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
              BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
              <https://www.rfc-editor.org/info/rfc7227>.

Kumari & Kline          Expires January 16, 2019                [Page 7]
Internet-Draft             DHCP Captive-Portal                 July 2018

Appendix A.  Changes / Author Notes.

   [RFC Editor: Please remove this section before publication ]

   From initial to -00.

   o  Import of RFC7710.

Authors' Addresses

   Warren Kumari
   Google
   1600 Amphitheatre Parkway
   Mountain View, CA  94043
   US

   Email: warren@kumari.net

   Erik Kline
   Google Japan
   Roppongi 6-10-1, 44th Floor
   Minato, Tokyo  106-6144
   Japan

Kumari & Kline          Expires January 16, 2019                [Page 8]