
TAPS Working Group B. Trammell
Internet-Draft ETH Zurich
Intended status: Informational C. Perkins
Expires: September 9, 2017 University of Glasgow
 T. Pauly
 Apple Inc.
 M. Kuehlewind
 ETH Zurich
 March 08, 2017

Post Sockets, An Abstract Programming Interface for the Transport Layer
draft-trammell-taps-post-sockets-00

Abstract

 This document describes Post Sockets, an asynchronous abstract
 programming interface for the atomic transmission of messages in an
 inherently multipath environment. Post replaces connections with
 long-lived associations between endpoints, with the possibility to
 cache cryptographic state in order to reduce amortized connection
 latency. We present this abstract interface as an illustration of
 what is possible with present developments in transport protocols
 when freed from the strictures of the current sockets API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Trammell, et al. Expires September 9, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/draft-trammell-taps-post-sockets-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Post Sockets March 2017

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Abstractions and Terminology 5
2.1. Message Carrier . 6
2.1.1. Listener . 7
2.1.2. Source . 8
2.1.3. Sink . 8
2.1.4. Responder . 8
2.1.5. Stream . 8

2.2. Message . 8
2.2.1. Lifetime and Partial Reliability 9
2.2.2. Priority . 10
2.2.3. Dependence . 10
2.2.4. Idempotence . 10
2.2.5. Immediacy . 10
2.2.6. Additional Events 10

2.3. Association . 11
2.4. Remote . 11
2.5. Local . 12
2.6. Transient . 12
2.7. Path . 12
2.8. Policy Context . 13

3. Abstract Programming Interface 14
3.1. Example Connection Patterns 15
3.1.1. Client-Server . 15

 3.1.2. Client-Server with Happy Eyeballs and 0-RTT
 establishment . 16

3.1.3. Peer to Peer with Network Address Translation 17
3.1.4. Multicast Receiver 17

3.2. Implementation Considerations 17
3.2.1. Message Framing and Deframing 18
3.2.2. Message Size Limitations 18
3.2.3. Backpressure . 18

4. Acknowledgments . 19
5. References . 19
5.1. Normative References 19
5.2. Informative References 19

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Trammell, et al. Expires September 9, 2017 [Page 2]

Internet-Draft Post Sockets March 2017

Appendix A. API sketch in Golang 21
 Authors' Addresses . 25

1. Introduction

 The BSD Unix Sockets API's SOCK_STREAM abstraction, by bringing
 network sockets into the UNIX programming model, allowing anyone who
 knew how to write programs that dealt with sequential-access files to
 also write network applications, was a revolution in simplicity. It
 would not be an overstatement to say that this simple API is the
 reason the Internet won the protocol wars of the 1980s. SOCK_STREAM
 is tied to the Transmission Control Protocol (TCP), specified in 1981
 [RFC0793]. TCP has scaled remarkably well over the past three and a
 half decades, but its total ubiquity has hidden an uncomfortable
 fact: the network is not really a file, and stream abstractions are
 too simplistic for many modern application programming models.

 In the meantime, the nature of Internet access, and the variety of
 Internet transport protocols, is evolving. The challenges that new
 protocols and access paradigms present to the sockets API and to
 programming models based on them inspire the design elements of a new
 approach

 Many end-user devices are connected to the Internet via multiple
 interfaces, which suggests it is time to promote the paths by which
 two endpoints are connected to each other to a first-order object.
 While implicit multipath communication is available for these
 multihomed nodes in the present Internet architecture with the
 Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically
 designed to hide multipath communication from the application for
 purposes of compatibility. Since many multihomed nodes are connected
 to the Internet through access paths with widely different properties
 with respect to bandwidth, latency and cost, adding explicit path
 control to MPTCP's API would be useful in many situations.
 Applications also need control over cooperation with path elements
 via mechanisms such as that proposed by the Path Layer UDP Substrate
 (PLUS) effort (see [I-D.trammell-plus-statefulness] and
 [I-D.trammell-plus-abstract-mech]).

 Another trend straining the traditional layering of the transport
 stack associated with the SOCK_STREAM interface is the widespread
 interest in ubiquitous deployment of encryption to guarantee
 confidentiality, authenticity, and integrity, in the face of
 pervasive surveillance [RFC7258]. Layering the most widely deployed
 encryption technology, Transport Layer Security (TLS), strictly atop
 TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
 API) requires the encryption-layer handshake to happen after the
 transport-layer handshake, which increases connection setup latency

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7258

Trammell, et al. Expires September 9, 2017 [Page 3]

Internet-Draft Post Sockets March 2017

 on the order of one or two round-trip times, an unacceptable delay
 for many applications. Integrating cryptographic state setup and
 maintenance into the path abstraction naturally complements efforts
 in new protocols (e.g. QUIC [I-D.ietf-quic-transport]) to mitigate
 this strict layering.

 To meet these challenges, we present the Post-Socket Application
 Programming Interface (API), described in detail in this work. Post
 is designed to be language, transport protocol, and architecture
 independent, allowing applications to be written to a common abstract
 interface, easily ported among different platforms, and used even in
 environments where transport protocol selection may be done
 dynamically, as proposed in the IETF's Transport Services working
 group.

 Post replaces the traditional SOCK_STREAM abstraction with an Message
 abstraction, which can be seen as a generalization of the Stream
 Control Transmission Protocol's [RFC4960] SOCK_SEQPACKET service.
 Messages are sent and received on Carriers, which logically group
 Messages for transmission and reception. For backward compatibility,
 these Carriers can also be opened as Streams, presenting a file-like
 interface to the network as with SOCK_STREAM.

 Post replaces the notions of a socket address and connected socket
 with an Association with a remote endpoint via set of Paths.
 Implementation and wire format for transport protocol(s) implementing
 the Post API are explicitly out of scope for this work; these
 abstractions need not map directly to implementation-level concepts,
 and indeed with various amounts of shimming and glue could be
 implemented with varying success atop any sufficiently flexible
 transport protocol.

 The key features of Post as compared with the existing sockets API
 are:

 o Explicit Message orientation, with framing and atomicity
 guarantees for Message transmission.

 o Asynchronous reception, allowing all receiver-side interactions to
 be event-driven.

 o Explicit support for multistreaming and multipath transport
 protocols and network architectures.

 o Long-lived Associations, whose lifetimes may not be bound to
 underlying transport connections. This allows associations to
 cache state and cryptographic key material to enable fast
 resumption of communication, and for the implementation of the API

https://datatracker.ietf.org/doc/html/rfc4960

Trammell, et al. Expires September 9, 2017 [Page 4]

Internet-Draft Post Sockets March 2017

 to explicitly take care of connection establishment mechanics such
 as connection racing [RFC6555] and peer-to-peer rendezvous
 [RFC5245].

 o Transport protocol stack independence, allowing applications to be
 written in terms of the semantics best for the application's own
 design, separate from the protocol(s) used on the wire to achieve
 them. This enables applications written to a single API to make
 use of transport protocols in terms of the features they provide,
 as in [I-D.ietf-taps-transports].

 This work is the synthesis of many years of Internet transport
 protocol research and development. It is inspired by concepts from
 the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion
 [I-D.iyengar-minion-protocol], and MinimaLT[MinimaLT], among other
 transport protocol modernization efforts. We present Post Sockets as
 an illustration of what is possible with present developments in
 transport protocols when freed from the strictures of the current
 sockets API. While much of the work for building parts of the
 protocols needed to implement Post are already ongoing in other IETF
 working groups (e.g. MPTCP, QUIC, TLS), we argue that an abstract
 programming interface unifying access all these efforts is necessary
 to fully exploit their potential.

2. Abstractions and Terminology

Trammell, et al. Expires September 9, 2017 [Page 5]

https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc4960

Internet-Draft Post Sockets March 2017

 +===============+
 | Message |
 +===============+
 | ^ initiate() listen()
 send() ready() | |
 V | V V
 +======================+ accept() +============+
 | |<---+------| | |
 | Carrier | | | Listener |
 | |----+ | |
 +======================+ +============+
 | | |
 | | |
 | +=======================+
 | | | durable end-to-end
 | | Association | state via many paths/
 | | | policies and prefs
 | +=======================+
 | | |
 | | |
 | +=========+ +=========+
 | | Local | | Remote |
 | +=========+ +=========+
 | | |
 +===========+ +==========+
 ephemeral | | | |
 transport & | Transient |------->| Path | properties of
 crypto state | | | | address pair
 +===========+ +==========+

 Figure 1: Abstractions and relationships in Post Sockets

 Post is based on a small set of abstractions, centered around a
 Message Carrier as the entry point for an application to the
 networking API. The relationships among them are shown in
 Figure Figure 1 and detailed in this section.

2.1. Message Carrier

 A Message Carrier (or simply Carrier) is a transport protocol stack-
 independent interface for sending and receiving messages between an
 application and a remote endpoint; it is roughly analogous to a
 socket in the present sockets API.

 Sending a Message over a Carrier is driven by the application, while
 receipt is driven by the arrival of the last packet that allows the
 Message to be assembled, decrypted, and passed to the application.

Trammell, et al. Expires September 9, 2017 [Page 6]

Internet-Draft Post Sockets March 2017

 Receipt is therefore asynchronous; given the different models for
 asynchronous I/O and concurrency supported by different platforms, it
 may be implemented in any number of ways. The abstract API provides
 only for a way for the application to register how it wants to handle
 incoming messages.

 All the Messages sent to a Message Carrier will be received on the
 corresponding Message Carrier at the remote endpoint, though not
 necessarily reliably or in order, depending on Message properties and
 the underlying transport protocol stack.

 A Message Carrier that is backed by current transport protocol stack
 state (such as a TCP connection; see Section 2.6) is said to be
 "active": messages can be sent and received over it. A Message
 Carrier can also be "dormant": there is long-term state associated
 with it (via the underlying Association; see Section 2.3), and it may
 be able to reactivated, but messages cannot be sent and received
 immediately.

 If supported by the underlying transport protocol stack, a Message
 Carrier may be forked: creating a new Message Carrier associated with
 a new Message Carrier at the same remote endpoint. The semantics of
 the usage of multiple Message Carriers based on the same Association
 are application-specific. When a Message Carrier is forked, its
 corresponding Message Carrier at the remote endpoint receives a fork
 request, which it must accept in order to fully establish the new
 carrier. Multiple message carriers between endpoints are implemented
 differently by different transport protocol stacks, either using
 multiple separate transport-layer connections, or using multiple
 streams of multistreaming transport protocols.

 To exchange messages with a given remote endpoint, an application may
 initiate a Message Carrier given its remote (see Section 2.4 and
 local (see Section 2.5) identities; this is an equivalent to an
 active open. There are five special cases of Message Carriers, as
 well, supporting different initiation and interaction patterns,
 defined in the subsections below.

2.1.1. Listener

 A Listener is a special case of Message Carrier which only responds
 to requests to create a new Carrier from a remote endpoint, analogous
 to a server or listening socket in the present sockets API. Instead
 of being bound to a specific remote endpoint, it is bound only to a
 local identity; however, its interface for accepting fork requests is
 identical to that for fully fledged Message Carriers.

Trammell, et al. Expires September 9, 2017 [Page 7]

Internet-Draft Post Sockets March 2017

2.1.2. Source

 A Source is a special case of Message Carrier over which messages can
 only be sent, intended for unidirectional applications such as
 multicast transmitters. Sources cannot be forked, and need not
 accept forks.

2.1.3. Sink

 A Sink is a special case of Message Carrier over which messages can
 only be received, intended for unidirectional applications such as
 multicast receivers. Sinks cannot be forked, and need not accept
 forks.

2.1.4. Responder

 A Responder is a special case of Message Carrier which may receive
 messages from many remote sources, for cases in which an application
 will only ever send Messages in reply back to the source from which a
 Message was received. This is a common implementation pattern for
 servers in client-server applications. A Responder's receiver gets a
 Message, as well as a Source to send replies to. Responders cannot
 be forked, and need not accept forks.

2.1.5. Stream

 A Message Carrier may be irreversibly morphed into a Stream, in order
 to provide a strictly ordered, reliable service as with SOCK_STREAM.
 Morphing a Message Carrier into a Stream should return a "file-like
 object" as appropriate for the platform implementing the API.
 Typically, both ends of a communication using a stream service will
 morph their respective Message Carriers independently before sending
 any Messages.

 Writing a byte to a Stream will cause it to be received by the
 remote, in order, or will cause an error condition and termination of
 the stream if the byte cannot be delivered. Due to the strong
 sequential dependence on a stream, streams must always be reliable
 and ordered. A Message Carrier may only be morphed to a Stream if it
 uses transport protocol stack that provides reliable, ordered
 service, and only before it is used to send a Message.

2.2. Message

 A Message is an atomic unit of communication between applications. A
 Message that cannot be delivered in its entirety within the
 constraints of the network connectivity and the requirements of the
 application is not delivered at all.

Trammell, et al. Expires September 9, 2017 [Page 8]

Internet-Draft Post Sockets March 2017

 Messages can represent both relatively small structures, such as
 requests in a request/response protocol such as HTTP; as well as
 relatively large structures, such as files of arbitrary size in a
 filesystem.

 In the general case, there is no mapping between a Message and
 packets sent by the underlying protocol stack on the wire: the
 transport protocol may freely segment messages and/or combine
 messages into packets. However, a message may be marked as
 immediate, which will cause it to be sent in a single packet, if it
 will fit.

 This implies that both the sending and receiving endpoint, whether in
 the application layer or the transport layer, must guarantee storage
 for the full size of an Message.

 Messages are sent over and received from Message Carriers (see
Section 2.1).

 On sending, Messages have properties that allow the application to
 specify its requirements with respect to reliability, ordering,
 priority, idempotence, and immediacy; these are described in detail
 below. Messages may also have arbitrary properties which provide
 additional information to the underlying transport protocol stack on
 how they should be handled, in a protocol-specific way. These stacks
 may also deliver or set properties on received messages, but in the
 general case a received messages contains only a sequence of ordered
 bytes.

2.2.1. Lifetime and Partial Reliability

 A Message may have a "lifetime" - a wallclock duration before which
 the Message must be available to the application layer at the remote
 end. If a lifetime cannot be met, the Message is discarded as soon
 as possible. Messages without lifetimes are sent reliably if
 supported by the transport protocol stack. Lifetimes are also used
 to prioritize Message delivery.

 There is no guarantee that a Message will not be delivered after the
 end of its lifetime; for example, a Message delivered over a strictly
 reliable transport will be delivered regardless of its lifetime.
 Depending on the transport protocol stack used to transmit the
 message, these lifetimes may also be signaled to path elements by the
 underlying transport, so that path elements that realize a lifetime
 cannot be met can discard frames containing the Messages instead of
 forwarding them.

Trammell, et al. Expires September 9, 2017 [Page 9]

Internet-Draft Post Sockets March 2017

2.2.2. Priority

 Messages have a "niceness" - a priority among other messages sent
 over the same Message Carrier in an unbounded hierarchy most
 naturally represented as a non-negative integer. By default,
 Messages are in niceness class 0, or highest priority. Niceness
 class 1 Messages will yield to niceness class 0 Messages sent over
 the same Carrier, class 2 to class 1, and so on. Niceness may be
 translated to a priority signal for exposure to path elements (e.g.
 DSCP codepoint) to allow prioritization along the path as well as at
 the sender and receiver. This inversion of normal schemes for
 expressing priority has a convenient property: priority increases as
 both niceness and lifetime decrease. A Message may have both a
 niceness and a lifetime - Messages with higher niceness classes will
 yield to lower classes if resource constraints mean only one can meet
 the lifetime.

2.2.3. Dependence

 A Message may have "antecedents" - other Messages on which it
 depends, which must be delivered before it (the "successor") is
 delivered. The sending transport uses deadlines, niceness, and
 antecedents, along with information about the properties of the Paths
 available, to determine when to send which Message down which Path.

2.2.4. Idempotence

 A sending application may mark a Message as "idempotent" to signal to
 the underlying transport protocol stack that its application
 semantics make it safe to send in situations that may cause it to be
 received more than once (i.e., for 0-RTT session resumption as in TCP
 Fast Open, TLS 1.3, and QUIC).

2.2.5. Immediacy

 A sending application may mark a Message as "immediate" to signal to
 the underlying transport protocol stack that its application
 semantics require it to be placed in a single packet, on its own,
 instead of waiting to be combined with other messages or parts
 thereof (i.e., for media transports and interactive sessions with
 small messages).

2.2.6. Additional Events

 Senders may also be asynchronously notified of three events on
 Messages they have sent: that the Message has been transmitted, that
 the Message has been acknowledged by the receiver, or that the

Trammell, et al. Expires September 9, 2017 [Page 10]

Internet-Draft Post Sockets March 2017

 Message has expired before transmission/acknowledgment. Not all
 transport protocol stacks will support all of these events.

2.3. Association

 An Association contains the long-term state necessary to support
 communications between a Local (see Section 2.5) and a Remote (see

Section 2.4) endpoint, such as cryptographic session resumption
 parameters or rendezvous information; information about the policies
 constraining the selection of transport protocols and local
 interfaces to create Transients (see Section 2.6) to carry Messages;
 and information about the paths through the network available
 available between them (see Section 2.7).

 All Message Carriers are bound to an Association. New Message
 Carriers will reuse an Association if they can be carried from the
 same Local to the same Remote over the same Paths; this re-use of an
 Association may implies the creation of a new Transient.

2.4. Remote

 A Remote represents information required to establish and maintain a
 connection with the far end of an Association: name(s), address(es),
 and transport protocol parameters that can be used to establish a
 Transient; transport protocols to use; information about public keys
 or certificate authorities used to identify the remote on connection
 establishment; and so on. Each Association is associated with a
 single Remote, either explicitly by the application (when created by
 the initiation of a Message Carrier) or a Listener (when created by
 forking a Message Carrier on passive open).

 A Remote may be resolved, which results in zero or more Remotes with
 more specific information. For example, an application may want to
 establish a connection to a website identified by a URL
 https://www.example.com. This URL would be wrapped in a Remote and
 passed to a call to initiate a Message Carrier. The first pass
 resolution might parse the URL, decomposing it into a name, a
 transport port, and a transport protocol to try connecting with. A
 second pass resolution would then look up network-layer addresses
 associated with that name through DNS, and store any certificates
 available from DANE. Once a Remote has been resolved to the point
 that a transport protocol stack can use it to create a Transient, it
 is considered fully resolved.

Trammell, et al. Expires September 9, 2017 [Page 11]

Internet-Draft Post Sockets March 2017

2.5. Local

 A Local represents all the information about the local endpoint
 necessary to establish an Association or a Listener: interface, port,
 and transport protocol stack information, as well as certificates and
 associated private keys to use to identify this endpoint.

2.6. Transient

 A Transient represents a binding between a Message Carrier and the
 instance of the transport protocol stack that implements it. As an
 Association contains long-term state for communications between two
 endpoints, a Transient contains ephemeral state for a single
 transport protocol over a single Path at a given point in time.

 A Message Carrier may be served by multiple Transients at once, e.g.
 when implementing multipath communication such that the separate
 paths are exposed to the API by the underlying transport protocol
 stack. Each Transient serves only one Message Carrier, although
 multiple Transients may share the same underlying protocol stack;
 e.g. when multiplexing Carriers over streams in a multistreaming
 protocol.

 Transients are generally not exposed by the API to the application,
 though they may be accessible for debugging and logging purposes.

2.7. Path

 A Path represents information about a single path through the network
 used by an Association, in terms of source and destination network
 and transport layer addresses within an addressing context, and the
 provisioning domain [RFC7556] of the local interface. This
 information may be learned through a resolution, discovery, or
 rendezvous process (e.g. DNS, ICE), by measurements taken by the
 transport protocol stack, or by some other path information discovery
 mechanism. It is used by the transport protocol stack to maintain
 and/or (re-)establish communications for the Association.

 The set of available properties is a function of the transport
 protocol stacks in use by an association. However, the following
 core properties are generally useful for applications and transport
 layer protocols to choose among paths for specific Messages:

 o Maximum Transmission Unit (MTU): the maximum size of an Message's
 payload (subtracting transport, network, and link layer overhead)
 which will likely fit into a single frame. Derived from signals
 sent by path elements, where available, and/or path MTU discovery
 processes run by the transport layer.

https://datatracker.ietf.org/doc/html/rfc7556

Trammell, et al. Expires September 9, 2017 [Page 12]

Internet-Draft Post Sockets March 2017

 o Latency Expectation: expected one-way delay along the Path.
 Generally provided by inline measurements performed by the
 transport layer, as opposed to signaled by path elements.

 o Loss Probability Expectation: expected probability of a loss of
 any given single frame along the Path. Generally provided by
 inline measurements performed by the transport layer, as opposed
 to signaled by path elements.

 o Available Data Rate Expectation: expected maximum data rate along
 the Path. May be derived from passive measurements by the
 transport layer, or from signals from path elements.

 o Reserved Data Rate: Committed, reserved data rate for the given
 Association along the Path. Requires a bandwidth reservation
 service in the underlying transport protocol stack.

 o Path Element Membership: Identifiers for some or all nodes along
 the path, depending on the capabilities of the underlying network
 layer protocol to provide this.

 Path properties are generally read-only. MTU is a property of the
 underlying link-layer technology on each link in the path; latency,
 loss, and rate expectations are dynamic properties of the network
 configuration and network traffic conditions; path element membership
 is a function of network topology. In an explicitly multipath
 architecture, application and transport layer requirements can be met
 by having multiple paths with different properties to select from.
 Transport protocol stacks can also provide signaling to devices along
 the path, but this signaling is derived from information provided to
 the Message abstraction.

2.8. Policy Context

 A Local and a Remote is not necessarily enough to establish a Message
 Carrier between two endpoints. For instance, an application may
 require or prefer certain transport features (see
 [I-D.ietf-taps-transports]) in the transport protocol stacks used by
 the Transients underlying the Carrier; it may also prefer Paths over
 one interface to those over another (e.g. WiFi access over LTE when
 roaming on a foreign LTE network, due to cost). These policies are
 expressed in a Policy Context bound to an Association. Multiple
 policy contexts may be active at once; e.g. a system Policy Context
 expressing administrative preferences about interface and protocol
 selection, an application Policy Context expressing transport feature
 information. The expression of policy contexts and the resolution of
 conflicts among Policy Contexts is currently implementation-specific;

Trammell, et al. Expires September 9, 2017 [Page 13]

Internet-Draft Post Sockets March 2017

 note that these are equivalent to the Policy API in the NEAT
 architeture [NEAT].

3. Abstract Programming Interface

 We now turn to the design of an abstract programming interface to
 provide a simple interface to Post's abstractions, constrained by the
 following design principles:

 o Flexibility is paramount. So is simplicity. Applications must be
 given as many controls and as much information as they may need,
 but they must be able to ignore controls and information
 irrelevant to their operation. This implies that the "default"
 interface must be no more complicated than BSD sockets, and must
 do something reasonable.

 o Reception is an inherently asynchronous activity. While the API
 is designed to be as platform-independent as possible, one key
 insight it is based on is that an Message receiver's behavior in a
 packet-switched network is inherently asynchronous, driven by the
 receipt of packets, and that this asynchronicity must be reflected
 in the API. The actual implementation of receive and event
 handling will need to be aligned to the method a given platform
 provides for asynchronous I/O.

 o A new API cannot be bound to a single transport protocol and
 expect wide deployment. As the API is transport-independent and
 may support runtime transport selection, it must impose the
 minimum possible set of constraints on its underlying transports,
 though some API features may require underlying transport features
 to work optimally. It must be possible to implement Post over
 vanilla TCP in the present Internet architecture.

 The API we design from these principles is centered around a Carrier,
 which can be created actively via initiate() or passively via a
 listen(); the latter creates a Listener from which new Carriers can
 be accept()ed. Messages may be created explicitly and passed to this
 Carrier, or implicitly through a simplified interface which uses
 default message properties (reliable transport without priority or
 deadline, which guarantees ordered delivery over a single Carrier
 when the underlying transport protocol stack supports it).

 The current state of API development is illustrated as a set of
 interfaces and function prototypes in the Go programming language in

Appendix A; future revisions of this document will give more a more
 abstract specification of the API as development completes.

Trammell, et al. Expires September 9, 2017 [Page 14]

Internet-Draft Post Sockets March 2017

3.1. Example Connection Patterns

 Here, we illustrate the usage of the API outlined in Appendix A for
 common connection patterns. Note that error handling is ignored in
 these illustrations for ease of reading.

3.1.1. Client-Server

 Here's an example client-server application. The server echoes
 messages. The client sends a message and prints what it receives.

 The client in Figure 2 connects, sends a message, and sets up a
 receiver to print messages received in response. The carrier is
 inactive after the Initiate() call; the Send() call blocks until the
 carrier can be activated.

 // connect to a server given a remote
 func sayHello() {

 carrier := Initiate(local, remote)

 carrier.Send([]byte("Hello!"))
 carrier.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg))
 return false
 })
 carrier.Close()
 }

 Figure 2: Example client

 The server in Figure 3 creates a Listener, which accepts Carriers and
 passes them to a server. The server echos the content of each
 message it receives.

Trammell, et al. Expires September 9, 2017 [Page 15]

Internet-Draft Post Sockets March 2017

 // run a server for a specific carrier, echo all its messages
 func runMyServerOn(carrier Carrier) {
 carrier.Ready(func (msg InMessage) {
 carrier.Send(msg)
 })
 }

 // accept connections forever, spawn servers for them
 func acceptConnections() {
 listener := Listen(local)
 listener.Accept(func(carrier Carrier) bool {
 go runMyServerOn(carrier)
 return true
 })
 }

 Figure 3: Example server

 The Responder allows the server to be significantly simplified, as
 shown in Figure 4.

 func echo(msg InMessage, reply Sink) {
 reply.Send(msg)
 }

 Respond(local, echo)

 Figure 4: Example responder

3.1.2. Client-Server with Happy Eyeballs and 0-RTT establishment

 The fundamental design of a client need not change at all for happy
 eyeballs [RFC6555] (selection of multiple potential protocol stacks
 through connection racing); this is handled by the Post Sockets
 implementation automatically. If this connection racing is to use
 0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client
 must mark the outgoing message as idempotent.

Trammell, et al. Expires September 9, 2017 [Page 16]

https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc7413

Internet-Draft Post Sockets March 2017

// connect to a server given a remote
func sayHelloQuickly() {

 carrier := Initiate(local, remote)

 carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true},
nil, nil, nil)
 carrier.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg)))
 return false
 })
 carrier.Close()
}

3.1.3. Peer to Peer with Network Address Translation

 In the client-server examples shown above, the Remote given to the
 Initiate call refers to the name and port of the server to connect
 to. This need not be the case, however; a Remote may also refer to
 an identity and a rendezvous point for rendezvous as in ICE
 [RFC5245]. Here, each peer does its own Initiate call
 simultaneously, and the result on each side is a Carrier attached to
 an appropriate Association.

3.1.4. Multicast Receiver

 A multicast receiver is implemented using a Sink attached to a Local
 encapsulating a multicast address on which to receive multicast
 datagrams. The following example prints messages received on the
 multicast address forever.

 func receiveMulticast() {
 sink = NewSink(local)
 sink.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg)))
 return true
 })
 }

3.2. Implementation Considerations

 Here we discuss an incomplete list of API implementation
 considerations that have arisen with experimentation with the
 prototype in Appendix A.

https://datatracker.ietf.org/doc/html/rfc5245

Trammell, et al. Expires September 9, 2017 [Page 17]

Internet-Draft Post Sockets March 2017

3.2.1. Message Framing and Deframing

 An obvious goal of Post Sockets is interoperability with non-Post
 Sockets endpoints: a Post Sockets endpoint using a given protocol
 stack must be able to communicate with another endpoint using the
 same protocol stack, but not using Post Sockets. This implies that
 the underlying transport protocol stack must support object framing,
 in order to delimit Messages carried by protocol stacks that are not
 themselves message-oriented.

 Another goal of Post Sockets is to work over unmodified TCP. We
 could simply define a Message Carrier over TCP to support only stream
 morphing, but this would fall far short of our goal to transport
 independence. Another approach is to recognize that almost every
 protocol using TCP already has its own message delimiters, and to
 allow the receiver of a Message to provide a deframing primitive to
 the API. Experimentation with the best way to achieve this within
 Post Sockets is underway.

3.2.2. Message Size Limitations

 Ideally, Messages can be of infinite size. However, protocol stacks
 and protocol stack implementations may impose their own limits on
 message sizing; For example, SCTP [RFC4960] and TLS
 [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,
 respectively. Message sizes may also be limited by the available
 buffer at the receiver, since a Message must be fully assembled by
 the transport layer before it can be passed on to the application
 layer. Since not every transport protocol stack implements the
 signaling necessary to negotiate or expose message size limitations,
 these are currently configured out of band, and are probably best
 exposed through the policy context.

 A truly infinite message service - e.g. large file transfer where
 both endpoints have committed persistent storage to the message - is
 probably best realized as a layer above Post Sockets, and may be
 added as a new type of Message Carrier to a future revision of this
 document.

3.2.3. Backpressure

 Regardless of how asynchronous reception is implemented, it is
 important for an application to be able to apply receiver
 backpressure, to allow the protocol stack to perform receiver flow
 control. Depending on how asynchronous I/O works in the platform,
 this could be implemented by having a maximum number of concurrent
 receive callbacks, for example.

https://datatracker.ietf.org/doc/html/rfc4960

Trammell, et al. Expires September 9, 2017 [Page 18]

Internet-Draft Post Sockets March 2017

4. Acknowledgments

 Many thanks to Laurent Chuat and Jason Lee at the Network Security
 Group at ETH Zurich for contributions to the initial design of Post
 Sockets. Thanks to Joe Hildebrand, Martin Thomson, and Michael Welzl
 for their feedback, as well as the attendees of the Post Sockets
 workshop in February 2017 in Zurich for the discussions, which have
 improved the design described herein.

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

5. References

5.1. Normative References

 [I-D.ietf-taps-transports]
 Fairhurst, G., Trammell, B., and M. Kuehlewind, "Services
 provided by IETF transport protocols and congestion
 control mechanisms", draft-ietf-taps-transports-14 (work
 in progress), December 2016.

5.2. Informative References

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-01 (work
 in progress), January 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),
 October 2016.

 [I-D.iyengar-minion-protocol]
 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire
 Protocol", draft-iyengar-minion-protocol-02 (work in
 progress), October 2013.

 [I-D.trammell-plus-abstract-mech]
 Trammell, B., "Abstract Mechanisms for a Cooperative Path
 Layer under Endpoint Control", draft-trammell-plus-

abstract-mech-00 (work in progress), September 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-18
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-protocol-02
https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech-00
https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech-00

Trammell, et al. Expires September 9, 2017 [Page 19]

Internet-Draft Post Sockets March 2017

 [I-D.trammell-plus-statefulness]
 Kuehlewind, M., Trammell, B., and J. Hildebrand,
 "Transport-Independent Path Layer State Management",

draft-trammell-plus-statefulness-02 (work in progress),
 December 2016.

 [MinimaLT]
 Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and
 T. Lange, "MinimaLT, Minimal-latency Networking Through
 Better Security", May 2013.

 [NEAT] Grinnemo, K-J., Tom Jones, ., Gorry Fairhurst, ., David
 Ros, ., Anna Brunstrom, ., and . Per Hurtig, "Towards a
 Flexible Internet Transport Layer Architecture", June
 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April
 2012, <http://www.rfc-editor.org/info/rfc6555>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

https://datatracker.ietf.org/doc/html/draft-trammell-plus-statefulness-02
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5245
http://www.rfc-editor.org/info/rfc5245
https://datatracker.ietf.org/doc/html/rfc6555
http://www.rfc-editor.org/info/rfc6555
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
http://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413

Trammell, et al. Expires September 9, 2017 [Page 20]

Internet-Draft Post Sockets March 2017

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <http://www.rfc-editor.org/info/rfc7556>.

Appendix A. API sketch in Golang

 The following sketch is a snapshot of an API currently under
 development in Go, available at https://github.com/mami-project/

postsocket. The details of the API are still under development; once
 the API definition stabilizes, this will be expanded into prose in a
 future revision of this draft.

// The interface to path information is TBD
type Path interface{}

// An association encapsulates an endpoint pair and the set of paths between
them.
type Association interface {
 Local() Local
 Remote() Remote
 Paths() []Path
}

// A message together with with metadata needed to send it
type OutMessage struct {
 // The content of this message, as a byte array
 Content []byte
 // The niceness of this message. 0 is highest priority.
 Niceness uint
 // The lifetime of this message. After this duration, the message may
expire.
 Lifetime time.Duration
 // Pointers to messages that must be sent before this one.
 Antecedent []*OutMessage
 // True if the message is safe to send such that it may be received
multiple times (i.e. for 0-RTT).
 Idempotent bool
}

// A message received from a stream
type InMessage []byte

// A Carrier is a transport protocol stack-independent interface for sending and
// receiving messages between an application and a remote endpoint; it is
roughly
// analogous to a socket in the present sockets API.
type Carrier interface {
 // Send a byte array on this Carrier as a message with default metadata
 // and no notifications.
 Send(buf []byte) error

https://datatracker.ietf.org/doc/html/rfc7556
http://www.rfc-editor.org/info/rfc7556
https://github.com/mami-project/postsocket
https://github.com/mami-project/postsocket

 // Send a message on this Carrier. The optional onSent function will be

Trammell, et al. Expires September 9, 2017 [Page 21]

Internet-Draft Post Sockets March 2017

 // called when the protocol stack instance has sent the message. The
 // optional onAcked function will be called when the receiver has
 // acknowledged the message. The optional onExpired function will be
 // called if the message's lifetime expired before the message coult be
 // sent. If the Carrier is not active, attempt to activate the Carrier
 // before sending.
 Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func())
error

 // Signal that an application is ready to receive messages via a given
callback.
 // Messages will be given to the callback until it returns false, or until
the
 // Carrier is closed.
 Ready(receive func(InMessage) bool) error

 // Retrieve the Association over which this Carrier is running.
 Association() *Association

 // Retrieve the active Transients over which this carrier is running, if
active.
 Transients() []Transient

 // Determine whether the Carrier is currently active
 IsActive() bool

 // Ensure that the Carrier is active and ready to send and receive messages.
 // Attempts to bring up at least one Transient.
 Activate(isActive func()) error

 // Terminate the Carrier
 Close()

 // Mutate to a file-like object
 AsStream() io.ReadWriteCloser

 // Attempt to fork a new Carrier for communicating with the same Remote
 Fork() (Carrier, error)

 // Signal that an application is ready to accept forks via a given callback.
 // Forked carriers will be given to the callback until it returns false or
 // until the Carrier is closed.
 Accept(accept func(Carrier) bool) error
}

// Initiate a Carrier from a given Local to a given Remote. Returns a new
// Carrier, which may be bound to an existing or a new Association. The
// initiated Carrier is not yet active.
func Initiate(local Local, remote Remote) (Carrier, error)

type Listener interface {

 // Signal that an application is ready to accept forks via a given callback.

Trammell, et al. Expires September 9, 2017 [Page 22]

Internet-Draft Post Sockets March 2017

 // Accept will terminate when the callback returns false, or until the
 // Listener is closed.
 Accept(accept func(Carrier) bool) error

 // Terminate this Listener
 Close()
}

// Create a Listener on a given Local which will pass new Carriers to the
// given channel until that channel is closed.
func Listen(local Local) (Listener, error)

// A Source is a unidirectional, send-only Carrier.
type Source interface {
 // Send a byte array on this Source as a message with default metadata
 // and no notifications.
 Send(buf []byte) error

 // Send a message on this Source. The optional onSent function will be
 // called when the protocol stack instance has sent the message. The
 // optional onAcked function will be called when the receiver has
 // acknowledged the message. The optional onExpired function will be
 // called if the message's lifetime expired before the message coult be
 // sent. If the Source is not active, attempt to activate the Source
 // before sending.
 Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func())
error

 // Retrieve the Association over which this Source is running.
 Association() *Association

 // Determine whether the Source is currently active
 IsActive() bool

 // Ensure that the Source is active and ready to send messages.
 // Attempts to bring up at least one Transient.
 Activate() error

 // Terminate the Source
 Close()
}

// Initiate a Source from a given Local to a given Remote. Returns a new
// Source, which may be bound to an existing or a new Association. The
// initiated Source is not yet active.
func NewSource(local Local, remote Remote) (Source, error)

// A Sink is a unidirectional, receive-only Carrier, bound only to a local.
type Sink interface {

Trammell, et al. Expires September 9, 2017 [Page 23]

Internet-Draft Post Sockets March 2017

 // Signal that an application is ready to receive messages via a given
callback.
 // Messages will be given to the callback until it returns false, or until
the
 // Sink is closed.
 Ready(receive func(InMessage) bool) error

 // Retrieve the Association over which this Sink is running.
 Association() *Association

 // Terminate the Sink
 Close()
}

// Initiate a Sink on a given Local. Returns a new
// Sink, which may be bound to an existing or a new Association.
func NewSink(local Local) (Sink, error)

// Initiate a Responder on a given Local. For each incoming Message, calls the
// respond function with the Message and a Sink to send replies to. Calls the
// Responder until it returns False, then terminates
func Respond(local Local, respond func(msg InMessage, reply Sink) bool) error

// A local identity
type Local struct {
 // A string identifying an interface or set of interfaces to accept
messages and new carriers on.
 Interface string
 // A transport layer port
 Port int
 // A set of zero or more end entity certificates, together with private
 // keys, to identify this application with.
 Certificates []tls.Certificate
}

// Encapsulate a remote identity. Since the contents of a Remote are highly
// dependent on its level of resolution; some examples are below.
type Remote interface {
 // Resolve this Remote Identity to a
 Resolve() ([]RemoteIdentity, error)
 // Returns True if the Remote is completely resolved; i.e., cannot be resol
 Complete() bool
}

// Remote consisting of a URL
type URLRemote struct {
 URL string
}

// Remote encapsulating a name and port number
type NamedEndpointRemote struct {

Trammell, et al. Expires September 9, 2017 [Page 24]

Internet-Draft Post Sockets March 2017

 Hostname string
 Port int
}

// Remote encapsulating an IP address and port number
type IPEndpointRemote struct {
 Address net.IP
 Port int
}

// Remote encapsulating an IP address and port number, and a set of presented
certificates
type IPEndpointCertRemote struct {
 Address net.IP
 Port int
 Certificates []tls.Certificate
}

Authors' Addresses

 Brian Trammell
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

Trammell, et al. Expires September 9, 2017 [Page 25]

Internet-Draft Post Sockets March 2017

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

Trammell, et al. Expires September 9, 2017 [Page 26]

