Adaptation of RFC 1149 for IPv6
RFC 6214
Document | Type |
RFC - Informational
(March 2011; Errata)
Updates RFC 1149
|
|
---|---|---|---|
Last updated | 2013-05-29 | ||
Stream | ISE | ||
Formats | plain text pdf html bibtex | ||
Stream | ISE state | (None) | |
Consensus Boilerplate | Unknown | ||
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 6214 (Informational) | |
Telechat date | |||
Responsible AD | (None) | ||
Send notices to | (None) |
Independent Submission B. Carpenter Request for Comments: 6214 Univ. of Auckland Category: Informational R. Hinden ISSN: 2070-1721 Check Point Software 1 April 2011 Adaptation of RFC 1149 for IPv6 Abstract This document specifies a method for transmission of IPv6 datagrams over the same medium as specified for IPv4 datagrams in RFC 1149. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6214. Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Carpenter & Hinden Informational [Page 1] RFC 6214 IPv6 and RFC 1149 1 April 2011 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Normative Notation . . . . . . . . . . . . . . . . . . . . . . 2 3. Detailed Specification . . . . . . . . . . . . . . . . . . . . 2 3.1. Maximum Transmission Unit . . . . . . . . . . . . . . . . . 2 3.2. Frame Format . . . . . . . . . . . . . . . . . . . . . . . 3 3.3. Address Configuration . . . . . . . . . . . . . . . . . . . 3 3.4. Multicast . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Quality-of-Service Considerations . . . . . . . . . . . . . . . 4 5. Routing and Tunneling Considerations . . . . . . . . . . . . . 4 6. Multihoming Considerations . . . . . . . . . . . . . . . . . . 5 7. Internationalization Considerations . . . . . . . . . . . . . . 5 8. Security Considerations . . . . . . . . . . . . . . . . . . . . 5 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 5 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 5 11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 6 11.1. Normative References . . . . . . . . . . . . . . . . . . . 6 11.2. Informative References . . . . . . . . . . . . . . . . . . 6 1. Introduction As shown by [RFC6036], many service providers are actively planning to deploy IPv6 to alleviate the imminent shortage of IPv4 addresses. This will affect all service providers who have implemented [RFC1149]. It is therefore necessary, indeed urgent, to specify a method of transmitting IPv6 datagrams [RFC2460] over the RFC 1149 medium, rather than obliging those service providers to migrate to a different medium. This document offers such a specification. 2. Normative Notation The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 3. Detailed Specification Unless otherwise stated, the provisions of [RFC1149] and [RFC2460] apply throughout. 3.1. Maximum Transmission Unit As noted in RFC 1149, the MTU is variable, and generally increases with increased carrier age. Since the minimum link MTU allowed by RFC 2460 is 1280 octets, this means that older carriers MUST be used for IPv6. RFC 1149 does not provide exact conversion factors between age and milligrams, or between milligrams and octets. These Carpenter & Hinden Informational [Page 2] RFC 6214 IPv6 and RFC 1149 1 April 2011 conversion factors are implementation dependent, but as an illustrative example, we assume that the 256 milligram MTU suggested in RFC 1149 corresponds to an MTU of 576 octets. In that case, the typical MTU for the present specification will be at least 256*1280/576, which is approximately 569 milligrams. Again as an illustrative example, this is likely to require a carrier age of at least 365 days. Furthermore, the MTU issues are non-linear with carrier age. ThatShow full document text