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Abstract

   This document describes Post Sockets, an asynchronous abstract
   programming interface for the atomic transmission of messages in an
   inherently multipath environment.  Post replaces connections with
   long-lived associations between endpoints, with the possibility to
   cache cryptographic state in order to reduce amortized connection
   latency.  We present this abstract interface as an illustration of
   what is possible with present developments in transport protocols
   when freed from the strictures of the current sockets API.
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   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The BSD Unix Sockets API's SOCK_STREAM abstraction, by bringing
   network sockets into the UNIX programming model, allowing anyone who
   knew how to write programs that dealt with sequential-access files to
   also write network applications, was a revolution in simplicity.  It
   would not be an overstatement to say that this simple API is the
   reason the Internet won the protocol wars of the 1980s.  SOCK_STREAM
   is tied to the Transmission Control Protocol (TCP), specified in 1981
   [RFC0793].  TCP has scaled remarkably well over the past three and a
   half decades, but its total ubiquity has hidden an uncomfortable
   fact: the network is not really a file, and stream abstractions are
   too simplistic for many modern application programming models.

   In the meantime, the nature of Internet access, and the variety of
   Internet transport protocols, is evolving.  The challenges that new
   protocols and access paradigms present to the sockets API and to
   programming models based on them inspire the design elements of a new
   approach

   Many end-user devices are connected to the Internet via multiple
   interfaces, which suggests it is time to promote the paths by which
   two endpoints are connected to each other to a first-order object.
   While implicit multipath communication is available for these
   multihomed nodes in the present Internet architecture with the
   Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically
   designed to hide multipath communication from the application for
   purposes of compatibility.  Since many multihomed nodes are connected
   to the Internet through access paths with widely different properties
   with respect to bandwidth, latency and cost, adding explicit path
   control to MPTCP's API would be useful in many situations.
   Applications also need control over cooperation with path elements
   via mechanisms such as that proposed by the Path Layer UDP Substrate
   (PLUS) effort (see [I-D.trammell-plus-statefulness] and
   [I-D.trammell-plus-abstract-mech]).

   Another trend straining the traditional layering of the transport
   stack associated with the SOCK_STREAM interface is the widespread
   interest in ubiquitous deployment of encryption to guarantee
   confidentiality, authenticity, and integrity, in the face of
   pervasive surveillance [RFC7258].  Layering the most widely deployed
   encryption technology, Transport Layer Security (TLS), strictly atop
   TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
   API) requires the encryption-layer handshake to happen after the
   transport-layer handshake, which increases connection setup latency

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7258
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   on the order of one or two round-trip times, an unacceptable delay
   for many applications.  Integrating cryptographic state setup and
   maintenance into the path abstraction naturally complements efforts
   in new protocols (e.g.  QUIC [I-D.ietf-quic-transport]) to mitigate
   this strict layering.

   To meet these challenges, we present the Post-Socket Application
   Programming Interface (API), described in detail in this work.  Post
   is designed to be language, transport protocol, and architecture
   independent, allowing applications to be written to a common abstract
   interface, easily ported among different platforms, and used even in
   environments where transport protocol selection may be done
   dynamically, as proposed in the IETF's Transport Services working
   group.

   Post replaces the traditional SOCK_STREAM abstraction with an Message
   abstraction, which can be seen as a generalization of the Stream
   Control Transmission Protocol's [RFC4960] SOCK_SEQPACKET service.
   Messages are sent and received on Carriers, which logically group
   Messages for transmission and reception.  For backward compatibility,
   these Carriers can also be opened as Streams, presenting a file-like
   interface to the network as with SOCK_STREAM.

   Post replaces the notions of a socket address and connected socket
   with an Association with a remote endpoint via set of Paths.
   Implementation and wire format for transport protocol(s) implementing
   the Post API are explicitly out of scope for this work; these
   abstractions need not map directly to implementation-level concepts,
   and indeed with various amounts of shimming and glue could be
   implemented with varying success atop any sufficiently flexible
   transport protocol.

   The key features of Post as compared with the existing sockets API
   are:

   o  Explicit Message orientation, with framing and atomicity
      guarantees for Message transmission.

   o  Asynchronous reception, allowing all receiver-side interactions to
      be event-driven.

   o  Explicit support for multistreaming and multipath transport
      protocols and network architectures.

   o  Long-lived Associations, whose lifetimes may not be bound to
      underlying transport connections.  This allows associations to
      cache state and cryptographic key material to enable fast
      resumption of communication, and for the implementation of the API

https://datatracker.ietf.org/doc/html/rfc4960
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      to explicitly take care of connection establishment mechanics such
      as connection racing [RFC6555] and peer-to-peer rendezvous
      [RFC5245].

   o  Transport protocol stack independence, allowing applications to be
      written in terms of the semantics best for the application's own
      design, separate from the protocol(s) used on the wire to achieve
      them.  This enables applications written to a single API to make
      use of transport protocols in terms of the features they provide,
      as in [I-D.ietf-taps-transports].

   This work is the synthesis of many years of Internet transport
   protocol research and development.  It is inspired by concepts from
   the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion
   [I-D.iyengar-minion-protocol], and MinimaLT[MinimaLT], among other
   transport protocol modernization efforts.  We present Post Sockets as
   an illustration of what is possible with present developments in
   transport protocols when freed from the strictures of the current
   sockets API.  While much of the work for building parts of the
   protocols needed to implement Post are already ongoing in other IETF
   working groups (e.g.  MPTCP, QUIC, TLS), we argue that an abstract
   programming interface unifying access all these efforts is necessary
   to fully exploit their potential.

2.  Abstractions and Terminology
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           +===============+
           |    Message    |
           +===============+
                 |    ^     initiate()       listen()
             send()  ready()    |               |
                 V    |         V               V
           +======================+  accept() +============+
           |                      |<---+------|            |
           |       Carrier        |    |      |  Listener  |
           |                      |----+      |            |
           +======================+           +============+
                       |        |               |
                       |        |               |
                       | +=======================+
                       | |                       | durable end-to-end
                       | |      Association      | state via many paths/
                       | |                       | policies and prefs
                       | +=======================+
                       |                 |      |
                       |                 |      |
                       |         +=========+  +=========+
                       |         |  Local  |  | Remote  |
                       |         +=========+  +=========+
                       |                 |      |
                  +===========+        +==========+
        ephemeral |           |        |          |
      transport & | Transient |------->|   Path   | properties of
     crypto state |           |        |          | address pair
                  +===========+        +==========+

         Figure 1: Abstractions and relationships in Post Sockets

   Post is based on a small set of abstractions, centered around a
   Message Carrier as the entry point for an application to the
   networking API.  The relationships among them are shown in
   Figure Figure 1 and detailed in this section.

2.1.  Message Carrier

   A Message Carrier (or simply Carrier) is a transport protocol stack-
   independent interface for sending and receiving messages between an
   application and a remote endpoint; it is roughly analogous to a
   socket in the present sockets API.

   Sending a Message over a Carrier is driven by the application, while
   receipt is driven by the arrival of the last packet that allows the
   Message to be assembled, decrypted, and passed to the application.
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   Receipt is therefore asynchronous; given the different models for
   asynchronous I/O and concurrency supported by different platforms, it
   may be implemented in any number of ways.  The abstract API provides
   only for a way for the application to register how it wants to handle
   incoming messages.

   All the Messages sent to a Message Carrier will be received on the
   corresponding Message Carrier at the remote endpoint, though not
   necessarily reliably or in order, depending on Message properties and
   the underlying transport protocol stack.

   A Message Carrier that is backed by current transport protocol stack
   state (such as a TCP connection; see Section 2.6) is said to be
   "active": messages can be sent and received over it.  A Message
   Carrier can also be "dormant": there is long-term state associated
   with it (via the underlying Association; see Section 2.3), and it may
   be able to reactivated, but messages cannot be sent and received
   immediately.

   If supported by the underlying transport protocol stack, a Message
   Carrier may be forked: creating a new Message Carrier associated with
   a new Message Carrier at the same remote endpoint.  The semantics of
   the usage of multiple Message Carriers based on the same Association
   are application-specific.  When a Message Carrier is forked, its
   corresponding Message Carrier at the remote endpoint receives a fork
   request, which it must accept in order to fully establish the new
   carrier.  Multiple message carriers between endpoints are implemented
   differently by different transport protocol stacks, either using
   multiple separate transport-layer connections, or using multiple
   streams of multistreaming transport protocols.

   To exchange messages with a given remote endpoint, an application may
   initiate a Message Carrier given its remote (see Section 2.4 and
   local (see Section 2.5) identities; this is an equivalent to an
   active open.  There are five special cases of Message Carriers, as
   well, supporting different initiation and interaction patterns,
   defined in the subsections below.

2.1.1.  Listener

   A Listener is a special case of Message Carrier which only responds
   to requests to create a new Carrier from a remote endpoint, analogous
   to a server or listening socket in the present sockets API.  Instead
   of being bound to a specific remote endpoint, it is bound only to a
   local identity; however, its interface for accepting fork requests is
   identical to that for fully fledged Message Carriers.
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2.1.2.  Source

   A Source is a special case of Message Carrier over which messages can
   only be sent, intended for unidirectional applications such as
   multicast transmitters.  Sources cannot be forked, and need not
   accept forks.

2.1.3.  Sink

   A Sink is a special case of Message Carrier over which messages can
   only be received, intended for unidirectional applications such as
   multicast receivers.  Sinks cannot be forked, and need not accept
   forks.

2.1.4.  Responder

   A Responder is a special case of Message Carrier which may receive
   messages from many remote sources, for cases in which an application
   will only ever send Messages in reply back to the source from which a
   Message was received.  This is a common implementation pattern for
   servers in client-server applications.  A Responder's receiver gets a
   Message, as well as a Source to send replies to.  Responders cannot
   be forked, and need not accept forks.

2.1.5.  Stream

   A Message Carrier may be irreversibly morphed into a Stream, in order
   to provide a strictly ordered, reliable service as with SOCK_STREAM.
   Morphing a Message Carrier into a Stream should return a "file-like
   object" as appropriate for the platform implementing the API.
   Typically, both ends of a communication using a stream service will
   morph their respective Message Carriers independently before sending
   any Messages.

   Writing a byte to a Stream will cause it to be received by the
   remote, in order, or will cause an error condition and termination of
   the stream if the byte cannot be delivered.  Due to the strong
   sequential dependence on a stream, streams must always be reliable
   and ordered.  A Message Carrier may only be morphed to a Stream if it
   uses transport protocol stack that provides reliable, ordered
   service, and only before it is used to send a Message.

2.2.  Message

   A Message is an atomic unit of communication between applications.  A
   Message that cannot be delivered in its entirety within the
   constraints of the network connectivity and the requirements of the
   application is not delivered at all.
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   Messages can represent both relatively small structures, such as
   requests in a request/response protocol such as HTTP; as well as
   relatively large structures, such as files of arbitrary size in a
   filesystem.

   In the general case, there is no mapping between a Message and
   packets sent by the underlying protocol stack on the wire: the
   transport protocol may freely segment messages and/or combine
   messages into packets.  However, a message may be marked as
   immediate, which will cause it to be sent in a single packet, if it
   will fit.

   This implies that both the sending and receiving endpoint, whether in
   the application layer or the transport layer, must guarantee storage
   for the full size of an Message.

   Messages are sent over and received from Message Carriers (see
Section 2.1).

   On sending, Messages have properties that allow the application to
   specify its requirements with respect to reliability, ordering,
   priority, idempotence, and immediacy; these are described in detail
   below.  Messages may also have arbitrary properties which provide
   additional information to the underlying transport protocol stack on
   how they should be handled, in a protocol-specific way.  These stacks
   may also deliver or set properties on received messages, but in the
   general case a received messages contains only a sequence of ordered
   bytes.

2.2.1.  Lifetime and Partial Reliability

   A Message may have a "lifetime" - a wallclock duration before which
   the Message must be available to the application layer at the remote
   end.  If a lifetime cannot be met, the Message is discarded as soon
   as possible.  Messages without lifetimes are sent reliably if
   supported by the transport protocol stack.  Lifetimes are also used
   to prioritize Message delivery.

   There is no guarantee that a Message will not be delivered after the
   end of its lifetime; for example, a Message delivered over a strictly
   reliable transport will be delivered regardless of its lifetime.
   Depending on the transport protocol stack used to transmit the
   message, these lifetimes may also be signaled to path elements by the
   underlying transport, so that path elements that realize a lifetime
   cannot be met can discard frames containing the Messages instead of
   forwarding them.
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2.2.2.  Priority

   Messages have a "niceness" - a priority among other messages sent
   over the same Message Carrier in an unbounded hierarchy most
   naturally represented as a non-negative integer.  By default,
   Messages are in niceness class 0, or highest priority.  Niceness
   class 1 Messages will yield to niceness class 0 Messages sent over
   the same Carrier, class 2 to class 1, and so on.  Niceness may be
   translated to a priority signal for exposure to path elements (e.g.
   DSCP codepoint) to allow prioritization along the path as well as at
   the sender and receiver.  This inversion of normal schemes for
   expressing priority has a convenient property: priority increases as
   both niceness and lifetime decrease.  A Message may have both a
   niceness and a lifetime - Messages with higher niceness classes will
   yield to lower classes if resource constraints mean only one can meet
   the lifetime.

2.2.3.  Dependence

   A Message may have "antecedents" - other Messages on which it
   depends, which must be delivered before it (the "successor") is
   delivered.  The sending transport uses deadlines, niceness, and
   antecedents, along with information about the properties of the Paths
   available, to determine when to send which Message down which Path.

2.2.4.  Idempotence

   A sending application may mark a Message as "idempotent" to signal to
   the underlying transport protocol stack that its application
   semantics make it safe to send in situations that may cause it to be
   received more than once (i.e., for 0-RTT session resumption as in TCP
   Fast Open, TLS 1.3, and QUIC).

2.2.5.  Immediacy

   A sending application may mark a Message as "immediate" to signal to
   the underlying transport protocol stack that its application
   semantics require it to be placed in a single packet, on its own,
   instead of waiting to be combined with other messages or parts
   thereof (i.e., for media transports and interactive sessions with
   small messages).

2.2.6.  Additional Events

   Senders may also be asynchronously notified of three events on
   Messages they have sent: that the Message has been transmitted, that
   the Message has been acknowledged by the receiver, or that the
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   Message has expired before transmission/acknowledgment.  Not all
   transport protocol stacks will support all of these events.

2.3.  Association

   An Association contains the long-term state necessary to support
   communications between a Local (see Section 2.5) and a Remote (see

Section 2.4) endpoint, such as cryptographic session resumption
   parameters or rendezvous information; information about the policies
   constraining the selection of transport protocols and local
   interfaces to create Transients (see Section 2.6) to carry Messages;
   and information about the paths through the network available
   available between them (see Section 2.7).

   All Message Carriers are bound to an Association.  New Message
   Carriers will reuse an Association if they can be carried from the
   same Local to the same Remote over the same Paths; this re-use of an
   Association may implies the creation of a new Transient.

2.4.  Remote

   A Remote represents information required to establish and maintain a
   connection with the far end of an Association: name(s), address(es),
   and transport protocol parameters that can be used to establish a
   Transient; transport protocols to use; information about public keys
   or certificate authorities used to identify the remote on connection
   establishment; and so on.  Each Association is associated with a
   single Remote, either explicitly by the application (when created by
   the initiation of a Message Carrier) or a Listener (when created by
   forking a Message Carrier on passive open).

   A Remote may be resolved, which results in zero or more Remotes with
   more specific information.  For example, an application may want to
   establish a connection to a website identified by a URL
   https://www.example.com.  This URL would be wrapped in a Remote and
   passed to a call to initiate a Message Carrier.  The first pass
   resolution might parse the URL, decomposing it into a name, a
   transport port, and a transport protocol to try connecting with.  A
   second pass resolution would then look up network-layer addresses
   associated with that name through DNS, and store any certificates
   available from DANE.  Once a Remote has been resolved to the point
   that a transport protocol stack can use it to create a Transient, it
   is considered fully resolved.
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2.5.  Local

   A Local represents all the information about the local endpoint
   necessary to establish an Association or a Listener: interface, port,
   and transport protocol stack information, as well as certificates and
   associated private keys to use to identify this endpoint.

2.6.  Transient

   A Transient represents a binding between a Message Carrier and the
   instance of the transport protocol stack that implements it.  As an
   Association contains long-term state for communications between two
   endpoints, a Transient contains ephemeral state for a single
   transport protocol over a single Path at a given point in time.

   A Message Carrier may be served by multiple Transients at once, e.g.
   when implementing multipath communication such that the separate
   paths are exposed to the API by the underlying transport protocol
   stack.  Each Transient serves only one Message Carrier, although
   multiple Transients may share the same underlying protocol stack;
   e.g. when multiplexing Carriers over streams in a multistreaming
   protocol.

   Transients are generally not exposed by the API to the application,
   though they may be accessible for debugging and logging purposes.

2.7.  Path

   A Path represents information about a single path through the network
   used by an Association, in terms of source and destination network
   and transport layer addresses within an addressing context, and the
   provisioning domain [RFC7556] of the local interface.  This
   information may be learned through a resolution, discovery, or
   rendezvous process (e.g.  DNS, ICE), by measurements taken by the
   transport protocol stack, or by some other path information discovery
   mechanism.  It is used by the transport protocol stack to maintain
   and/or (re-)establish communications for the Association.

   The set of available properties is a function of the transport
   protocol stacks in use by an association.  However, the following
   core properties are generally useful for applications and transport
   layer protocols to choose among paths for specific Messages:

   o  Maximum Transmission Unit (MTU): the maximum size of an Message's
      payload (subtracting transport, network, and link layer overhead)
      which will likely fit into a single frame.  Derived from signals
      sent by path elements, where available, and/or path MTU discovery
      processes run by the transport layer.

https://datatracker.ietf.org/doc/html/rfc7556
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   o  Latency Expectation: expected one-way delay along the Path.
      Generally provided by inline measurements performed by the
      transport layer, as opposed to signaled by path elements.

   o  Loss Probability Expectation: expected probability of a loss of
      any given single frame along the Path.  Generally provided by
      inline measurements performed by the transport layer, as opposed
      to signaled by path elements.

   o  Available Data Rate Expectation: expected maximum data rate along
      the Path.  May be derived from passive measurements by the
      transport layer, or from signals from path elements.

   o  Reserved Data Rate: Committed, reserved data rate for the given
      Association along the Path.  Requires a bandwidth reservation
      service in the underlying transport protocol stack.

   o  Path Element Membership: Identifiers for some or all nodes along
      the path, depending on the capabilities of the underlying network
      layer protocol to provide this.

   Path properties are generally read-only.  MTU is a property of the
   underlying link-layer technology on each link in the path; latency,
   loss, and rate expectations are dynamic properties of the network
   configuration and network traffic conditions; path element membership
   is a function of network topology.  In an explicitly multipath
   architecture, application and transport layer requirements can be met
   by having multiple paths with different properties to select from.
   Transport protocol stacks can also provide signaling to devices along
   the path, but this signaling is derived from information provided to
   the Message abstraction.

2.8.  Policy Context

   A Local and a Remote is not necessarily enough to establish a Message
   Carrier between two endpoints.  For instance, an application may
   require or prefer certain transport features (see
   [I-D.ietf-taps-transports]) in the transport protocol stacks used by
   the Transients underlying the Carrier; it may also prefer Paths over
   one interface to those over another (e.g.  WiFi access over LTE when
   roaming on a foreign LTE network, due to cost).  These policies are
   expressed in a Policy Context bound to an Association.  Multiple
   policy contexts may be active at once; e.g. a system Policy Context
   expressing administrative preferences about interface and protocol
   selection, an application Policy Context expressing transport feature
   information.  The expression of policy contexts and the resolution of
   conflicts among Policy Contexts is currently implementation-specific;
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   note that these are equivalent to the Policy API in the NEAT
   architeture [NEAT].

3.  Abstract Programming Interface

   We now turn to the design of an abstract programming interface to
   provide a simple interface to Post's abstractions, constrained by the
   following design principles:

   o  Flexibility is paramount.  So is simplicity.  Applications must be
      given as many controls and as much information as they may need,
      but they must be able to ignore controls and information
      irrelevant to their operation.  This implies that the "default"
      interface must be no more complicated than BSD sockets, and must
      do something reasonable.

   o  Reception is an inherently asynchronous activity.  While the API
      is designed to be as platform-independent as possible, one key
      insight it is based on is that an Message receiver's behavior in a
      packet-switched network is inherently asynchronous, driven by the
      receipt of packets, and that this asynchronicity must be reflected
      in the API.  The actual implementation of receive and event
      handling will need to be aligned to the method a given platform
      provides for asynchronous I/O.

   o  A new API cannot be bound to a single transport protocol and
      expect wide deployment.  As the API is transport-independent and
      may support runtime transport selection, it must impose the
      minimum possible set of constraints on its underlying transports,
      though some API features may require underlying transport features
      to work optimally.  It must be possible to implement Post over
      vanilla TCP in the present Internet architecture.

   The API we design from these principles is centered around a Carrier,
   which can be created actively via initiate() or passively via a
   listen(); the latter creates a Listener from which new Carriers can
   be accept()ed.  Messages may be created explicitly and passed to this
   Carrier, or implicitly through a simplified interface which uses
   default message properties (reliable transport without priority or
   deadline, which guarantees ordered delivery over a single Carrier
   when the underlying transport protocol stack supports it).

   The current state of API development is illustrated as a set of
   interfaces and function prototypes in the Go programming language in

Appendix A; future revisions of this document will give more a more
   abstract specification of the API as development completes.
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3.1.  Example Connection Patterns

   Here, we illustrate the usage of the API outlined in Appendix A for
   common connection patterns.  Note that error handling is ignored in
   these illustrations for ease of reading.

3.1.1.  Client-Server

   Here's an example client-server application.  The server echoes
   messages.  The client sends a message and prints what it receives.

   The client in Figure 2 connects, sends a message, and sets up a
   receiver to print messages received in response.  The carrier is
   inactive after the Initiate() call; the Send() call blocks until the
   carrier can be activated.

   // connect to a server given a remote
   func sayHello() {

       carrier := Initiate(local, remote)

       carrier.Send([]byte("Hello!"))
       carrier.Ready(func (msg InMessage) {
           fmt.Println(string([]byte(msg))
           return false
       })
       carrier.Close()
   }

                         Figure 2: Example client

   The server in Figure 3 creates a Listener, which accepts Carriers and
   passes them to a server.  The server echos the content of each
   message it receives.
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   // run a server for a specific carrier, echo all its messages
   func runMyServerOn(carrier Carrier) {
       carrier.Ready(func (msg InMessage) {
           carrier.Send(msg)
       })
   }

   // accept connections forever, spawn servers for them
   func acceptConnections() {
       listener := Listen(local)
       listener.Accept(func(carrier Carrier) bool {
           go runMyServerOn(carrier)
           return true
       })
   }

                         Figure 3: Example server

   The Responder allows the server to be significantly simplified, as
   shown in Figure 4.

   func echo(msg InMessage, reply Sink) {
       reply.Send(msg)
   }

   Respond(local, echo)

                        Figure 4: Example responder

3.1.2.  Client-Server with Happy Eyeballs and 0-RTT establishment

   The fundamental design of a client need not change at all for happy
   eyeballs [RFC6555] (selection of multiple potential protocol stacks
   through connection racing); this is handled by the Post Sockets
   implementation automatically.  If this connection racing is to use
   0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client
   must mark the outgoing message as idempotent.
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// connect to a server given a remote
func sayHelloQuickly() {

    carrier := Initiate(local, remote)

    carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, 
nil, nil, nil)
    carrier.Ready(func (msg InMessage) {
        fmt.Println(string([]byte(msg)))
        return false
    })
    carrier.Close()
}

3.1.3.  Peer to Peer with Network Address Translation

   In the client-server examples shown above, the Remote given to the
   Initiate call refers to the name and port of the server to connect
   to.  This need not be the case, however; a Remote may also refer to
   an identity and a rendezvous point for rendezvous as in ICE
   [RFC5245].  Here, each peer does its own Initiate call
   simultaneously, and the result on each side is a Carrier attached to
   an appropriate Association.

3.1.4.  Multicast Receiver

   A multicast receiver is implemented using a Sink attached to a Local
   encapsulating a multicast address on which to receive multicast
   datagrams.  The following example prints messages received on the
   multicast address forever.

   func receiveMulticast() {
       sink = NewSink(local)
       sink.Ready(func (msg InMessage) {
           fmt.Println(string([]byte(msg)))
           return true
       })
   }

3.2.  Implementation Considerations

   Here we discuss an incomplete list of API implementation
   considerations that have arisen with experimentation with the
   prototype in Appendix A.

https://datatracker.ietf.org/doc/html/rfc5245
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3.2.1.  Message Framing and Deframing

   An obvious goal of Post Sockets is interoperability with non-Post
   Sockets endpoints: a Post Sockets endpoint using a given protocol
   stack must be able to communicate with another endpoint using the
   same protocol stack, but not using Post Sockets.  This implies that
   the underlying transport protocol stack must support object framing,
   in order to delimit Messages carried by protocol stacks that are not
   themselves message-oriented.

   Another goal of Post Sockets is to work over unmodified TCP.  We
   could simply define a Message Carrier over TCP to support only stream
   morphing, but this would fall far short of our goal to transport
   independence.  Another approach is to recognize that almost every
   protocol using TCP already has its own message delimiters, and to
   allow the receiver of a Message to provide a deframing primitive to
   the API.  Experimentation with the best way to achieve this within
   Post Sockets is underway.

3.2.2.  Message Size Limitations

   Ideally, Messages can be of infinite size.  However, protocol stacks
   and protocol stack implementations may impose their own limits on
   message sizing; For example, SCTP [RFC4960] and TLS
   [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,
   respectively.  Message sizes may also be limited by the available
   buffer at the receiver, since a Message must be fully assembled by
   the transport layer before it can be passed on to the application
   layer.  Since not every transport protocol stack implements the
   signaling necessary to negotiate or expose message size limitations,
   these are currently configured out of band, and are probably best
   exposed through the policy context.

   A truly infinite message service - e.g. large file transfer where
   both endpoints have committed persistent storage to the message - is
   probably best realized as a layer above Post Sockets, and may be
   added as a new type of Message Carrier to a future revision of this
   document.

3.2.3.  Backpressure

   Regardless of how asynchronous reception is implemented, it is
   important for an application to be able to apply receiver
   backpressure, to allow the protocol stack to perform receiver flow
   control.  Depending on how asynchronous I/O works in the platform,
   this could be implemented by having a maximum number of concurrent
   receive callbacks, for example.

https://datatracker.ietf.org/doc/html/rfc4960
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Appendix A.  API sketch in Golang

   The following sketch is a snapshot of an API currently under
   development in Go, available at https://github.com/mami-project/

postsocket.  The details of the API are still under development; once
   the API definition stabilizes, this will be expanded into prose in a
   future revision of this draft.

// The interface to path information is TBD
type Path interface{}

// An association encapsulates an endpoint pair and the set of paths between 
them.
type Association interface {
    Local() Local
    Remote() Remote
    Paths() []Path
}

// A message together with with metadata needed to send it
type OutMessage struct {
    // The content of this message, as a byte array
    Content []byte
    // The niceness of this message. 0 is highest priority.
    Niceness uint
    // The lifetime of this message. After this duration, the message may 
expire.
    Lifetime time.Duration
    // Pointers to messages that must be sent before this one.
    Antecedent []*OutMessage
    // True if the message is safe to send such that it may be received 
multiple times (i.e. for 0-RTT).
    Idempotent bool
}

// A message received from a stream
type InMessage []byte

// A Carrier is a transport protocol stack-independent interface for sending and
// receiving messages between an application and a remote endpoint; it is 
roughly
// analogous to a socket in the present sockets API.
type Carrier interface {
    // Send a byte array on this Carrier as a message with default metadata
    // and no notifications.
    Send(buf []byte) error

https://datatracker.ietf.org/doc/html/rfc7556
http://www.rfc-editor.org/info/rfc7556
https://github.com/mami-project/postsocket
https://github.com/mami-project/postsocket


    // Send a message on this Carrier. The optional onSent function will be
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    // called when the protocol stack instance has sent the message. The
    // optional onAcked function will be called when the receiver has
    // acknowledged the message. The optional onExpired function will be
    // called if the message's lifetime expired before the message coult be
    // sent. If the Carrier is not active, attempt to activate the Carrier
    // before sending.
    Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func()) 
error

    // Signal that an application is ready to receive messages via a given 
callback.
    // Messages will be given to the callback until it returns false, or until 
the
    // Carrier is closed.
    Ready(receive func(InMessage) bool) error

    // Retrieve the Association over which this Carrier is running.
    Association() *Association

    // Retrieve the active Transients over which this carrier is running, if 
active.
    Transients() []Transient

    // Determine whether the Carrier is currently active
    IsActive() bool

    // Ensure that the Carrier is active and ready to send and receive messages.
    // Attempts to bring up at least one Transient.
    Activate(isActive func()) error

    // Terminate the Carrier
    Close()

    // Mutate to a file-like object
    AsStream() io.ReadWriteCloser

    // Attempt to fork a new Carrier for communicating with the same Remote
    Fork() (Carrier, error)

    // Signal that an application is ready to accept forks via a given callback.
    // Forked carriers will be given to the callback until it returns false or
    // until the Carrier is closed.
    Accept(accept func(Carrier) bool) error
}

// Initiate a Carrier from a given Local to a given Remote. Returns a new
// Carrier, which may be bound to an existing or a new Association. The
// initiated Carrier is not yet active.
func Initiate(local Local, remote Remote) (Carrier, error)

type Listener interface {



    // Signal that an application is ready to accept forks via a given callback.
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    // Accept will terminate when the callback returns false, or until the
    // Listener is closed.
    Accept(accept func(Carrier) bool) error

    // Terminate this Listener
    Close()
}

// Create a Listener on a given Local which will pass new Carriers to the
// given channel until that channel is closed.
func Listen(local Local) (Listener, error)

// A Source is a unidirectional, send-only Carrier.
type Source interface {
    // Send a byte array on this Source as a message with default metadata
    // and no notifications.
    Send(buf []byte) error

    // Send a message on this Source. The optional onSent function will be
    // called when the protocol stack instance has sent the message. The
    // optional onAcked function will be called when the receiver has
    // acknowledged the message. The optional onExpired function will be
    // called if the message's lifetime expired before the message coult be
    // sent. If the Source is not active, attempt to activate the Source
    // before sending.
    Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func()) 
error

    // Retrieve the Association over which this Source is running.
    Association() *Association

    // Determine whether the Source is currently active
    IsActive() bool

    // Ensure that the Source is active and ready to send messages.
    // Attempts to bring up at least one Transient.
    Activate() error

    // Terminate the Source
    Close()
}

// Initiate a Source from a given Local to a given Remote. Returns a new
// Source, which may be bound to an existing or a new Association. The
// initiated Source is not yet active.
func NewSource(local Local, remote Remote) (Source, error)

// A Sink is a unidirectional, receive-only Carrier, bound only to a local.
type Sink interface {
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    // Signal that an application is ready to receive messages via a given 
callback.
    // Messages will be given to the callback until it returns false, or until 
the
    // Sink is closed.
    Ready(receive func(InMessage) bool) error

    // Retrieve the Association over which this Sink is running.
    Association() *Association

    // Terminate the Sink
    Close()
}

// Initiate a Sink on a given Local. Returns a new
// Sink, which may be bound to an existing or a new Association.
func NewSink(local Local) (Sink, error)

// Initiate a Responder on a given Local. For each incoming Message, calls the
// respond function with the Message and a Sink to send replies to. Calls the
// Responder until it returns False, then terminates
func Respond(local Local, respond func(msg InMessage, reply Sink) bool) error

// A local identity
type Local struct {
    // A string identifying an interface or set of interfaces to accept 
messages and new carriers on.
    Interface string
    // A transport layer port
    Port int
    // A set of zero or more end entity certificates, together with private
    // keys, to identify this application with.
    Certificates []tls.Certificate
}

// Encapsulate a remote identity. Since the contents of a Remote are highly
// dependent on its level of resolution; some examples are below.
type Remote interface {
    // Resolve this Remote Identity to a
    Resolve() ([]RemoteIdentity, error)
    // Returns True if the Remote is completely resolved; i.e., cannot be resol
    Complete() bool
}

// Remote consisting of a URL
type URLRemote struct {
    URL string
}

// Remote encapsulating a name and port number
type NamedEndpointRemote struct {
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    Hostname string
    Port     int
}

// Remote encapsulating an IP address and port number
type IPEndpointRemote struct {
    Address net.IP
    Port    int
}

// Remote encapsulating an IP address and port number, and a set of presented 
certificates
type IPEndpointCertRemote struct {
    Address      net.IP
    Port         int
    Certificates []tls.Certificate
}
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