
RTGWG P. Thubert, Ed.
Internet-Draft Cisco
Intended status: Standards Track P. Bellagamba
Expires: July 26, 2015 Cisco Systems
 January 22, 2015

Available Routing Constructs
draft-thubert-rtgwg-arc-03

Abstract

 This draft introduces the concept of ARC, a two-edged routing
 construct that forms its own fault isolation and recovery domain.
 The new paradigm can be leveraged to improve the network utilization
 and resiliency for unicast and multicast traffic in multiple
 environments, and is optimized to compute short reroute paths in case
 of breakages.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 26, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thubert & Bellagamba Expires July 26, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ARC January 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. ARC Set representations 7
4. Lowest ARC First . 9
4.1. Init . 10
4.2. Growing Trees . 10
4.3. Being Safe . 11
4.4. Bending An ARC . 11
4.5. Orienting Links . 12
4.6. Looping or recursing 13

5. Forwarding Along An ARC Set 13
5.1. Control Plane Recovery 14
5.2. Data Plane Recovery 14
5.2.1. Label Switched ARCs 15
5.2.2. Segment Routed ARCs 15

5.3. Flooding . 16
6. ARC Signaling . 16
6.1. Serial ARC Representation 16
6.2. Centralized vs. Distributed computation 16
6.3. ARC Topology Injection 17
6.4. ARC Operations, Administration, and Maintenance 17

7. Other ARC Operations . 17
7.1. Node-Local vs. ARC-Wide reaction 17
7.2. Load Balancing . 17
7.3. Shared Risk Link Group 18
7.4. Olympic Rings . 19
7.5. Routing Hierarchies 19

8. Manageability . 20
9. IANA Considerations . 20
10. Security Considerations 20
11. Acknowledgments . 20
12. References . 20
12.1. Normative References 20
12.2. Informative References 20

 Authors' Addresses . 21

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Thubert & Bellagamba Expires July 26, 2015 [Page 2]

Internet-Draft ARC January 2015

1. Introduction

 Traditional routing and forwarding uses the concept of path as the
 basic routing paradigm to get a packet from a source to a destination
 by following an ordered sequence of arrows between intermediate
 nodes. In this serial design, a path is broken as soon as a single
 arrow is, and getting around a breakage can require path re-
 computation, network re-convergence, and incur delays to till service
 is restored.

 Multiple paths can be bound together for instance to form a Directed
 Acyclic Graph (DAG) to a destination, but that technique can be
 difficult to balance and cannot provide a full path redundancy even
 in the case of a biconnected graph. For instance, if the node that
 is closest to the DAG destination has only one link to that
 destination, then it does not have a alternate path to get to that
 destination.

 It is also possible to compute an alternate routing topology for fast
 rerouting to a given destination, in which case some signaling,
 tagging or labeling can be put in place to indicate whether a packet
 follows the normal path or was rerouted over an alternate topology.
 Once a packet is rerouted, it is bound to the alternate topology so
 only one breakage can be handled with loop-free guarantees in most
 practical situations.

 This draft introduces the concept of an Available Routing Construct
 (ARC) as a routing construct made of a bidirectional sequence of
 nodes and links with 2 outgoing edges, so that, upon a single
 breakage, each lively node in along ARC can still reach one of the
 outgoing edges.

 The routing graph to reach a certain destination is expressed as a
 cascade of ARCs, each ARC providing its own independent domain of
 fault isolation and recovery. Unicast traffic may enter an ARC via
 any node but it may only leave the ARC through one of its two edges.
 One node along the ARC is designated as the Cursor. In normal
 unicast operations, the traffic inside an ARC flows away from the
 Cursor towards an edge. Upon a failure, packets may bounce on the
 breakage point and flow the other way along the ARC to take the other
 exit.

 Aa a result an ARC is resilient to any single failure, and the
 recovery can be driven either from the data plane or the control
 plane. A second failure occurring within a same ARC will isolate an
 ARC segment. This can be further corrected from the control plane by
 reversing all the incoming Edges in a process that might recurse till

Thubert & Bellagamba Expires July 26, 2015 [Page 3]

Internet-Draft ARC January 2015

 an exit is found. When ARC reversal is applied, an ARC topology is
 resilient to some cases of Shared Risk Link Group (SRLG) failures.

 Properties of the Maximally Redundant Tree (MRT) and ARC are compared
 in [I-D.thubert-rtgwg-arc-vs-mrt]. The study shows that the reroute
 path that ARC derives is generally shorter than the alternate path
 that MRT computes. This property is largely due to the concept of
 cursor that delineates the shortest path on both sides of an ARC.
 Once a rerouted packet passes the cursor of the ARC in which it is
 rerouted, it should not cross a cursor again unless there is a second
 breakage later. It results that the packet follows the shortest path
 for the rest of the way, staying on the right side of each downstream
 ARC, when MRT would be following all subsequent eyes in the same
 direction.

 This draft presents the concept and provides an intuition of how ARCs
 can simplify the operation and improve the network utilization and
 resiliency for all sorts of traffic in multiple environments, but
 defers to further documents to elaborate on the algorithms and
 optimizations in the different application domains. For instance,
 ARCs can also be used in datacenters for the purpose of fast-reroute,
 or within a service provider network to simplify load balancing
 operations or leverage optimally the ring topologies [RFC5921].

2. Terminology

 The definition of the constituent parts of the "OAM" term is found in
 [RFC6291].

 The draft uses the following terminology:

 ARC: Available Routing Construct. An ARC is a loopless ordered set
 of nodes and links whereby traffic may enter via any node in the
 ARC but may only leave the ARC through either one of the ARC
 edges.

 Comb: An ARC generalization: a Comb is a n-edged loopless set of
 nodes and links with n >= 2; traffic may enter via any node in the
 Comb but may only exit the Comb through one of its n edges. A
 Comb comes with a walk operation that enables to attempt to exit
 via every edge and to discover when all have been tried.

 Cursor: A virtual point along an ARC that can be located on a node
 or on a link between 2 nodes. In normal operations, the traffic
 along the ARC flows away from its Cursor. If the Cursor is a
 node, then traffic can be distributed on both sides. The Cursor
 may be moved to change the way traffic is load balanced along an

https://datatracker.ietf.org/doc/html/rfc5921
https://datatracker.ietf.org/doc/html/rfc6291

Thubert & Bellagamba Expires July 26, 2015 [Page 4]

Internet-Draft ARC January 2015

 ARC. It may also be placed at the location of a failure to direct
 traffic away from that point.

 ARC Node: A Node that belongs to an ARC.

 Edge ARC Node: An ARC Node at an edge of its ARC. An Edge ARC Node
 is a node via wich traffic can exit the ARC.

 Edge Link: A directed link outgoing from an Edge ARC Node. Traffic
 can only exit from an ARC via an Edge Link. An Edge Link does not
 accept traffic into an ARC.

 Intermediate ARC Node: A node that is not at an edge of an ARC. A
 Intermediate ARC Node node that can receive traffic and forward
 traffic between its adjacent nodes.

 Intermediate Link: A link between two Intermediate ARC Nodes. An
 Intermediate Link is reversible, meaning that traffic is allowed
 in both directions though an individual packet is constrained in
 the way its direction is reversed. For stable links such as wired
 links, the typical constraint is that the direction of a packet
 may be reversed at most once along a given ARC.

 Collapsed ARC: An ARC that is formed of a single node. This node is
 altogether the Cursor and both Edge Nodes. This implies that the
 node has at least 2 outgoing links to 2 different Safe Nodes.

 |
 |
 V
 C+EAN
 /|\
 / | \
 | V |
 V V

 E: Edge ARC Node -| collapsed in a single node
 C: Cursor -|

 Figure 1: Collapsed ARC

 Infrastructure ARC: An ARC that is formed of more than one node,
 which also means that the Edge Nodes are different nodes.

Thubert & Bellagamba Expires July 26, 2015 [Page 5]

Internet-Draft ARC January 2015

 | \ | |
 | \ | | |
 V V V |
 ->IAN<---->IAN<---->IAN<---->IAN<- |
 / + C \ |
 / \|
 V V
 EAN EAN
 | /|\
 | / | \
 | | V |
 V V V

 IAN: Intermediate ARC Node -|
 EAN: Edge ARC Node |- All are Safe Nodes
 C: Cursor -|

 Figure 2: Infrastructure ARC

 DAG: Directed Acyclic Graph.

 ARC Set (or Cascade): A DAG with ARCs as vertices. In the DAG, an
 edge between ARC A and ARC B corresponds to a link from an Edge
 ARC Node in ARC A and an arbitrary ARC Node in ARC B. Note that
 by definition, an ARC has at least 2 outgoing Edge Links, one per
 Edge Node, and maybe more if an Edge Node has multiple outgoing
 Edge Links. All vertices in the DAG have 2 forwarding solutions,
 even the ARC closest to the destination.

 Omega: the abstract destination (== root) of an ARC Set. Omega is
 also referred as a complex destination in that it typically
 comprises more than one node and/or more than one link on a node.
 if Omega has a single node, then the plural interfaces on that
 node are considered as as many virtual node for the sake of the
 ARC computation algorithm.

 ARC Height: An arbitrary distance from Omega that is associated to
 an ARC. The Height of an ARC must be more than the Height of any
 of the ARCs it terminates into. The order of ARC formation by a
 given algorithm can be used as a Height whereby an ARC is always
 strictly higher or lower than another.

 Buttressing ARC: A split ARC that is merged into another ARC at one
 edge. An ARC and one or more Buttressing ARCs form a Comb
 construct that is resilient to additional breakages. A
 Buttressing ARC may be applied to an ARC or a Comb iff traffic

Thubert & Bellagamba Expires July 26, 2015 [Page 6]

Internet-Draft ARC January 2015

 outgoing the Buttressing ARC Edge always reaches in an ARC that is
 lower than this ARC, or Omega.

 | \ | |
 | \ | | |
 V V V |
 ->IAN<---->IAN<---->IAN<---->IAN<------>IAN<-_
 / + C \ | \
 / \| \
 V V V
 EAN EAN EAN
 | /|\ | |
 | / | \ |
 | | V | |
 V V V V

 Figure 3: Comb with Buttressing ARC

 Safe Node: A node is Safe if there is no single point of failure -
 apart from the node itself - on its way to Omega. From this
 definition, a node is Safe if it has at least two non-congruent
 paths to two different other Safe Nodes. It results that a Safe
 node that is not Omega has at least two completely disjunct paths
 to Omega. When an ARC has been successfully constructed, all its
 nodes become safe with respect to the Omega for which the ARC was
 constructed. By extension for a collapsed path Omega is deemed to
 be Safe, that is any node that pertains in Omega is a Safe Node.

 ?-S: A node N is deemed dependent on a node S or S-dependent
 (denoted as ?-S) if S is the last single point of failure along
 N's shortest path to Omega.

3. ARC Set representations

 An ARC Set can be represented in a number of fashions:

 Graph View:

Thubert & Bellagamba Expires July 26, 2015 [Page 7]

Internet-Draft ARC January 2015

 H2<==>H<==>H1<---I--->J1<==>J--->K1<===>K
 | | | | |
 | | | | |
 V V V V V
 D1<==>D<==>D3 E1<==>E F1<==>F<==>F2 G
 | | | | | | / \
 | | | | | | / \
 V V V V V V V V
 B1<==>B2<==>B3<==>B--->A<==>A1<------C2<==>C<==>C4
 | | | |
 | | | |
 | V V |
 +--------------------> Omega <-------------------+

 Figure 4: Routing Graph View

 This representation is similar to a classical routing graph with
 the peculiarity that some Links are marked reversible. An ARC is
 represented as a sequence of reversible links. The node that
 holds the Cursor is also indicated somehow.

 ARC View:

 +========I========+
 | |
 | +====J====+
 | | |
 +====H====+ | +=====K=====+
 | | | | |
 +====D====+ +====E====+ +====F====+ +====G====+
 | | | | | | | |
 +=========B=========+ | | +=========C=========+
 | | | | | |
 | +======A=======+ |
 | | | |
 --Omega

 Figure 5: ARC Representation

 This ARC representation abstracts a whole ARC as a single vertex.
 An ARC ends in one or more other ARCs, but it has to be noted that
 even if both edges of an ARC end in a same other ARC, it ends in

Thubert & Bellagamba Expires July 26, 2015 [Page 8]

Internet-Draft ARC January 2015

 fact in 2 different nodes, or Omega. This is turn can be
 represented as a DAG as described in Paragraph 3.

 Collapsed DAG view:

 +====+ +====+ +====+ +====+
 | H | <--- | I | ---> | J | ---> | K |
 | __ | ___/ |
 | \ | / |
 V _| V |_ V
 +====+ +====+ +====+ +====+
 | D | | E | | F | <--- | G |
 \ \ __/ __ __/ __ / /
 \ \ / \ / \ / /
 _| _| |_ _| |_ _| |_ |_
 +====+ +====+ +====+
 | B | ---> | A | <--- | C |
 | | | |
 V V V V
 --Omega

 Figure 6: ARC DAG

 In the DAG representation, an ARC is abstracted as a vertex and
 links between ARCs are shown as directed edges. This way, the
 reversible links are omitted and the graph is simplified. It can
 be noted that even the vertex closest to Omega has 2 non-congruent
 forwarding solutions, that is Heir Links to Omega.

4. Lowest ARC First

 The open Lowest ARC First(oLAF) algorithm is presented below in such
 a way as to help the reader figure how an ARC Set can be obtained but
 not in a computer-optimized fashion that is left to be determined.
 oLAF is based on Dijkstra's algorithm for Shortest Path First (SPF)
 computation, and is designed in such a fashion that the reverse SPF
 tree towards a destination is conserved and preferred for forwarding
 along the resulting ARC Set.

 We make the computation on behalf of Omega, that is an abstraction,
 but could represent the node or the set of nodes that we want to
 reach with an ARC Set. If Omega is instantiated as an actual
 destination node, then that node may be a fine location for an ARC
 Computing Engine.

Thubert & Bellagamba Expires July 26, 2015 [Page 9]

Internet-Draft ARC January 2015

4.1. Init

 So we start with an proverbial Initial Set of Nodes that are
 interconnected by Links, and Omega that is the destination that we
 want to reach with an ARC Set.

 If there is no Heir, we're done. If there is a single Heir then the
 graph is mono-connected, so we restart the computation taking that
 Heir off the Set of Nodes and making it Omega.

 Else, if Omega is a single Node, or if Omega is composed of multiple
 nodes but we are willing to accept that both ends of an ARC terminate
 in a same node in Omega, then we create virtual Omega nodes, a
 minimum of two and at most one per Heir, and we make them the new
 Omega. Note: we need at least two destinations because both ends of
 an ARC cannot terminate in a same node.

 Now we can start building an ARC Set towards the resulting Omega.

 In this process, we create so-called Dependent Sets of nodes, each
 owned by a Safe Node S, DSet(S). DSet(S) contains nodes that are not
 determined to be Safe at the current stage of the computation and for
 which S, the owner Safe Node, is the last single point of failure on
 the shortest path tree to Omega. It results that a given node can be
 at most in one DSet, and that a Safe Node belongs to its own DSet.

 For each node S in Omega we create a DSet(S) in which we place S.

4.2. Growing Trees

 And then the process goes like this:

 We select the node in the Set of Nodes that is closest to Omega using
 the cost towards Omega as if we were building a traditional reverse
 SPF tree and we place the selected node in the same Dependent Set as
 its parent in the reverse SPF tree. Note that for a Heir, the parent
 might be a real node in Omega, or a virtual Omega node.

 If we kept it at that, we would be building subtrees that are hanging
 off a Safe Node and together would represent the reverse shortest
 path tree towards Omega, each subtree being grown separately inside
 DSet(S) where S is the (virtual) Safe node that is the root of the
 subtree.

Thubert & Bellagamba Expires July 26, 2015 [Page 10]

Internet-Draft ARC January 2015

4.3. Being Safe

 But once we have placed the selected node in a DSet, we consider its
 neighbors one by one. If at least one of the neighbors is already in
 a different DSet than this node, we select the neighbor that provides
 the shortest alternate path to Omega for the selected node.

 Doing so, we have isolated two paths:

 o one along its own shortest path that is contained within its own
 Dependent Set and that leads to the owner Safe Node of this set.

 o and one via the selected neighbor, along its own shortest path
 within the selected neighbor's Dependent Set and that leads to the
 owner Safe Node of that other set.

 Because the two sets are different and have no intersection, these
 paths are non-congruent. And because the two non-congruent paths
 lead to two different Safe Nodes, this node is Safe.

 It might happen that:

 o the selected node's parent is already a Safe Node, in which case
 the selected node is the Edge AN on its shortest path side.

 o It might also happen that the selected neighbor is already a Safe
 Node, in which case selected node is the Edge AN on its alternate
 side.

 If both conditions are met for a same AN, then that AN forms a
 collapsed ARC by itself.

4.4. Bending An ARC

 Now we form an ARC as follows:

 o A height is attributed to this ARC that must be strictly more than
 that of the ARCs it terminates into, if any. The order in which
 the ARCs are built may be used in some cases.

 o The ARC terminates in the two Safe Nodes that are the owners of
 the two DSets. The normal behaviour is to make a Edge Link the
 link to the Safe Node.

 o If the Safe Node at one end forms a collapsed ARC by itself, it
 may be absorbed in the ARC in order to build a multi-edged ARC.

Thubert & Bellagamba Expires July 26, 2015 [Page 11]

Internet-Draft ARC January 2015

 o If one of the two Safe Nodes pertains in a ARC or a Comb construct
 that is higher than the other end, then this ARC may be merged at
 the Safe Node with its original ARC, in order to form a Comb
 construct whereby this ARC is a Buttressing ARC of the Comb. The
 resulting Comb conserves the height on the original ARC or Comb
 that it extends.

 o The ARC is built by adjoining the two non-congruent paths that we
 isolated for the selected node.

 o The selected node is the node farthest from Omega in the resulting
 ARC, so we make it the Cursor.

 o The link between the selected node and the selected neighbor would
 not have been used in a classical reverse SPF tree. Here, we have
 determined that this link is in fact critical to connect 2 zones
 of the network (the DSets) that can act as a back up for one
 another in case of the failure of their respective single points
 of failure (the Safe Nodes).

 o Because the ARC can be used in both directions, each AN along the
 ARC has two non-congruent paths to the Safe Nodes that the ARC
 terminates into. So it is a Safe Node. We create individual
 DSets for each AN and we move the AN to its own DSet.

4.5. Orienting Links

 For each ARC Node along the ARC:

 o any link (there can be zero for a collapsed ARC, one for an Edge
 AN or two of them for a Intermediate AN) between this AN and a
 next AN along this ARC is made an Intermediate Link, that is,
 reversible. The normal direction, away from the Cursor, preserves
 the shortest path.

 o If this AN is an Edge AN for this ARC, than all links off this
 node that terminate in a Safe Node are made Edge Links, that is,
 outgoing but not reversible.

 o All the other links left undetermined.

 The nodes left in the Dependent Sets but the owner Safe Node are
 still not Safe. They are moved back to the original Set of Nodes to
 enable forming additional ARCs which might depend on this ARC in the
 ARC Set.

Thubert & Bellagamba Expires July 26, 2015 [Page 12]

Internet-Draft ARC January 2015

4.6. Looping or recursing

 We are done processing the particular node we had picked in the
 original Set of Nodes. If the Set of Nodes as it stands now is not
 empty, we continue from Section 4.2.

 If the Set of Nodes went empty, we are done with this pass and we
 consider the Dependent Sets that we have put together. In a
 biconnected graph, there should be one set per node and one node per
 set, denoting that every node is a Safe Node.

 If some portion of the graph is mono-connected, then each mono-
 connected portion forms the Dependent Set of the Safe Node that is
 its single point of failure. In order to be maximally redundant, we
 need to form the ARCs again, within the Dependent Set.

 To do so, we remove the Safe Node from the Dependent set and make it
 Omega. We make the resulting DSet our Set of Nodes and run the
 algorithm again.

 This may recurse a number of times if the graph has mono-connected
 zones within others.

5. Forwarding Along An ARC Set

 Under normal conditions, the traffic flows away from the Cursor of
 the current ARC and cascades into the next ARC on that side of the
 Cursor, with the Height of the current ARC decreasing monotonically
 from ARC to ARC till Omega is reached.

 The same goes for a generic Comb construct. When Buttressing ARCs
 are applied on a main ARC or other Buttressing ARCs, the final
 construct assumes the shape of a tree. The tree may be walked in
 different manners but the shortest path requires to start going down
 the current ARC or Buttressing ARC to its Edge.

 In case of Label forwarding, the same recursive technique is applied
 and a multiple ARC label path is constructed. Each ARC has is own
 set of label path per Omega, each ARC Set label path being merged
 into the lower ARC label set, thus at the interconnection point. At
 minimum, ARC label path should be built from the Cursor toward each
 edge, but this would require label path recompilation upon Cursor
 move, the proposed approach is then to build for the normal flow to
 an Omega one pair of label path from edge to edge.

 As this label construct maps the ARC topology with local significant
 label, the Label Distribution Protocol (LDP) could be reused to
 announce label association to neighbors on the ARC.

Thubert & Bellagamba Expires July 26, 2015 [Page 13]

Internet-Draft ARC January 2015

 Upon a breakage inside an ARC, until a corrective action takes place,
 some traffic will be lost. The corrective action might be either
 operated at the control plane or the data plane, if immediate action
 and near-zero packet loss is required.

5.1. Control Plane Recovery

 Upon a first breakage in an ARC, the Cursor is moved to the breakage
 point, either a node or a link, so that traffic flows away from the
 Cursor again.

 Upon a second breakage within a same ARC, a segment of the ARC is now
 isolated. Both breakage points become sinks till an additional
 corrective action, such as modifying the ARC Set, takes place. All
 incoming links in the isolated segment are blocked , causing the
 traffic to exit at the other end of the incoming ARCs.

 Blocking an Edge Link in the incoming ARC may create an isolated
 segment in the incoming ARC as well if it is a second breakage there
 too, or if both edges of the incoming ARC terminate in the broken
 segment. In that case the process recurses and the broken zone can
 be determined as the collection of the isolated segments.

 If a segment of an ARC is getting isolated by a dual failure but that
 ARC segment has incoming Edges then the ARC can be reversed. This
 reversal is done by reversing of all the incoming Edges, which become
 outgoing. The segment that was isolated now benefits from multiple
 exits in a loop free fashion. This process might in turn isolate a
 segment of an ARC that was incoming and the process recurses and some
 links flap. If a real exit exits the process will stabilize, but a
 count to infinity must be put in place to avoid a permanent flapping
 when a whole ARC Subset is physically isolated. One may consider
 that this process is in fact the classical link reversal technique,
 as applied to the DAG of ARCs.

5.2. Data Plane Recovery

 Upon a breakage inside an ARC, it is possible in the data plane to
 reverse the direction of -to turn- a given packet once along the ARC
 so the packets exits over the other Edge Link. But in order to avoid
 loops, it is undesirable to reverse the direction of a given packet a
 second time.

 Note that once a given packet leaves an ARC to enter the next, it is
 free to bounce again in the next ARC. In other Words, the domain
 that is impacted by a turn is limited to the current ARC itself; the
 ARC forms the event horizon wherein the notion that a turn happened
 may cause a loop.

Thubert & Bellagamba Expires July 26, 2015 [Page 14]

Internet-Draft ARC January 2015

 So a local strategy must be put in place inside an ARC to allow a
 given packet to bounce once upon a breakage, and get dropped upon a
 second breakage.

 In the case of IP packet forwarding, a packet can be tagged when it
 bounces inside an ARC, or when it passes the Cursor, for instance by
 reserving a TOS bit for that purpose. When the packet bounces, the
 bit is set and when the packet leaves the ARC, the bit is reset and
 may be used again in the next ARC. In the generic case of a Comb, a
 strategy must be put in place to walk the structure and drop a packet
 that tries all the Edges. it attempts to pass the Cursor twice in a
 same direction, meaning that more than a full walk was already
 accomplished.

5.2.1. Label Switched ARCs

 In the case of MultiProtocol Label Switching (MPLS) forwarding, the
 same result can be achieved with Label Switched ARCs (LSARCs), that
 are composed of either 3 or 4 Labels Switched Paths (LSPs) along the
 ARC.

 3-Labels method: In this case we lay a primary LSP from the cursor
 to the Edge in each direction, and a backup LSP Edge to Edge in
 each direction. So a node along the way has three labels, one
 primary and two backup, one in each direction. Should the primary
 path fail, the packet can be placed along the backup LSP in the
 other direction. We'll note that this method constraints the
 location of the Cursor. Should the Cursor move, The primary LSPs
 have to be recomputed, at a minimum between the old and the new
 location of the Cursor where the direction is reversed.

 4-Labels method: In this case we have a primary and a backup LSPs in
 each direction all of them Edge to Edge, 4 labels total. The
 labels are independent of the location of the Cursor, so the
 Cursor can be moved from a node to the next in control plane with
 no impact on labels. This method consumes an additional label but
 is more amenable to load balancing techniques and allows each node
 that inject a packet inside an ARC to make its own decision of the
 exit edge for a given packet or flow.

5.2.2. Segment Routed ARCs

 In the case of an infrastructure that is capable of Segment Routing
 (SR) [I-D.ietf-spring-segment-routing], the tag in the packet is in
 essence a Routing Header (RH) via the cursor. The RH forces routing
 to the destination all the way back up the broken ARC and then down
 on the other end. via the cursor of a broken ARC.

Thubert & Bellagamba Expires July 26, 2015 [Page 15]

Internet-Draft ARC January 2015

 Upon a breakage, the node detecting the failure reroutes the packet
 towards the other edge, which means going backwards up to the cursor,
 and following normal routing from there.

 The Routing Header may indicate, as consumed, an entry that points on
 the broken edge, if that is necessary for the cursor to figure out
 which is the broken edge so as to route towards the other edge.

5.3. Flooding

 ARCs probably apply to both unicast and multicast traffic, as
 illustrated by [I-D.thubert-rtgwg-arc-bicast]. In particular, ARCs
 enable a redundant flooding of a packet. The flooded packet is
 injected at all edges ending in Omega, and from there swims upriver
 along the reverse ARC direction. The packet is then forwarded from
 the incoming edge of the ARC to the other edge where it is absorbed.
 On the way along the ARC, the packet is copied into all the ARCs that
 terminate in this ARC where the process recommences.

 Since a packet is finally injected from both edges of any ARC, it
 should get to all nodes in an ARC even if there is one breakage in
 that ARC. in normal conditions, at least two copies of the packet
 circulate in an ARC, one in each direction, and a mechanism should be
 put in place to make sure that only one copy is injected in an
 incoming edge.

6. ARC Signaling

6.1. Serial ARC Representation

 A single ARC can be serialized as the sets of endpoints at both edges
 and the ordered list of nodes in the ARC between the edges. Since
 the endpoints are effectively nodes in downstream ARCs, the set of
 all serialized ARCs provides a full description of the topology.

6.2. Centralized vs. Distributed computation

 An ARC set can be computed with a slightly altered Shortest Path
 First algorithm, as further explained in Section 4. It results that
 any node, or all nodes participating to a Link State protocol, may
 learn the topology and compute an ARC Set. If all nodes compute the
 topology on their own and asynchronously, micro-loops will follow
 till the network converges.

 It makes more sense to limit the computation of an ARC Set to
 specific nodes, typically a Path Computation Element (PCE), a Network
 Management Entity (NME), or nodes in Omega. This is typically what
 happens in a Software Define Networking (SDN) environment.

Thubert & Bellagamba Expires July 26, 2015 [Page 16]

Internet-Draft ARC January 2015

6.3. ARC Topology Injection

 Regardless of the central entity that computes the ARC set, the new
 or updated ARC Set is serialized in a control message and flooded
 over itself from Omega as described in Section 5.3.

 The new ARC Set can be used as soon as it is received, in the
 direction from which it is received, since a path along nodes in that
 direction exists already, through the nodes that forwarded the
 control messages. The full ARC redundancy is only available when a
 control message has been received along an ARC in both directions.
 In that model, there is no micro-loop.

6.4. ARC Operations, Administration, and Maintenance

 Operations, Administration, and Maintenance (OAM) frames are used
 within an ARC and flow periodically or asynchronously from an edge to
 the other. Such frame may carry indications such as a breakage or a
 congestion, and may be used to control the load balancing, or link
 reversal operations.

7. Other ARC Operations

7.1. Node-Local vs. ARC-Wide reaction

 ARCs enable forwarding plane reactions to breakages. In the simple
 case of a single breakage in an ARC, the reaction can be immediate to
 the discovery of the breakage and consists in rerouting the packet
 towards the other edge across the cursor, as explained in

Section 5.2.

 More complex situations require the coordination of all the nodes
 along an ARC. For instance, load balancing requires the knowledge of
 the congestion level at multiple points along the ARC, whereas the
 solution to the Shared Risk Link Group (SRLG) problem discussed in

Section 7.3 requires all incoming edges in an isolated ARC segment to
 be blocked before they can be returned. For such ARC-Wide
 coordinated reactions, OAM frames are necessary to enable forwarding
 plane rapid reactions.

7.2. Load Balancing

 In normal conditions, only the Cursor may distribute its traffic
 between the two Edge Nodes. If an Edge Node is still congested after
 the Cursor forwards all its traffic towards the other Edge Node, then
 the Cursor can be moved towards the congested Edge in order to derive
 even more traffic towards the other Edge. If both Edges are
 congested, then a back-pressure can be applied on the incoming ARCs

Thubert & Bellagamba Expires July 26, 2015 [Page 17]

Internet-Draft ARC January 2015

 so that they move their own traffic towards their own alternate Edge.
 The process may recurse.

 It is expected that control frames similar to those defined for MPLS
 Fault Management Operations, Administration, and Maintenance (OAM)
 [RFC6291] will echo from Edge Node to Edge Node provide information
 such as liveliness and load. In order to establish a control loop
 between the Edge Nodes and the Cursor, the OAM frame would carry at
 least a logical information whether:

 The Edge Node is capable of forwarding data down to the next ARC

 the load may be increased (e.g. rate below threshold including
 hysteresis)

 the load should be decreased (e.g. congestion observed as
 increased latency or buffer bloat)

 If the load should be decreased towards of congested Edge Node and
 the load may be increased towards the other then the Cursor may
 adjust its balancing of the load, or move Cursor ownership towards
 the congested Edge if it is already redirecting all the traffic
 towards the non-congested Edge.

 If the Cursor is balancing traffic away from the default position due
 to a past congestion notification and the Edge that was congested now
 reports that the load may be increased, then the reverse operation
 can happen and the Cursor may balance the load back to the original
 position taking the reverse steps as above.

 If the OAM can not be forwarded due to a link or a node failure, then
 the last node towards the broken Edge becomes Cursor and echoes the
 OAM frames advertising that it is an Edge node that is blocked, not
 capable of forwarding data down to the next ARC.

 If both Edges are experiencing a congestion then the condition should
 be reported to the Edge Nodes of all incoming ARCs. Same goes when
 both Edges are blocked.

7.3. Shared Risk Link Group

 Essentially, the Shared Risk Link Group (SRLG) problem is that a
 physical breakage may end up breaking more than one apparently
 unrelated IP links. such a breakage may end up breaking an ARC in
 more than one place, effectively creating isolated segments.

 The basic approach to solve that problem is the classical link
 reversal technique. Since ARCs form a DAG as illustrated in

https://datatracker.ietf.org/doc/html/rfc6291

Thubert & Bellagamba Expires July 26, 2015 [Page 18]

Internet-Draft ARC January 2015

 Figure 6, it is possible to return all the incoming edges in an
 isolated ARC segment so that traffic that circulates inside the
 segment is actually fed back in incoming ARCs. The incoming ARCs are
 considered broken on that edge so all the traffic is fed into the
 other edge. If this causes the incoming ARC to be doubly broken, the
 process recurses. in that incoming ARC. Over a number of iterations,
 if there is an exit, it will be found and the traffic will be
 funneled that way. If there is none, after a certain number of
 iterations, the process counts to infinity and stops.

 If the iterations are performed too quickly, the process may cause
 micro-loops. OAM frames circulating within the broken segment can
 solve that issue. On the way in, the OAM frame should block all
 incoming ARCs, which effectively causes the edges to appear broken in
 incoming ARCs. On the way back, the OAM frame returns the incoming
 edges to be used the other way.

7.4. Olympic Rings

 By Olympic Ring problem we mean how to optimally reuse the multiple
 path opportunities that interconnecting 2 rings enable. ARCs can
 simply be deployed inside a ring A to reach a connected ring B by
 installing an ARC between adjacent interconnections on the rings. If
 the rings only connect at one point, there is a single ARC going all
 the way around the ring, with the cursor at the far side. If there
 are more than one interconnection, then you always end up with as
 many ARCs as there are interconnections.

 A packet being forwarded inside a ring picks the side of the ring
 that is away from the cursor, taking effectively the shortest path to
 the next ring. If a hop is broken, then the packet is returned to
 the other edge of the ARC, which is the adjacent interconnection
 between the ARCs.

 Note: There is no need in that model to artificially disable one hop
 in the ring and re-enable it in case of breakage.

7.5. Routing Hierarchies

 The ARC methods may be used to build and/or leverage routing
 hierarchies, allowing high availability at multiple hierarchical
 levels. In one hand, the view of an ARC Set can be simplified by
 abstracting an ARC as a node in a DAG. The view of the routing
 topology is thus simplified, as illustrated in Figure 6.

 In the case of connected rings,abstracting a full ring as a node,
 ARCs can be applied to a graph of rings, providing another level of
 redundancy and an abstract end-to-end path computation, ring to ring

Thubert & Bellagamba Expires July 26, 2015 [Page 19]

Internet-Draft ARC January 2015

 to ring. ARCs may be used to make that computation resilient as
 well.

8. Manageability

 This specification describes a generic model. Protocols and
 management will come later

9. IANA Considerations

 This specification does not require IANA action.

10. Security Considerations

 This specification is not found to introduce new security threat.

11. Acknowledgments

 The authors wishes to thank Dirk Anteunis, Stewart Bryant, IJsbrand
 Wijnands, George Swallow, Eric Osborne, Clarence Filsfils and Eric
 Levy-Abegnoli for their participation and continuous support to the
 work presented here.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2. Informative References

 [I-D.ietf-spring-segment-routing]
 Filsfils, C., Previdi, S., Bashandy, A., Decraene, B.,
 Litkowski, S., Horneffer, M., Shakir, R., Tantsura, J.,
 and E. Crabbe, "Segment Routing Architecture", draft-ietf-

spring-segment-routing-00 (work in progress), December
 2014.

 [I-D.thubert-rtgwg-arc-bicast]
 Thubert, P. and I. Wijnands, "Applying Available Routing
 Constructs to bicasting", draft-thubert-rtgwg-arc-

bicast-01 (work in progress), October 2013.

 [I-D.thubert-rtgwg-arc-vs-mrt]
 Thubert, P., Enyedi, G., and S. Ramasubramanian,
 "Available Routing Constructs", draft-thubert-rtgwg-arc-

vs-mrt-01 (work in progress), January 2014.

Thubert & Bellagamba Expires July 26, 2015 [Page 20]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-00
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-00
https://datatracker.ietf.org/doc/html/draft-thubert-rtgwg-arc-bicast-01
https://datatracker.ietf.org/doc/html/draft-thubert-rtgwg-arc-bicast-01
https://datatracker.ietf.org/doc/html/draft-thubert-rtgwg-arc-vs-mrt-01
https://datatracker.ietf.org/doc/html/draft-thubert-rtgwg-arc-vs-mrt-01

Internet-Draft ARC January 2015

 [RFC5921] Bocci, M., Bryant, S., Frost, D., Levrau, L., and L.
 Berger, "A Framework for MPLS in Transport Networks", RFC

5921, July 2010.

 [RFC6291] Andersson, L., van Helvoort, H., Bonica, R., Romascanu,
 D., and S. Mansfield, "Guidelines for the Use of the "OAM"
 Acronym in the IETF", BCP 161, RFC 6291, June 2011.

Authors' Addresses

 Pascal Thubert (editor)
 Cisco Systems, Inc
 Building D
 45 Allee des Ormes - BP1200
 MOUGINS - Sophia Antipolis 06254
 FRANCE

 Phone: +33 497 23 26 34
 Email: pthubert@cisco.com

 Patrice Bellagamba
 Cisco Systems
 214 Avenue des fleurs
 Saint-Raphael 83700
 FRANCE

 Phone: +33.6.1998.4346
 Email: pbellaga@cisco.com

Thubert & Bellagamba Expires July 26, 2015 [Page 21]

https://datatracker.ietf.org/doc/html/rfc5921
https://datatracker.ietf.org/doc/html/rfc5921
https://datatracker.ietf.org/doc/html/bcp161
https://datatracker.ietf.org/doc/html/rfc6291

