
icnrg M. Mosko
Internet-Draft E. Uzun
Intended status: Standards Track C. Wood
Expires: May 4, 2017 PARC
 October 31, 2016

CCNx Key Exchange Protocol Version 1.0
draft-wood-icnrg-ccnxkeyexchange-01

Abstract

 This document specifies Version 1.0 of the CCNx Key Exchange (CCNxKE)
 protocol. The CCNxKE protocol allows two peers to establish a
 shared, forward-secure key for secure and confidential communication.
 The protocol is designed to prevent eavesdropping, tampering, and
 message forgery between two peers. It is also designed to minimize
 the number of rounds required to establish a shared key. In the
 worst case, it requires two RTTs between a consumer and producer to
 establish a shared key. In the best case, one RTT is required before
 sending any application data. This document outlines how to derive
 the keys used to encrypt traffic. An annex provides an example peer-
 to-peer transport protocol for exchanging encrypted CCNx
 communications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Mosko, et al. Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CCNxKE October 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions and Terminology 5

2. Goals . 6
3. Scope . 7
4. Presentation Language . 7
5. CCNxKE Overview . 7
5.1. Connection Establishment Latency 8
5.2. Connection Migration and Resumption 8
5.3. Re-Transmissions, Timeouts, and Replay Prevention 8
5.4. Loss Sensitivity . 9

6. The CCNxKE Protocol . 9
6.1. Round Overview . 10
6.2. Round 1 . 12
6.3. Round 2 . 15
6.4. Round 3 . 17

7. Alternative Exchanges . 18
7.1. One-RTT Exchange . 19

8. Resumption and PSK Mode 20
9. Secret Derivation . 21
9.1. SourceCookie Derivation 21
9.2. Move Derivation . 21

 9.3. SessionID and ResumptionCookie Properties, Derivation,
 and Usage . 22

9.4. Key Derivation . 23
9.5. Secret Generation and Lifecycle 24

10. Re-Key Message . 25
11. Application Data Protocol 25
12. Security Considerations 26
13. References . 26
13.1. Normative References 26
13.2. Informative References 28

 Authors' Addresses . 28

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mosko, et al. Expires May 4, 2017 [Page 2]

Internet-Draft CCNxKE October 2016

1. Introduction

 DISCLAIMER: This is a WIP draft of CCNxKE and has not yet seen
 rigorous security analysis.

 CCNx Key Exchange (CCNxKE) establishes ephemeral forward secure keys
 between two peers, called the consumer (client) and producer
 (server). The underlying cryptography of CCNxKE is similar to TLS
 1.3, though there are some protocol changes due to the ICN nature of
 CCNxKE. CCNxKE also supports the concept of a MoveToken, which
 allows the authenticating producer to shift a session to one (or
 more) co-operating replicas.

 CCNxKE does not specify how the keys are used. It only specifies how
 to derive the traffic secret that could be used to encrypt/decrypt
 data. The draft [draft-wood-icnrg-tlvencap] specifies one way to use
 the traffic secret to carry out communications in a session.
 Annex A also sketches out an example CCNx protocol for exchanging
 encrypted messages, though it is not part of this standard. Other
 protocols may use CCNxKE.
 For example, a producer and replica may use CCNxKE to establish a
 shared key to use in Move Tokens. Two routers may use CCNxKE to
 establish MACSEC keys. A consumer and publisher could establish a
 symmetric key while on-line then publish content later for an off-
 line consumer. In short, the use of CCNxKE is not limited to a TLS-
 like transport protocol.

 CCNxKE allows upper-layer data to be returned in Round 3, like TLS
 1.3. In this sense, one can achieve 3 RTT (worst case) or 1 RTT
 (best case) communcations. The data put in this response is up to
 the protocol using CCNxKE and may or may not be used.

 CCNxKE is not a substitue for data authenticity, such as Content
 Object provenance via signatures, group encryption of cached objects,
 or DRM protections. CCNxKE only creates a private, ephemeral tunnel
 between a consumer and a producer. CCNxKE expects that the encrypted
 communications protocol still carries normal CCNx packets with normal
 CCNx attributes such as signatures.

 Some types of ICN communications require emphemeral, forward secure
 encryption. Typical examples are on-line banking, real-time voice,
 or on-line shopping. Other applications may need different types of
 encryption and thus not use CCNxKE. There is currently no standard
 way for CCNx peers to exchange emphemeral, forward secure keys, thus
 this RFC specifies the standard mechanism that should be used by all
 CCNx peers for such keys. CCNxKE is built on the CCNx 1.0 protocol
 and only relies upon standard Interest and Content Objects as a
 vehicle for communication.

https://datatracker.ietf.org/doc/html/draft-wood-icnrg-tlvencap

Mosko, et al. Expires May 4, 2017 [Page 3]

Internet-Draft CCNxKE October 2016

 In this document, the term 'CCNxKE session' refers to the key
 exchange session. It does not refer to a transport protocol session
 (like TLS) that uses the derived keys.

 This protocol has the following four main properties:

 - Each peer's identity can be authenticated using asymmetric, or
 public key, cryptography (e.g., RSA [RSA], ECDSA [ECDSA], etc.).
 Server authentication is mandatory whereas mutual authentication
 is optional.

 - The negotiation of a forward-secure shared secret is protected
 from eavesdroppers and man-in-the-middle (MITM) attacks.

 - The negotiation is reliable: no attacker can modify the
 negotiation communication without being detected by the parties to
 the communication.

 - The state of a CCNxKE session can be securely migrated between an
 endpoint performing authentication and that which provides content
 using a "move token." This allows authentication and
 authorization to be separated from encryption for a session,
 enabling different systems to complete these steps.

 Usage of CCNxKE is entirely independent of upper-layer application
 protocols. CCNxKE may be used for any purpose that requires producer
 authentication and shared emphemeral forward-secure keys.

 CCNxKE also introduces a new type of cookie based on reverse hash
 chains [HASHCHAIN] to help limit the amount of significant server
 work done in response to a client or consumer Interest. TCP-based
 protocols, such as TLS [TLS13], use the TCP 3-way handshake for such
 proof. UDP-based protocols, such as QUIC [QUIC] and DTLS 1.2
 [DTLS12], use an optional session address token or cookie that must
 be presented by the client (consumer) to prove ownership of an
 address during a key exchange procedure. Without source addresses,
 our cookie technique ensures that the same entity which requested
 server information, e.g., the public configuration data, is the same
 entity that wishes to complete a key exchange.

 The main contribution of this work is adapting key exchange
 principles to the pull-based CCNx communication model. CCNxKE only
 assumes that a consumer knows a first name prefix to initiate the key
 exchange. The first Interest does not need to be a CCNxKE packet --
 the producer can signal back to the consumer that it requires a
 transport protocol using CCNxKE in the response.

Mosko, et al. Expires May 4, 2017 [Page 4]

Internet-Draft CCNxKE October 2016

 This specification does not subsume other ICN-compliant key exchange
 protocols. Nor does its existence imply that all encryption in an
 ICN must be based on sessions. It was designed specifically to solve
 the problem of session-based encryption in ICN.

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 The following terms are used:

 Consumer/Client: The CCN consumer initiating the CCNxKE key exchange
 via a first Interest.

 Producer/Server: The CCN producer receiving or accepting the CCNxKE
 key exchange request request Interest.

 Sender: An endpoint that originates a message.

 Receiver: An endpoint that is receiving messages.

 Peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 Connection: A network path of n >= 1 hops between the consumer and
 producer.

 Endpoint: Either the consumer or producer of the connection.

 Handshake: A series of message exchanges between two peers that is
 used to perform a task (e.g., perform key exchange and derivation).

 Session: An association between a consumer and a producer resulting
 from a CCNxKE handshake.

 DH: A Diffie Hellman key exchange procedure [RFC2631] [DH].

 Key Share: One half of the shared-secret provided by one peer
 performing a DH key exchange.

 Forward-secure: The property that compromising any long-term secrets
 (e.g., cryptographic keys) does not compromise any session keys
 derived from those long-term secrets.

Mosko, et al. Expires May 4, 2017 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2631

Internet-Draft CCNxKE October 2016

 CONFIG information: A data structure created by a producer which
 contains long-term cryptographic material and associated information
 needed by a client to initiate a key-exchange with the producer.

 HELLO exchange: An exchange between a consumer and producer wherein
 the consumer retrieves the CONFIG information from the producer.

 Payload: The payload section of a CCNxMessage as defined in
 [CCNxMessages].

 KEPayload: A payload for information used in the CCNxKE protocol
 which is a generic key-value store. The KEPayload is _not_ the
 CCNxMessage payload.

 CCNxName: A CCNxName as defined in [CCNxMessages].

 Semi-static: Short-term.

 Short-term Secret (SS): A secret which is derived from the server's
 semi-static DH share and the client's fresh DH share.

 Forward-secure Secret (FSK): A secret which is derived from fresh
 (i.e., generated on demand at random) DH shares from both the
 consumer and producer for the given connection.

 HKDF: Hash-based key-derivation function [RFC5869].

2. Goals

 The goals of the CCNxKE protocol, in order of priority, are as
 follows:

 1. Cryptographic security: CCNxKE should be used to securely
 establish a session and all related shared secrets between two
 peers. Cryptographic properties of interest include: (a)
 forward-secure session key derivation and (b) (state and
 computational) denial-of-service prevention at the producer (see
 [RFC4987]) that is no worse than DTLS 1.2 [DTLS12]}. For property
 (a), different keys (and relevant algorithm parameters such as
 IVs) are established for each communication direction, i.e., from
 consumer to producer and producer to consumer. For property (b),
 we use a new type of stateless cookie inspired by that of DTLS
 1.2.

 2. Interoperability: Independent programmers should be able to
 develop applications utilizing CCNxKE that can successfully
 exchange cryptographic parameters without knowledge of one
 another's code.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc4987

Mosko, et al. Expires May 4, 2017 [Page 6]

Internet-Draft CCNxKE October 2016

 3. Extensibility: CCNxKE seeks to provide a framework into which new
 public key and symmetric key methods and algorithms can be
 incorporated without breaking backwards compatibility or
 requiring all clients to implement new functionality. Moreover,
 the protocol should be able to support a variety of peer
 authentication protocols, e.g., EAP-TLS, EAP-PWD, or a simple
 challenge-response protocol.

 4. Relative efficiency: CCNxKE tries to create sessions with minimal
 computation, bandwidth, and message complexity. In particular,
 it seeks to create sessions with as few end-to-end round trips as
 possible, and also provide support for accelerated session
 establishment and resumption when appropriate. At most 2 round-
 trip-times (RTTs) should be used to establish a session key, with
 the possibility of 1-RTT accelerated starts and resumption.

3. Scope

 This document and the CCNxKE protocol are influenced by the TLS 1.3
 [TLS13], QUIC [QUIC], and DTLS 1.2 [DTLS12] protocols. The reader,
 however, does not need a detailed understanding of those protocols to
 understand this document. Moreover, where appropriate, references to
 related protocols are made for brevity and technical clarity. This
 document is intended primarily for readers who will be implementing
 the protocol and for those doing cryptographic analysis of it. The
 specification has been written with this in mind and it is intended
 to reflect the needs of those two groups.

 Unlike TLS, this document does not specify the transport protocol.
 It specifies the establishment of a session ID and shared keys.
 Other documents specify the use of CCKxKE within a transport
 protocol.

 This document is not intended to supply any details of service
 definition or of interface definition, although it does cover select
 areas of policy as they are required for the maintenance of solid
 security.

4. Presentation Language

 This document uses a presentation language of remote calls (i.e.
 packet messages) similar to the format used by TLS [TLS13].

5. CCNxKE Overview

Mosko, et al. Expires May 4, 2017 [Page 7]

Internet-Draft CCNxKE October 2016

5.1. Connection Establishment Latency

 CCNxKE operates in three rounds, where each round requires a single
 RTT to complete. The full execution of the protocol therefore
 requires 2 RTTs before a session is fully established. The full
 version is used when consumers have no a priori information about the
 producer. An accelerated one round version is used when the consumer
 has valid configuration information and a source cookie from the
 producer; this variant requires 1 RTT before a session is
 established.

5.2. Connection Migration and Resumption

 CCN end hosts lack the notion of addresses. Thus, the producer
 endpoint for a given execution of the CCNxKE protocol is one which
 can authoritatively serve as the owner of a particular namespace.
 For example, a consumer may wish to establish a session with a
 producer who owns the /company/foo namespace. The specific end host
 which partakes in the protocol instance is not specified, by virtue
 of the fact that all CCNxKE messages are based on well-defined names.
 This enables the producer end-host which partakes in the protocol to
 change based on the name of the CCNxKE messages. Consequently, to
 maintain correctness, it is important that a single execution of the
 protocol operates within the same trusted context; this does not mean
 that the same producer end-host is required to participate in all
 three steps of the protocol. Rather, it means that the end-host
 responding to a CCNxKE message must be trusted by the consumer to
 complete the exchange. CCNxKE is designed to enable this sort of
 producer migration.

 For example, a consumer may use an initial name like '/parc/
 index.html' that works like an IP any cast address and could got to
 one of several systems. CCNxKE allows the responding endpoint to
 include a localized name to ensure that subsequent messages from the
 consumer come back to the same producer. CCNxKE also allows the key
 exchange peer to securely hand-off the session to a content producer
 peer via another name and session token once the client is
 authenticated and keying material is exchanged.

5.3. Re-Transmissions, Timeouts, and Replay Prevention

 CCNxKE timeouts and retransmissions are handled using the approach in
 [RFC6347]. One primary difference is that timer values may need to
 be adjusted (elongated) due to prefix shifts and the need for a
 producer to transfer security information between different machines.

https://datatracker.ietf.org/doc/html/rfc6347

Mosko, et al. Expires May 4, 2017 [Page 8]

Internet-Draft CCNxKE October 2016

 Replay attack prevention is also an optional feature, and if used,
 MAY be done using one of the following two approaches at the receiver
 (producer):

 - IPSec AH [RFC4302] and ESP [RFC4303] style replay detection based
 on sliding windows and monotonically increasing sequence numbers
 for windows. Note that the sliding window inherently limits the
 performance of the protocol to the window size, since only a
 finite number of messages may be received within a given window
 (based on the window size).

 - The optimized anti-replay algorithm of [RFC6479].

5.4. Loss Sensitivity

 CCNxKE messages are transferred using standard CCN Interest and
 Content Objects and are therefore subject to loss as any datagram.
 This means that traffic encrypted with keys derived from CCNxKE must
 be stateless. They cannot depend on in-order arrival. This problem
 is solved by two mechanisms: (1) by prohibiting stream ciphers of any
 kind and (2) adding sequence numbers to each message that allow the
 receiver to identify and use the correct cryptographic state to
 decrypt the message. Moreover, sequence numbers permit anti-replay
 mechanisms similar to those used in DTLS [DTLS12] as mentioned above.

6. The CCNxKE Protocol

 This section describes the CCNxKE protocol in detail at the message
 level. The specific encoding of those messages is given later.
 CCNxKE could be adapted to different wire format encodings, such as
 those used by the NDN protocol.

 The following assumptions are made about peers participating in the
 CCNxKE protocol:

 - Consumers know the namespace prefix of the producer for which they
 wish to execute the CCNxKE protocol.

 - CCNxKE protocol information is carried in a distinguished field
 outside of the payload of CCN messages. This is done to
 distinguish key exchange material with application data in a
 message. This is necessary for 1 RTT packets that carry both
 keying material and application payload.

 - CCNxKE does not require any special behavior of intermediate
 systems to forward packets.

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc6479

Mosko, et al. Expires May 4, 2017 [Page 9]

Internet-Draft CCNxKE October 2016

 - CCNxKE packets generally should not be cached for significant
 periods of time, as use normal protocol methods to limit caching.
 Part of this is achieved through the use of consumer-specific
 nonces in names.

6.1. Round Overview

 CCNxKE is composed of three rounds. The purpose of each round is
 described below.

 - Round 1: Perform a bare HELLO exchange to obtain the extensions
 (parameters) for the key exchange provided by the producer and a
 source cookie to prove ownership of the "source" of the request.

 - Round 2: Perform the initial FULL-HELLO exchange to establish a
 forward-secure key used for future communication, i.e., Interest
 and Content Object exchanges in the context of the newly
 established session.

 - Round 3: Send the first bit of application data and (optionally)
 transfer resumption cookie(s) from the producer to the consumer.

 Conceptually, there are two secrets established during a single
 execution of CCNxKE:

 - Static Secret (SS): A secret which is derived in one of two ways:
 (a) from the client and server ephemeral key shares and (b) from
 the server's semi-static share and the client's ephemeral key
 share. Keying material derived from SS in option (a) is not
 forward secure.

 - Ephemeral Secret (ES): A secret which is derived from both the
 client and server ephemeral key shares.

 Depending on the mode in which CCNxKE is used, these secrets can be
 established in a variety of ways. Key derivation details are
 outlined in Section Section 9.

 All secrets are derived with the appropriate amount of randomness
 [RFC4086]. An overview of the messages sent in each of the three
 rounds to establish and use these secrets is shown in Figure Figure 1
 below. This diagram omits some parts of each message for brevity.

 Consumer Producer

 HELLO:
 + SourceChallenge
 I[/prefix/random-1]

https://datatracker.ietf.org/doc/html/rfc4086

Mosko, et al. Expires May 4, 2017 [Page 10]

Internet-Draft CCNxKE October 2016

 -------->
 HELLO-REJECT:
 + Timestamp
 + SourceCookie
 + pinned-prefix*
 + ServerChallenge*
 + ServerConfiguration*

 CO[/prefix/random-1]
 <---------
 FULL-HELLO:
 + ClientKeyShare
 + SourceCookie
 + SourceProof
 + Timestamp
 I[/pinned-prefix/random-2]
 -------->
 HELLO-ACCEPT:
 + ServerKeyShare
 + SessionID
 + [CertificateRequest*]
 + [CertificateVerify*]
 + [MovePrefix*, MoveToken)*]
 + [Finished]
 CO[/pinned-prefix/random-2]
 <--------
 key exchange complete
 Payload:
 + MoveToken*
 + MoveProof*
 + [ConsumerData]

 I[/prefix/SessionID/[...]]
 -------->
 + NewSessionID*
 + NewSessionIDTag*
 Payload:
 [ProducerData]
 CO[/prefix/SessionID/[...]]
 <--------

 Repeat with data <--------> Repeat with data

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from the short-term secret (SS).

Mosko, et al. Expires May 4, 2017 [Page 11]

Internet-Draft CCNxKE October 2016

 () Indicates messages protected using keys
 derived from the ephemeral secret (ES).

 [] Indicates messages protected using keys
 derived from the traffic secret (TS).

 Figure 1: High-level message flow for full CCNxKE protocol with a
 maximum 2-RTT delay.

 In the following sections, we will describe the format of each round
 in this protocol in more detail.

 We do not specify the encoding of CCNxKE data sent in Interest and
 Content Object payloads. Any viable encoding will suffice, so long
 as both parties agree upon the type. For example, the payload could
 be structured and encoded as a JSON object, e.g.,

 { "ClientKeyShare" : 0xaa, "SourceCookie" : 0xbb, "SourceProof" :
 0xbb, ... }

 For now, we assume some valid encoding mechanism is used to give
 structure to message payloads. Moreover, we assume that these
 payloads are carried in a distinguished CCNxKE payload field
 contained in the Interest and Content Objects.

6.2. Round 1

 The purpose of Round 1 is to acquire a cookie to binding the exchange
 to the initial consumer and the public configuration information
 contained in the ServerConfiguration structure. This information is
 used in the second round when performing the actual key exchange. To
 that end, the format of the Round 1 message is trivial. First, the
 client issues an Interest with the following name

 /prefix/random-1

 where random-1 is a randomly generated 64-bit nonce. This interest
 carries a KEPayload with the following information:

 +-----------------+-------------------------------------+-----------+
 | HELLO Field | Description | Optional? |
 +-----------------+-------------------------------------+-----------+
SourceChallenge	A random value generated to prove	No
	ownership of the consumer's	
	"source"	
 +-----------------+-------------------------------------+-----------+

Mosko, et al. Expires May 4, 2017 [Page 12]

Internet-Draft CCNxKE October 2016

 Upon receipt of this interest, the producer responds with a HELLO-
 REJECT Content Object whose KEPayload has the following fields:

 +---------------------+---------------------------------+-----------+
 | HELLO-REJECT Field | Description | Optional? |
 +---------------------+---------------------------------+-----------+
Timestamp	Current server timestamp	No
SourceCookie	A cookie that binds the	No
	consumer's challenge to the	
	current timestamp	
PinnedPrefix	A new prefix that pins the key	Yes
	exchange to a particular server	
ServerConfiguration	The public server configuration	Yes
	information	
ServerChallenge	A random value for the consumer	Yes
	to include in its	
	CertificateVerify if the server	
	requires client authentication	
 +---------------------+---------------------------------+-----------+

 The Timestamp and SourceCookie are used in Round 2. Their derivation
 is described later. If the server provides a PinnedPrefix then the
 consumer must use this prefix in Round 2 in lieu of the Round 1 name
 prefix. (This is because the PinnedPrefix identifies a particular
 endpoint that is capable of completing the key exchange.)

 The ServerConfiguration information is a semi-static catalog of
 information that consumers may use to complete future key exchanges
 with the producer. The fields of the ServerConfiguration information
 are shown below.

Mosko, et al. Expires May 4, 2017 [Page 13]

Internet-Draft CCNxKE October 2016

 +---------------------+---------------------------------+-----------+
 | ServerConfiguration | Description | Optional? |
 | Field | | |
 +---------------------+---------------------------------+-----------+
KEXS	Supported elliptic-curve key-	No
	exchange algorithms	
AEAD	Supported AEAD algorithms	No
PUBS	List of public values (for key	No
	exchange algorithm) encoded	
	appropriately for the given	
	group	
EXPRY	Expiration timestamp (i.e.,	No
	longevity of the	
	ServerConfiguration structure)	
VER	Version of the CONFIG structure	Yes
CERT	Server certificate	No
SIG	Signature produced by the	No
	server over the entire	
	ServerConfiguration message	
 +---------------------+---------------------------------+-----------+

 The KEXS is a data structure that enumerates the elliptic curve key-
 exchange algorithms that are supported by the producer (see [QUIC]
 for more details). Currently, only the following curves are
 supported:

 - Curve25519

 - P-256

 Selection criteria for these curves is given at
http://safecurves.cr.yp.to/.

 The AEAD structure enumerates the supported AEAD algorithms used for
 symmetric-key authenticated encryption after the session has been
 established. Currently, the only supported algorithms are:

 - AES-GCM-(128,192,256) [GCM]: a 12-byte tag is used, where the
 first four bytes are taken from the FSK key-derivation step and
 the last eight are taken from the initial consumer nonce.

 - Salsa20 [SALSA20] (stream cipher) with Poly1305 (MAC).

http://safecurves.cr.yp.to/

Mosko, et al. Expires May 4, 2017 [Page 14]

Internet-Draft CCNxKE October 2016

 The key sizes and related parameters are provided with the AEAD tag
 in the CONFIG structure.

 The PUBS structure contains the public values for the initial key
 exchange. Both Curve25519 and P-256 provide their own set of
 accepted parameters. Thus, the only values provided here are the
 random curve elements used in the DH operation.

 The EXPRY value is an absolute timestamp that indicates the longevity
 of the ServerConfiguration.

 The CERT and SIG values contain the server's certificate and a
 signature generated over the entire ServerConfiguration field. This
 signature is generated with the corresponding private key.

6.3. Round 2

 The purpose of Round 2 is to perform the initial FULL-HELLO exchange
 to establish a forward-secure key used for future communication. It
 is assumed that the consumer already has the ServerConfiguration
 information that is provided from the producer in Round 1. It is
 also assumed that the consumer has a

 Moreover, assume that nonce2 is a ephemeral nonce provided by the
 producer in Round 1. Then, the consumer issues an Interest with the
 following name:

 /prefix/random-2

 and a KEPayload with the following information:

 +----------------------+--------------------------------+-----------+
 | FULL-HELLO Field | Description | Optional? |
 +----------------------+--------------------------------+-----------+
ClientKeyShare	The client's key share for the	No
	key exchange	
SourceCookie	SourceCookie provided by the	No
	server in Round 1	
SourceProof	The SourceCookie construction	No
	proof provided by the client	
Timestamp	The timestamp provided by the	No
	server in Round 1	
ConsumerPrefix	The consumer's prefix that can	Yes
	be used for the producer to	

Mosko, et al. Expires May 4, 2017 [Page 15]

Internet-Draft CCNxKE October 2016

	send interests to the consumer	
PreSharedKey	A pre-shared key that can be	Yes
	configured between a consumer	
	and producer	
ResumptionCookie	The ResumptionCookie derived	Yes
	from a past session	
{MoveChallenge}	A move challenge generated	Yes
	identically to the	
	SourceChallenge	
{AlgChoice}	Algorithm (KEXS and AEAD)	No
	options choice (a list of tags	
	echoed from the	
	ServerConfiguration)	
{Proof}	Proof of demand (i.e., a	No
	sorted list of types of proof	
	the consumer will expect)	
{CCS}	Compressed certificate set	No
	that the consumer possesses	
{ConsumerData}	Application data encrypted	Yes
	under a key derived from SS	
	(in a 1-RTT exchange)	
ServerNameIndication	A server name indication (as a	Yes
	CCNxName) defined in Section 3	
	of [RFC6066]	
Certificate	The client's certificate	Yes
CertificateVerify	A signature generated over the	Yes
	entire FULL-HELLO message	
 +----------------------+--------------------------------+-----------+

 ((TODO: provide more details about each of these fields))

 Upon receipt of this interest, the producer performs the DH
 computation to compute ES and SS, decrypts all protected fields in
 the consumer's KEPayload, and validates the algorithm choice
 selection (AlgChoice). If any of these steps fail, the producer
 replies with with a HELLO-REJECT Content Object whose KEPayload
 contains a REJ flag and the reason of the error. The REJ flag and
 value are encrypted by the SS (if possible).

https://datatracker.ietf.org/doc/html/rfc6066

Mosko, et al. Expires May 4, 2017 [Page 16]

Internet-Draft CCNxKE October 2016

 If the above steps complete without failure or error, then the
 producer responds with a Content Object whose KEPayload has the
 following fields:

 +--------------------------+----------------------------+-----------+
 | HELLO-ACCEPT Field | Description | Optional? |
 +--------------------------+----------------------------+-----------+
SessionID	Cleartext session	No
	identifier	
ServerKeyShare	Server's key share for the	No
	ES derivation	
{ServerExtensions}	Additional extensions	Yes
	provided by the server,	
	encrypted under ES	
[ResumptionCookie]	Resumption cookie	Yes
	encrypted under a TS-	
	derived key	
{(MovePrefix,MoveToken)}	Third CCNxName prefix and	Yes
	token to use when moving	
	to session establishment	
CertificateRequest*	Server certificate that	Yes
	matches the type of proof	
	provided by the client	
CertificateVerify*	Signature generated over	Yes
	the entire HELLO-ACCEPT	
	message	
 +--------------------------+----------------------------+-----------+

 If a MovePrefix and MoveToken tuple is provided then in the HELLO-
 ACCEPT message then a CertificateVerify (signature) MUST also be
 provided in the response.

6.4. Round 3

 In Round 3, the consumer sends interests whose name and optional
 Payload are encrypted using one of the forward-secure keys derived
 after Round 2. In normal operation, the producer will respond with
 Content Objects whose Payloads are encrypted using a different
 forward-secure key. That is, interests and Content Objects are
 encrypted and authenticated using two separate keys. The producer
 may also optionally provide a new resumption cookie (RC) with a
 Content Object response. This is used to keep the consumer's

Mosko, et al. Expires May 4, 2017 [Page 17]

Internet-Draft CCNxKE October 2016

 resumption cookie fresh and to also support 0 RTT resumption. In
 this case, the producer's Content Object response has the following
 fields:

 - Payload: the actual Content Object payload data encrypted with the
 producer's forward-secure key.

 - ResumptionCookie: A new resumption cookie to be used for resuming
 this session in the future.

 The producer is free to choose the frequency at which new resumption
 cookies are issued to the consumer.

 The producer may also reply with a new SessionID. This is done if
 the client presented a MoveToken and MoveProof. A NewSessionID must
 be accompanied with a NewSessionIDTag, which is equal to the HMAC of
 NewSessionID computed with the traffic-secret key. A client MUST
 then use NewSessionID instead of SessionID after verifying the
 NewSessionIDTag.

7. Alternative Exchanges

 CCNxKE also supports one-round key exchange and session resumption.
 These variants are outlined below. The key material differences are
 described later. In these variants, we use message
 ExchangeSourceCookie to denote the following exchange:

 Consumer Producer

 HELLO:
 + SourceChallenge
 I[/prefix/random-1]
 -------->
 HELLO-REJECT:
 + Timestamp
 + SourceCookie
 ServerChallenge*
 ServerConfiguration*

 CO[/prefix/random-1]
 <---------

 Figure 2: SourceCookie exchange -- ExchangeSourceCookie.

Mosko, et al. Expires May 4, 2017 [Page 18]

Internet-Draft CCNxKE October 2016

7.1. One-RTT Exchange

 Consumer Producer
 -------->
 ExchangeSourceCookie
 <---------
 FULL-HELLO:
 + ClientKeyShare
 + SourceCookie
 + SourceProof
 + Timestamp
 + Certificate*
 + CertificateVerify*
 + {ConsumerData*}
 I[/prefix/random-2]
 -------->
 HELLO-ACCEPT:
 + ServerKeyShare
 + SessionID
 + [ServerExtensions]
 + [ResumptionCookie]
 + [CertificateRequest*]
 + [CertificateVerify*]
 + [MovePrefix*, MoveToken*]
 + [Finished]
 CO[/prefix/random-2]
 <--------
 key exchange complete
 Send encrypted data <--------> Send encrypted data

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from the short-term secret (SS).

 () Indicates messages protected using keys
 derived from the ephemeral secret (ES).

 [] Indicates messages protected using keys
 derived from the traffic secret (TS).

 Figure 3: Exchange with 1 RTT.

 As with TLS, the initial application data is protected with the

Mosko, et al. Expires May 4, 2017 [Page 19]

Internet-Draft CCNxKE October 2016

8. Resumption and PSK Mode

 In this mode, the client uses its ResumptionCookie to re-create a
 previous session. The client also provides a key share in case the
 server opts to fall back and establish a fresh key. If the server
 accepts the ResumptionCookie then it MUST issue a new SessionID and
 ResumptionCookie for future use with the client.

 Consumer Producer
 -------->
 ExchangeSourceCookie
 <---------
 FULL-HELLO:
 + ClientKeyShare
 + SourceCookie
 + SourceProof
 + Timestamp
 + PreSharedKey
 + ResumptionCookie
 I[/prefix/random-2]
 -------->
 HELLO-ACCEPT:
 + ServerKeyShare
 + SessionID
 + [ServerExtensions]
 + [ResumptionCookie]
 + [MovePrefix*, MoveToken*]
 + [Finished]
 CO[/prefix/random-2]
 <--------
 key exchange complete
 Send encrypted data <--------> Send encrypted data

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from the short-term secret (SS).

 () Indicates messages protected using keys
 derived from the ephemeral secret (ES).

 [] Indicates messages protected using keys
 derived from the traffic secret (TS).

 Figure 4: Exchange with 1 RTT.

Mosko, et al. Expires May 4, 2017 [Page 20]

Internet-Draft CCNxKE October 2016

9. Secret Derivation

 In this section we describe how secrets used in the protocol are
 derived. We cover the SourceCookie, MoveToken, SessionID,
 ResumptionCookie, and the actual traffic keys.

9.1. SourceCookie Derivation

 The intention of the SourceCookie is to prove that a client is
 sending interests from a legitimate location before any server
 computation is done. Without this, a Denial of Service attack could
 be carried out by sending interests to the server with the intention
 of triggering wasted computation. TCP-based protocols prevent this
 with the SYN-flood cookie mechanism. Protocols based on UDP use
 cookies that bind to the client address [DTLS12]. Since CCN lacks
 any notion of a source address, these cookie mechanisms do not apply.
 Instead, we need a way for clients to prove that they initiated a key
 exchange from the "same origin." We now describe the cookie
 mechanism that gives us this guarantee.

 Instead of a source address, a SourceCookie is computed using a
 challenge provided by a consumer. To create this challenge, a
 consumer first generates a a randomly generated 256-bit string X.
 The consumer then computes SourceChallenge = SHA256(X). Upon receipt
 of this challenge, the producer generates a SourceCookie as follows:

 SourceCookie = HMAC(k, SourceChallenge || timestamp)

 where timestamp is the current server timestamp and k is the server's
 secret key. To prove ownership of the "source," the consumer then
 provides the SourceCookie and a SourceProof in the round 2 Interest.
 The SourceProof is set to the value X used to derive the
 SourceChallenge. Upon receipt of the SourceProof, the server
 verifies the following equality:

 SourceCookie = HMAC(k, SHA256(SourceProof) || timestamp)

 If this check passes, then the server continues with the
 computationally expensive part of the key exchange protocol.

9.2. Move Derivation

 The MoveChallenge and MoveProof are computed identically to the
 SourceChallenge and SourceProof. The MoveToken, however, is left as
 an opaque bit string. Extensions may be specified to describe how to
 compute this value.

Mosko, et al. Expires May 4, 2017 [Page 21]

Internet-Draft CCNxKE October 2016

9.3. SessionID and ResumptionCookie Properties, Derivation, and Usage

 The purpose of the session identifier SessionID is to uniquely
 identify a single session for the producer and consumer. A Producer
 MAY use a random bit string or MAY use the method described in this
 section or MAY use another proprietary method to distinguish clients.

 We provide a more secure creation of the SessionID since it is used
 with the ResumptionCookie derivation (defined later). Specifically,
 the SessionID is derived as the encryption of the hash digest of a
 server secret, TS, and an optional prefix (e.g., MovePrefix).

 Encryption is done by the using a long-term secret key owned by the
 server used for only this purpose, i.e., it is not used for consumer
 traffic encryption. Mechanically, this derivation is:

 SessionID = Enc(k1, H(TS || (Prefix3))),

 where k1 is the long-term producer key.

 For the resumption cookie, we require that it must be able to be used
 to recover the TS for a given session. Without TS, correct session
 communication is not possible. We derive it as the encryption of the
 hash digest of the server secret, TS, and the optional (MovePrefix,
 MoveToken) tuple (if created for the session). The producer must use
 a long-term secret key for this encryption. Mechanically, this
 derivation is:

 ResumptionCookie = Enc(k2, TS || ((Prefix3 || MoveToken))),

 where k2 is again a long-term producer key. Note that it may be the
 case that k1 = k2 (see above), though this is not required.

 With this SessionID and ResumptionCookie, the consumer then resumes a
 session by providing both the SessionID and ResumptionCookie to the
 producer. This is done to prove to the producer that the consumer
 who knows the SessionID is also in possession of the correct
 ResumptionCookie. The producer verifies this by computing

 (TS || ((Prefix3 || MoveToken))) = Dec(k2, ResumptionCookie)

 and checking the following equality

 SessionID = Enc(k1, H(TS || (Prefix3)))

 If equality holds, the producer uses the TS recovered from
 ResumptionCookie to re-initialize the previous session with the
 consumer.

Mosko, et al. Expires May 4, 2017 [Page 22]

Internet-Draft CCNxKE October 2016

9.4. Key Derivation

 CCNxKE adopts the key schedule and derivation techniques defined in
 TLS 1.3 [TLS13]. Specifically, it uses the SS and ES to establish a
 common master secret (MS) and, from that, the traffic secret (TS).
 These dependencies are shown below.

 +------+ +------+
 | KE-1 | | KE-2 |
 +------+ +----+-+
 | |
 | |
 | |
 +---v--+ +----v-+
 | SS +---+ +--+ ES |
 +------+ | | +------+
 | |
 | |
 +-v----v-|
 | MK |
 +---+----+
 |
 |
 |
 +-v--+
 | TS |
 +----+

 In this figure, KE-1 and KE-2 are two "sources" of keying material.
 The following table shows what these two sources are in different key
 exchange scenarios.

 +-------------+------------------------------+----------------------+
 | Key | KE-1 | KE-2 |
 | Exchange | | |
 +-------------+------------------------------+----------------------+
Full	ClientKeyShare and	ClientKeyShare and
handshake	ServerKeyShare DH	ServerKeyShare DH
Handshake	ClientKeyShare and	ClientKeyShare and
with 1-RTT	ServerConfiguration public	ServerKeyShare DH
	share DH	
PSK	Pre-shared key	Pre-shared key
 +-------------+------------------------------+----------------------+

 Given the values for SS and ES, the remaining derivation steps are
 below as defined in [TLS13]. They are repeated here for posterity.

Mosko, et al. Expires May 4, 2017 [Page 23]

Internet-Draft CCNxKE October 2016

 1. xSS = HKDF-Extract(0, SS). Note that HKDF-Extract always
 produces a value the same length as the underlying hash function.

 2. xES = HKDF-Extract(0, ES)

 3. mSS = HKDF-Expand-Label(xSS, "expanded static secret",
 handshake_hash, L)

 4. mES = HKDF-Expand-Label(xES, "expanded ephemeral secret",
 handshake_hash, L)

 5. master_secret = HKDF-Extract(mSS, mES)

 6. traffic_secret_0 = HKDF-Expand-Label(master_secret, "traffic
 secret", handshake_hash, L)

 In all computations, the value "handshake_hash" is defined as the
 SHA256 hash digest of all CCNxKE messages contained up to the point
 of derivation. More details are given in Section 7.3.1 of [TLS13].

 Updating the traffic secret using the re-key message (defined later)
 increments traffic_secret_N to traffic_secret_(N+1). This update
 procedure works as follows:

 traffic_secret_N+1 = HKDF-Expand-Label(traffic_secret_N, "traffic
 secret", "", L)

9.5. Secret Generation and Lifecycle

 The secrets (keys and IVs) used to encrypt and authenticate traffic
 are derived from the traffic secret. The explicit derivation
 formula, as is defined in [TLS13], is as follows:

 secret = HKDF-Expand-Label(Secret, phase + ", " + purpose,
 handshake_context, key_length)

 In this context, secret can be a key or IV. This formula is used
 when deriving keys based on a non-forward-secure SS and the forward-
 secure TS. The following table enumerates the values for "phase",
 and "handshake_context" to be used when defining keys for different
 purposes.

Mosko, et al. Expires May 4, 2017 [Page 24]

Internet-Draft CCNxKE October 2016

 +-------------+--------+------------------+-------------------------+
 | Record Type | Secret | Phase | Handshake Context |
 +-------------+--------+------------------+-------------------------+
1-RTT	xSS	"early handshake	HELLO +
Handshake		key expansion"	ServerConfiguration +
			Server Certificate
1-RTT Data	xSS	"early	HELLO +
		application data	ServerConfiguration +
		key expansion"	Server Certificate
Application	TS	"application	HELLO ... Finished
Data		data key	
		expansion"	
 +-------------+--------+------------------+-------------------------+

 Moreover, the following table indicates the values of "purpose" used
 in the generation of each secret.

 +------------------+--------------------+
 | Secret | Purpose |
 +------------------+--------------------+
 | Client Write Key | "client write key" |
 | | |
 | Server Write Key | "server write key" |
 | | |
 | Client Write IV | "client write IV" |
 | | |
 | Server Write IV | "server write IV" |
 +------------------+--------------------+

 ((TODO: should we add examples for each of the above variants?))

10. Re-Key Message

 Either the client and server can trigger a key update by sending an
 Interest or Content Object with a KEPayload field containing the flag
 KeyUpdate. The KEPayload will be encrypted by the traffic key. Upon
 receipt, the recipient MUST update the traffic secret as defined
 above and re-compute the traffic encryption and authentication keys.
 The previous traffic key must be securely discarded.

11. Application Data Protocol

 Once traffic keys and the associated IVs are derived from the CCNxKE
 protocol, all subsequent Interest and Content Object messages are
 encrypted. Packet encryption uses the TLV encapsulation mechanism
 specified in [TLVENCAP]. For Interest encryption, the Salt in

Mosko, et al. Expires May 4, 2017 [Page 25]

Internet-Draft CCNxKE October 2016

 [TLVENCAP] is set to the packet sequence number. The same
 substitution is done for Content Object encryption. Similarly, the
 KeyId field is substituted with the SessionID derived by the CCNxKE
 protocol. Packet sequence numbers are 64-bit numbers initialized to
 0 when after the traffic secret is calculated. Each message
 increments and uses the sequence number when sending a new datagram
 (Interest). The sequence number for an Interest matches that of the
 Content Object response.

12. Security Considerations

 For CCNxKE to be able to provide a secure connection, both the
 consumer and producer systems, keys, and applications must be secure.
 In addition, the implementation must be free of security errors.

 The system is only as strong as the weakest key exchange and
 authentication algorithm supported, and only trustworthy
 cryptographic functions should be used. Short public keys and
 anonymous servers should be used with great caution. Implementations
 and users must be careful when deciding which certificates and
 certificate authorities are acceptable; a dishonest certificate
 authority can do tremendous damage.

13. References

13.1. Normative References

 [CCNxMessages]
 Mosko, M. and I. Solis, "CCNx Messages in TLV Format",
 January 2016, <https://tools.ietf.org/html/draft-irtf-

icnrg-ccnxmessages-01>.

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [DTLS12] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", January 2012,
 <https://tools.ietf.org/html/rfc6347>.

 [ECDSA] American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA)",
 ANSI ANS X9.62-2005, November 2005.

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC",
 NIST Special Publication 800-38D, November 2007.

https://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages-01
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages-01
https://tools.ietf.org/html/rfc6347

Mosko, et al. Expires May 4, 2017 [Page 26]

Internet-Draft CCNxKE October 2016

 [QUIC] Iyengar, J. and I. Swett, "QUIC: A UDP-Based Secure and
 Reliable Transport for HTTP/2", December 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method",
RFC 2631, DOI 10.17487/RFC2631, June 1999,

 <http://www.rfc-editor.org/info/rfc2631>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 DOI 10.17487/RFC4302, December 2005,
 <http://www.rfc-editor.org/info/rfc4302>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <http://www.rfc-editor.org/info/rfc4303>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6479] Zhang, X. and T. Tsou, "IPsec Anti-Replay Algorithm
 without Bit Shifting", RFC 6479, DOI 10.17487/RFC6479,
 January 2012, <http://www.rfc-editor.org/info/rfc6479>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2631
http://www.rfc-editor.org/info/rfc2631
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4302
http://www.rfc-editor.org/info/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
http://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc4987
http://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6479
http://www.rfc-editor.org/info/rfc6479

Mosko, et al. Expires May 4, 2017 [Page 27]

Internet-Draft CCNxKE October 2016

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM v. 21, n. 2, pp.
 120-126., February 1978.

 [SALSA20] Bernstein, D., "Salsa20 specification",
 www.http://cr.yp.to/snuffle/spec.pdf , April 2005.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", December 2015, <https://tools.ietf.org/html/

draft-ietf-tls-tls13-11>.

 [TLVENCAP]
 Mosko, M. and C. Wood, "CCNx Packet Encapsulation", n.d.,
 <https://github.com/PARC/ccnx-tlvencap-rfc>.

13.2. Informative References

 [HASHCHAIN]
 L. Lamport, "Password Authentication with Insecure
 Communication", ANSI Communications of the ACM 24.11, pp
 770-772, November 1981.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <http://www.rfc-editor.org/info/rfc5077>.

Authors' Addresses

 M. Mosko
 PARC

 EMail: marc.mosko@parc.com

 Ersin Uzun
 PARC

 EMail: ersin.uzun@parc.com

 Christopher A. Wood
 PARC

 EMail: christopher.wood@parc.com

Mosko, et al. Expires May 4, 2017 [Page 28]

https://tools.ietf.org/html/draft-ietf-tls-tls13-11
https://tools.ietf.org/html/draft-ietf-tls-tls13-11
https://github.com/PARC/ccnx-tlvencap-rfc
https://datatracker.ietf.org/doc/html/rfc5077
http://www.rfc-editor.org/info/rfc5077

