Skip to main content

IPv6 over 802.11ah
draft-delcarpio-6lo-wlanah-00

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Expired".
Authors Luis Felipe Del Carpio Vega , Ines Robles , Roberto Morabito
Last updated 2015-06-17
RFC stream (None)
Formats
Additional resources
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-delcarpio-6lo-wlanah-00
6Lo Working Group                                   L.F. Del Carpio Vega
Internet-Draft                                               M.I. Robles
Intended status: Standards Track                             R. Morabito
Expires: December 19, 2015                                      Ericsson
                                                           June 17, 2015

                           IPv6 over 802.11ah
                     draft-delcarpio-6lo-wlanah-00

Abstract

   IEEE 802.11 is an established Wireless LAN (WLAN) technology which
   provides radio connectivity to a wide range of devices.  The IEEE
   802.11ah amendment defines a WLAN system operating at sub 1 GHz
   license-exempt bands designed to operate with low-rate/low-power
   consumption.  This amendment supports large number of stations and
   extends the radio coverage to several hundreds of meters.  This
   document describes how IPv6 is transported over 802.11ah using
   6LoWPAN techniques.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 19, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Del Carpio Vega, et al.Expires December 19, 2015                [Page 1]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology and Language Requirements . . . . . . . . . . . .   3
   3.  Overview of 802.11ah  . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Link layer topology of 802.11ah . . . . . . . . . . . . .   4
     3.2.  Device Addressing and Frame Structure . . . . . . . . . .   5
     3.3.  Protocol Version 0  . . . . . . . . . . . . . . . . . . .   5
     3.4.  Protocol Version 1  . . . . . . . . . . . . . . . . . . .   6
     3.5.  Link Layer Control  . . . . . . . . . . . . . . . . . . .   7
   4.  Uses Cases  . . . . . . . . . . . . . . . . . . . . . . . . .   7
   5.  6LoWPAN over 802.11ah . . . . . . . . . . . . . . . . . . . .   8
   6.  Stateless address autoconfiguration . . . . . . . . . . . . .   9
   7.  Neighbour Discovery in 802.11ah . . . . . . . . . . . . . . .  10
   8.  Header compression  . . . . . . . . . . . . . . . . . . . . .  10
   9.  Fragmentation . . . . . . . . . . . . . . . . . . . . . . . .  11
   10. Multicast at IP level . . . . . . . . . . . . . . . . . . . .  11
   11. Internet Connection . . . . . . . . . . . . . . . . . . . . .  11
   12. Management of the Network . . . . . . . . . . . . . . . . . .  11
   13. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   14. Security Considerations . . . . . . . . . . . . . . . . . . .  12
   15. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  12
   16. References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     16.1.  Normative References . . . . . . . . . . . . . . . . . .  12
     16.2.  Informative References . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   IEEE 802.11 [IEEE802.11], also known as Wi-Fi, is an established
   Wireless LAN (WLAN) technology operating in unlicensed Industrial,
   Scientific and Medical (ISM) bands.  Its IEEE 802.11ah [IEEE802.11ah]
   amendment is tailored for Internet of Things (IoT) use-cases and at
   the moment of writing this draft it is in the final stages of IEEE
   standardization.

   IEEE 802.11ah operates in the Sub-1 GHz spectrum which helps reducing
   the power consumption.  It also supports a larger number of stations
   on a single Basic Service Set (BSS) and it provides power-saving
   mechanisms that allow radio stations to sleep in order to save power.
   However, the system achieves lower throughput compared to 802.11n/ac
   amendments.

Del Carpio Vega, et al.Expires December 19, 2015                [Page 2]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   IEEE 802.11 specifies only the MAC and PHY layers of the radio
   technology.  In other words, 802.11 does not specify a networking
   layer but it is compatible with commonly used internet protocol such
   as IPv4 and IPv6.  As 802.11ah is a low-rate/low-power technology,
   the communication protocols used above MAC should also take power-
   efficiency into consideration.  This motivates the introduction of
   6LoWPAN techniques [RFC4944] [RFC6282] for efficient transport of
   IPv6 packets over IEEE 802.11ah radio networks.

   This document specifies how to use 6LoWPAN techniques for 802.11ah.
   Similar work has been carried out for Bluetooth Low Energy in
   [I-D.ietf-6lo-btle].

2.  Terminology and Language Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   Terminology from 802.11ah:

   Station (STA): defined in 802.11-2012 [IEEE802.11-2012] as a wireless
   station which is an addressable unit.

   Sensor-STA: defined in 802.11ah as a device having low-power
   consumption requirements.  This device might be a battery operated
   device.

   Non-sensor STA: defined in 802.11ah as device which usually does not
   have low-power consumption requirements.

   In this document, any type STA (sensor STA/non-sensor STA) is
   associated with a 6LoWPAN Nodes(6LN).

   Access Point (AP): entity maintaining the WLAN Basic Service Set
   (BSS) and is associated with the 6LoWPAN Border Router (6LBR).  It is
   assumed that APs are connected to the power-line.

   The terms 6LoWPAN Router (6LR) and 6LoWPAN Border Router (6LBR) are
   defined as in [RFC6775] and in this context 6LoWPAN Nodes (6LN) do
   not refer to a router (Access Point), just to a host (STA).

3.  Overview of 802.11ah

   The IEEE 802.11 technology uses the unlicensed spectrum in different
   ISM bands, using CSMA/CA techniques.  Specifically 802.11ah is
   designed to operate in ISM band below Sub-1 Ghz with a bandwidth of
   1Mhz/2Mhz (depending of configuration).  The system is formed by an

Del Carpio Vega, et al.Expires December 19, 2015                [Page 3]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   Access Point (AP) which maintains a Basic Service Set (BSS) and
   stations (STAs).  STAs are connected to the AP in a star topology.

   The 802.11ah is more energy efficient compared to other conventional
   802.11 technologies because of the lower operating frequency and the
   use of mechanisms which allow STAs to doze periodically and request
   downlink data when switching to active mode i.e.  Traffic Indication
   Map (TIM) operation, non-TIM operation, Target Wakeup Time (TWT)

   An exemplary deployment of a 802.11ah BSS may include a large number
   of STAs associated to a BSS where STAs are sleeping (dozing) most of
   the time and they may monitor periodic beacon-frame transmissions
   containing Traffic Indication Maps (TIM).  Data packets intended to
   STAs cannot be delivered when STAs sleep, thus the TIM indicates
   which STAs have downlink data buffered at the AP.  After reading the
   TIM, STAs request their buffered data by transmitting a Power-Saving
   Poll (PS-Poll) frame to the AP.  After the downlink data is
   delivered, STAs enter into sleep mode again.  For uplink data
   delivery, STAs might transmit as soon as it has data available.

   There might be STAs that do not monitor constantly the TIM and
   request downlink data sporadically after waking up.

3.1.  Link layer topology of 802.11ah

   The 802.11ah defines a star topology at L2 link connectivity, where
   the STAs are connected to the AP and any communication between STAs
   passes through the AP.  The mesh topology at L2 level is not defined
   in 802.11ah.  In addition, the wireless communication between Access
   Points is not supported directly in 802.11ah.  However, it is
   possible to set-up a mesh of APs with the IEEE 802.11s amendment
   which is out of scope of this document.  Finally, the 802.11 standard
   does not define its own networking layer but is compatible with
   commonly used protocols e.g.  IPv4, IPv6.

                                       +---+
                                       |STA|
                                       +-+-+
                          +---+          |
                          |STA+------+   |
                          +---+      |   |
                                     +---+---+    +---+
                                     |   AP  +----+STA|
                                     ++-----++    +---+
                           +----+     |      |
                           |STA +-----+      |
                           +----+          +-+--+

Del Carpio Vega, et al.Expires December 19, 2015                [Page 4]
Internet-Draft             IPv6 over 802.11ah                  June 2015

                                           |STA |
                                           +----+

                       Figure 1: Link Layer Topology

   It is important to note that the communication link is unidirectional
   at any given point in time and that the medium is shared by CSMA/CA
   techniques which avoid that two or more STAs utilize the medium
   simultaneously.

3.2.  Device Addressing and Frame Structure

   The 802.11 physical transmission is composed by a preamble which is
   used to prepare a receiver for frame decoding, basic physical layer
   information, and the physical layer payload which encapsulates the
   MAC Protocol Data Unit (MPDU).

   There can be different classes of MAC frames in 802.11, the MAC data
   frame is the only one carrying higher layer data.  Other frames are
   control and management frames which are used to maintain MAC layer
   functions.  The 802.11/802.11ah MAC addresses use the EUI-48 bit
   address space.

   A MAC Data frame in 802.11 is composed by a MAC header, a MAC payload
   and a Frame Check Sequence (FCS) which are encoded in an MPDU.  The
   MAC payload carries Link Layer Control PDUs which encapsulates for
   example IP packets.  There are two protocol versions for MAC frame
   formats, the Protocol Version 0 (PV0) is used in systems existing
   before 802.11ah such as 802.11n/ac and the Protocol Version 1 (PV1)
   has less overhead that PV0 specified in 802.11ah.

   Segmentation at MAC layer is possible if required.

3.3.  Protocol Version 0

   The elements of the MAC data frame with PV0 is depicted in the
   picture below.

   +-------+--------+----+----+----+------+----+-----+----+-------+---+
   +Frame  +Dura    + A1 + A2 + A3 + Seq. + A4 + QoS + HT + Frame +FCS+
   +Control+tion/ID +    +    +    + Ctrl +    + Crl +Crl + Body  +   +
   +-------+--------+----+----+----+------+----+-----+----+-------+---+
        2      2      6     6   6    2     6     2     4    0-7951  4

                          Figure 2: MAC frame PV0

Del Carpio Vega, et al.Expires December 19, 2015                [Page 5]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   Frame Control: contains information relevant in link layer such as
   the Protocol Version, frame type and subtype, Power Management,
   Fragmentation Information, among others.

   A1: indicates the recipient of the frame and it contains the 6-bytes
   MAC address or the Short ID (2-bytes) provided by the AP after
   association in a given BSS.  TBD: further definition of Short ID.

   A2: indicates the transmitter of the frame and it contains the
   6-bytes MAC address or the Short ID (2-bytes) provided by the AP
   after association in a given BSS.

   Frame Body: is of variable-length field and contains the MAC payload
   for example L3 packets.

   FCS: The Frame Check Sequence field is a 32-bit field containing a
   32-bit CRC which is calculated over all the fields of the MAC header
   and the Frame Body field

   Missing descriptions to be completed later.

3.4.  Protocol Version 1

   With a 802.11ah basic feature set and following the PV1, the maximum
   MPDU size is 511 bytes.  The MAC header for the PV1 format is at
   least formed by a Frame Control field and the address fields.  Other
   fields are optional.

           +---------------+-------+--------+---------------------+
           + Frame Control +   A1  +   A2   + Frame Body +  FCS   +
           +---------------+-------+--------+---------------------+
            Bytes:  2         6/2     2/6      0 to 497     4

                    Figure 3: MAC frame PV1 of 802.11ah

   Frame control: see above.

   A1: indicates the recipient of the frame and it contains the 6-bytes
   MAC address or the Short ID (2-bytes) provided by the AP after
   association in a given BSS.

   A2: indicates the transmitter of the frame and it contains the
   6-bytes MAC address or the Short ID (2-bytes) provided by the AP
   after association in a given BSS.

Del Carpio Vega, et al.Expires December 19, 2015                [Page 6]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   Frame Body: The minimum length for non-data frames is 0 bytes.  The
   maximum length depends for example of the MAC header overhead and
   among other things.  For the a basic PV1 data frame with A1/A2 fields
   carrying MAC addresses and no other optional MAC header fields, the
   maximum frame body length is 497-bytes.

3.5.  Link Layer Control

   The Logical Link Control (LLC) layers works as the interface between
   higher layers, for example IP, and the 802.11 MAC.  It supports
   higher layer protocol discrimination via the EtherType value
   utilizing the EtherType protocol discrimination method (EPD) defined
   in IEEE 802-2014 [IEEE802-2014].  Examples of EtherTypes are 0x0800
   and 0x8DD, which are used to identify IPv4 and IPv6, respectively.

   LLC Header Format: TBD.

                            +-----------------------+
                            |        802 LLC        |
                            +-----------------------+
                            | MAC Layer (802.11ah)  |
                            +-----------------------+
                            | PHY Layer (802.11ah)  |
                            +-----------------------+

                       Figure 4: WLAN Protocol Stack

4.  Uses Cases

   [RFC7548] define use cases for the management of constrained
   networks, these uses cases are apply as well to 802.11ah

   As a starting point in 802.11ah specification work, the Task Group AH
   proposed the following use-case categories
   [ReferenceUseCase802.11ah]:

   - Sensor and Meters, where large number of sensor deliver data
   through 802.11ah connectivity

   - Backhaul Sensor and meter data, where 802.11ah STA can be either
   directly integrated with a sensor or it will aggregate data from
   other tree of wireless sensors and then deliver 802.11ah connectivity

   - Extended Range Wi-Fi, where the typical range of the Wi-Fi
   connection will extended due to the use of lower frequencies and
   other techniques.

Del Carpio Vega, et al.Expires December 19, 2015                [Page 7]
Internet-Draft             IPv6 over 802.11ah                  June 2015

5.  6LoWPAN over 802.11ah

   IPv4 and IPv6 are compatible with 802.11ah via the LLC.  However,
   this technology presents a trade-off between energy savings and bit
   rate of the link.  Consequently, 6LoWPAN techniques are beneficial to
   reduce the overhead of transmissions, save energy and get a better
   throughput.  With 6LoWPAN, the nodes, i.e.  6LN, 6LBR, are co-located
   on the same devices with 802.11 features.  The typical 802.11ah
   network uses a star topology where the 6LBR functionally is co-
   located with the AP.  6LNs are co-located with STAs and are connected
   to the 6LBR through a 802.11ah link.  The mesh topology at MAC level
   is not defined by the 802.11ah standard implying that the 6LBR is the
   only router present in the network.  Thus, there is no presence of
   6LowPAN Routers (6LR).

                    +---------+
                    |+-------+|                      +---------+
                    ||  6LN  ||  802.11ah            |+-------+|
                    |+-------+|                      ||  6LN  ||
                    |+-------++------------+---------|+-------+|
                    ||  STA  ||            |         |+-------+|
                    |+-------+|            |         ||  STA  ||
                    +---------+            |         |+-------+|
                      6LN-STA              |         +---------+
                                     +-----+-----+
                                     |+----+----+|
                                     ||  6LBR   ||
                                     |+---------+|
                       +---------+   |           |    +---------+
                       |+-------+|   |+---------++    ++-------+|
                       ||  6LN  ||   ||   AP    ||    ||  6LN  ||
                       |+-------+|   |+---------+|    |+-------+|
                       |+-------++---+----+------+    |         |
                       ||  STA  ||        |  6LBR-AP  |+-------+|
                       |+-------+|        |           ||  STA  ||
                       +--------+|        |           |+-------+|
                       +---------+        +-----------+---------+

                        Figure 5: Network Topology

   There exists the possibility to have a 802.11ah relay node at L2 to
   extend the range of an AP.  This however is experienced as a single
   hop by the 6LoWPAN network.  In case there is need to connect
   wirelessly several APs in a mesh topology, the 802.11s might be
   considered as a possibility.  However, the 802.11s is not directly

Del Carpio Vega, et al.Expires December 19, 2015                [Page 8]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   compatible with 802.11ah and should be considered as a different
   radio technology based on 802.11 integrated to the system.

   The devices in this kind of networks, not necessarily have
   constrained resources (memory, CPU, etc), but the radio link capacity
   is limited.  It might be that APs are connected to mains power and
   STAs might be for example battery operated sensors.  Therefore
   6LoWPAN techniques might be good to support transmission of IPv6
   packets over 802.11ah battery operated devices.  Related to
   performance gain, a reduction in air-time is achieved if the stack is
   compressed.  The communication 6LN-6LN is not supported directly
   using link-local addresses, it is done through the 6LBR using the
   shared prefix used on the subnet.  This specification requires IPv6
   header compression format specified in [RFC6282].

   In Figure below is showed the stack for PHY and IPv6 including
   6LoWPAN

                              +---------------------+
                              |    Upper Layers     |
                              +---------------------+
                              |       IPv6          |
                              +---------------------+
                              |      6LoWPAN        |
                              +---------------------+
                              |      802 LLC        |
                              +---------------------+
                              | MAC Layer(802.11ah) |
                              +---------------------+
                              | PHY Layer(802.11ah) |
                              +---------------------+

                   Figure 6: Protocol Stack with 6LoWPAN

6.  Stateless address autoconfiguration

   The IPv6 link local address follows Section 5.3 of [RFC4862] based on
   the 48-bit MAC device address.

   To get the 64-bit Interface Identifier (IID) RFC 7136 [RFC7136] MUST
   be followed.  Section 5 of this RFC states:

   "For all unicast addresses, except those that start with the binary
   value 000, Interface IDs are required to be 64 bits long.  If derived
   from an IEEE MAC-layer address, they must be constructed in Modified
   EUI-64 format."

Del Carpio Vega, et al.Expires December 19, 2015                [Page 9]
Internet-Draft             IPv6 over 802.11ah                  June 2015

                 10 bits        54 bits             64 bits
                +----------+-----------------+----------------------+
                |1111111010|       0         | Interface Identifier |
                +----------+-----------------+----------------------+

                     Figure 7: IPv6 link local address

   Following Appendix-A of RFC 4291 [RFC4291] the IID is formed
   inserting two octets, with hexadecimal values of 0xFF and 0xFE in the
   middle of the 48-bit MAC.  The IID would be as follow where "a" is a
   bit of the 48 MAC address.

   |0              1|1              3|3              4|4              6|
   |0              5|6              1|2              7|8              3|
   +----------------+----------------+----------------+----------------+
   |aaaaaaaaaaaaaaaa|aaaaaaaa11111111|11111110aaaaaaaa|aaaaaaaaaaaaaaaa|
   +----------------+----------------+----------------+----------------+

                     Figure 8: Modified EUI-64 format

   For non-link-local addresses a 64-bit IID MAY be formed by utilizing
   the 48-bit MAC device address.  Random IID can be generated for 6LN
   using alternative methods such as [I-D.ietf-6man-default-iids].

7.  Neighbour Discovery in 802.11ah

   Neighbour Discovery approach for 6LoWPAN [RFC6775] is applicable to
   802.11ah topologies.  Related to Host-initiated process, use of
   Address Registration Option (ARO), through the Neighbour Solicitation
   (NS) and Neighbour Advertisement (NA).  Router Solicitation and
   Router Advertisement are applicable as well following [RFC6775].

   As the topology is star, Multihop Distribution of prefix and 6LoWPAN
   header compression; and Multihop Duplicated Address Detection (DAD)
   mechanism are not applicable, since this technology does not cover
   multihop topology.

8.  Header compression

   For header compression are applicable the rules proposed in
   [RFC6282].  Section 3.1.1 mentions the base Encoding in principle
   apply to 802.11ah.

     0                                       1
     0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     | 0 | 1 | 1 |  TF   |NH | HLIM  |CID|SAC|  SAM  | M |DAC|  DAM  |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Del Carpio Vega, et al.Expires December 19, 2015               [Page 10]
Internet-Draft             IPv6 over 802.11ah                  June 2015

                    Figure 9: LOWPAN_IPHC base Encoding

   As specified in [RFC6282].  TF: Traffic Class; Flow Label; NH: Next
   Header; HLIM: Hop Limit; CID: Context Identifier Extension (TBD: How
   it would work in 802.11ah); SAC: Source Address Compression.  (TBD
   whether the source address would be eliminated in link-local address
   ); SAM: Source Address Mode; M: Multicast Compression (TBD: How it
   would work with 802.11ah); DAC: Destination Address Compression; DAM:
   Destination Address Mode.

9.  Fragmentation

   802.11ah perform fragmentation at L2, thus the fragmentation at L3
   would be not necessary.

10.  Multicast at IP level

   802.11ah supports broadcast and multicast at link layer level, both
   can be used to carry multicast IP transmission depending on the
   system's configuration.  TBD: add an example.

11.  Internet Connection

   For Internet connection, the 6LBR acts as router and forwarding
   packets between 6LNs to and from Internet.

                      +-----+
                      | 6LN +--------+
                      +-----+        |
                                     |         +-----------+
                                +----+----+    |           |
                                |         |    |  Internet |
                         +------+  6LBR   +----+           |
                      +--+--+   |         |    |           |
                      | 6LN |   +----+----+    +-----------+
                      +-----+        |
                                  +--+--+
                                  | 6LN |
                                  +-----+

               Figure 10: Internet connection of 6Lo network

12.  Management of the Network

Del Carpio Vega, et al.Expires December 19, 2015               [Page 11]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   TBD: how LightWeight Machine to Machine (LWM2M) or CoAP Management
   Interface (COMI) [I-D.vanderstok-core-comi] aspects can be applied to
   this technology, considering [RFC7547]

13.  IANA Considerations

   There are no IANA considerations related to this document.

14.  Security Considerations

   The security considerations defined in [RFC4944] and its update
   [RFC6282] can be assumed valid for the 802.11ah case as well.
   Indeed, the transmission of IPv6 over 802.11ah links meets all the
   requirements for security as for IEEE 802.15.4.  The standard IEEE
   802.11ah defines all those aspects related with Link Layer security.
   As well as for other existing WiFi solutions, 802.11ah Link Layer
   supports security mechanism such as WPA, WPS, 802.1X.  To have a
   deeper understanding on how the Key Management processes are handled
   in 802.11ah, please refer to [TBD]

   Implementations defined in [I-D.ietf-6man-default-iids], [RFC3972],
   [RFC4941], or [RFC5535], can be considered, for example, as methods
   to support non-link local addresses.

   Privacy - TBD.

15.  Acknowledgements

   This work is partially funded by the FP7 Marie Curie Initial Training
   Network (ITN) METRICS project (grant agreement No.  607728)

16.  References

16.1.  Normative References

   [IEEE802.11ah]
              Institute of Electrical and Electronics Engineers (IEEE),
              "Wireless LAN Medium Access Control (MAC) and Physical
              Layer (PHY) Specifications: Amendment- Sub 1 GHz License-
              Exempt Operation", January 2015.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
              Architecture", RFC 4291, February 2006.

Del Carpio Vega, et al.Expires December 19, 2015               [Page 12]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
              Address Autoconfiguration", RFC 4862, September 2007.

   [RFC6282]  Hui, J. and P. Thubert, "Compression Format for IPv6
              Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
              September 2011.

   [RFC6775]  Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
              "Neighbor Discovery Optimization for IPv6 over Low-Power
              Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
              November 2012.

   [RFC7136]  Carpenter, B. and S. Jiang, "Significance of IPv6
              Interface Identifiers", RFC 7136, February 2014.

16.2.  Informative References

   [I-D.ietf-6lo-btle]
              Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
              Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
              Energy", draft-ietf-6lo-btle-11 (work in progress), April
              2015.

   [I-D.ietf-6man-default-iids]
              Gont, F., Cooper, A., Thaler, D., and W. Will,
              "Recommendation on Stable IPv6 Interface Identifiers",
              draft-ietf-6man-default-iids-03 (work in progress), May
              2015.

   [I-D.vanderstok-core-comi]
              Stok, P., Greevenbosch, B., Bierman, A., Schoenwaelder,
              J., and A. Sehgal, "CoAP Management Interface", draft-
              vanderstok-core-comi-06 (work in progress), February 2015.

   [IEEE802-2014]
              Institute of Electrical and Electronics Engineers (IEEE),
              "IEEE Standard for Local and Metropolitan Area Networks:
              Overview and Architecture", 2014.

   [IEEE802.11-2012]
              Institute of Electrical and Electronics Engineers (IEEE),
              "Wireless LAN Medium Access Control (MAC) and Physical
              Layer (PHY) Specifications", 2012.

   [IEEE802.11]
              Institute of Electrical and Electronics Engineers (IEEE),
              "Wireless LAN ", 2011.

Del Carpio Vega, et al.Expires December 19, 2015               [Page 13]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   [RFC3972]  Aura, T., "Cryptographically Generated Addresses (CGA)",
              RFC 3972, March 2005.

   [RFC4193]  Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
              Addresses", RFC 4193, October 2005.

   [RFC4941]  Narten, T., Draves, R., and S. Krishnan, "Privacy
              Extensions for Stateless Address Autoconfiguration in
              IPv6", RFC 4941, September 2007.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, September 2007.

   [RFC5535]  Bagnulo, M., "Hash-Based Addresses (HBA)", RFC 5535, June
              2009.

   [RFC7547]  Ersue, M., Romascanu, D., Schoenwaelder, J., and U.
              Herberg, "Management of Networks with Constrained Devices:
              Problem Statement and Requirements", RFC 7547, May 2015.

   [RFC7548]  Ersue, M., Romascanu, D., Schoenwaelder, J., and A.
              Sehgal, "Management of Networks with Constrained Devices:
              Use Cases", RFC 7548, May 2015.

   [ReferenceUseCase802.11ah]
              Institute of Electrical and Electronics Engineers (IEEE),
              "Potential compromise of 80211ah use case", 2012.

Authors' Addresses

   Luis Felipe Del Carpio Vega
   Ericsson
   Hirsalantie 11
   Jorvas  02420
   Finland

   Email: felipe.del.carpio@ericsson.com

   Maria Ines Robles
   Ericsson
   Hirsalantie 11
   Jorvas  02420
   Finland

   Email: maria.ines.robles@ericsson.com

Del Carpio Vega, et al.Expires December 19, 2015               [Page 14]
Internet-Draft             IPv6 over 802.11ah                  June 2015

   Roberto Morabito
   Ericsson
   Hirsalantie 11
   Jorvas  02420
   Finland

   Email: roberto.morabito@ericsson.com

Del Carpio Vega, et al.Expires December 19, 2015               [Page 15]