
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track September 12, 2017
Expires: March 16, 2018

Long-term Viability of Protocol Extension Mechanisms
draft-thomson-use-it-or-lose-it-00

Abstract

 The ability to change protocols depends on exercising the extension
 and version negotiation mechanisms that support change. Protocols
 that don't use these mechanisms can find that deploying changes can
 be difficult and costly.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 16, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires March 16, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Use It Or Lose It September 2017

Table of Contents

1. Introduction . 2
2. Implementations of Protocols are Imperfect 2
2.1. Good Protocol Design is Not Sufficient 3
2.2. Multi-Party Interactions and Middleboxes 4

3. Retaining Viable Protocol Evolution Mechanisms 5
3.1. Practice Can Ensure Viability 5
3.2. Dependency is Better 6
3.3. Unused Extension Points Become Unusable 7

4. Defensive Design Principles for Protocols 7
4.1. Active Use . 7
4.2. Grease . 7
4.3. Cryptography . 9
4.4. Visibility of Faults 9

5. Security Considerations 10
6. IANA Considerations . 10
7. Informative References 10

 Author's Address . 12

1. Introduction

 A successful protocol [SUCCESS] will change in ways that allow it to
 continue to fulfill the needs of its users. New use cases,
 conditions and constraints on the deployment of a protocol can render
 a protocol that does not change obsolete.

 Usage patterns and requirements for a protocol shift over time.
 Protocols can react to these shifts in one of three ways: adjust
 usage patterns within the constraints of the protocol, extend the
 protocol, and replace the protocol. These reactions are
 progressively more disruptive, but are also dictated by the nature of
 the change in requirements over longer periods.

 Experience with Internet-scale protocol deployment shows that
 changing protocols is not uniformly successful. [TRANSITIONS]
 examines the problem more broadly.

 This document examines the specific conditions that determine whether
 protocol maintainers have the ability to design and deploy new or
 modified protocols. Section 4 outlines several strategies that might
 aid in ensuring that protocol changes remain possible over time.

2. Implementations of Protocols are Imperfect

 A change to a protocol can be made extremely difficult to deploy if
 there are bugs in implementations with which the new deployment needs
 to interoperate. Bugs in the handling of new codepoints or

Thomson Expires March 16, 2018 [Page 2]

Internet-Draft Use It Or Lose It September 2017

 extensions can mean that instead of handling the mechanism as
 designed, endpoints react poorly. This can manifest as abrupt
 termination of sessions, errors, crashes, or disappearances of
 endpoints and timeouts.

 Interoperability with other implementations is usually highly valued,
 so deploying mechanisms that trigger adverse reactions like these can
 be untenable. Where interoperability is a competitive advantage,
 this is true even if the negative reactions happen infrequently or
 only under relatively rare conditions.

 Deploying a change to a protocol could require fixing a substantial
 proportion of the bugs that the change exposes. This can involve a
 difficult process that includes identifying the cause of these
 errors, finding the responsible implementation, coordinating a bug
 fix and release plan, contacting the operator of affected services,
 and waiting for the fix to be deployed to those services.

 Given the effort involved in fixing these problems, the existence of
 these sorts of bugs can outright prevent the deployment of some types
 of protocol changes. It could even be necessary to come up with a
 new protocol design that uses a different method to achieve the same
 result.

2.1. Good Protocol Design is Not Sufficient

 It is often argued that the design of a protocol extension point or
 version negotiation capability is critical to the freedom that it
 ultimately offers.

RFC 6709 [EXTENSIBILITY] contains a great deal of well-considered
 advice on designing for extension. It includes the following advice:

 This means that, to be useful, a protocol version- negotiation
 mechanism should be simple enough that it can reasonably be
 assumed that all the implementers of the first protocol version at
 least managed to implement the version-negotiation mechanism
 correctly.

 This has proven to be insufficient in practice. Many protocols have
 evidence of imperfect implementation of these critical mechanisms.
 Mechanisms that aren't used are the ones that fail most often. The
 same paragraph from RFC 6709 acknowledges the existence of this
 problem, but does not offer any remedy:

 The nature of protocol version-negotiation mechanisms is that, by
 definition, they don't get widespread real-world testing until

https://datatracker.ietf.org/doc/html/rfc6709
https://datatracker.ietf.org/doc/html/rfc6709

Thomson Expires March 16, 2018 [Page 3]

Internet-Draft Use It Or Lose It September 2017

 after the base protocol has been deployed for a while, and its
 deficiencies have become evident.

 Transport Layer Security (TLS) [TLS12] provides examples of where a
 design that is objectively sound fails when incorrectly implemented.
 TLS provides examples of failures in protocol version negotiation and
 extensibility.

 Version negotiation in TLS 1.2 and earlier uses the "Highest mutually
 supported version (HMSV)" scheme exactly as it is described in
 [EXTENSIBILITY]. However, clients are unable to advertise a new
 version without causing a non-trivial proportions of sessions to fail
 due to bugs in server and middlebox implementations.

 Intolerance to new TLS versions is so severe [INTOLERANCE] that TLS
 1.3 [TLS13] has abandoned HMSV version negotiation for a new
 mechanism.

 The server name indication (SNI) [TLS-EXT] in TLS is another
 excellent example of the failure of a well-designed extensibility
 point. SNI uses the same technique for extension that is used with
 considerable success in other parts of the TLS protocol. The
 original design of SNI includes the ability to include multiple names
 of different types.

 What is telling in this case is that SNI was defined with just one
 type of name: a domain name. No other type has ever been
 standardized, though several have been proposed. Despite an
 otherwise exemplary design, SNI is so inconsistently implemented that
 any hope for using the extension point it defines has been abandoned
 [SNI].

2.2. Multi-Party Interactions and Middleboxes

 Even the most superficially simple protocols can often involve more
 actors than is immediately apparent. A two-party protocol still has
 two ends, and even at the endpoints of an interaction, protocol
 elements can be passed on to other entities in ways that can affect
 protocol operation.

 One of the key challenges in deploying new features in a protocol is
 ensuring compatibility with all actors that could influence the
 outcome.

 Protocols that deploy without active measures against intermediation
 can accrue middleboxes that depend on certain aspects of the protocol
 [PATH-SIGNALS]. In particular, one of the consequences of an
 unencrypted protocol is that any element on path can interact with

Thomson Expires March 16, 2018 [Page 4]

Internet-Draft Use It Or Lose It September 2017

 the protocol. For example, HTTP was specifically designed with
 intermediation in mind, transparent proxies [HTTP] are not only
 possible but sometimes advantageous, despite some significant
 downsides. Consequently, transparent proxies for cleartext HTTP are
 commonplace.

 Middleboxes are also protocol participants, to the degree that they
 are able to observe and act in ways that affect the protocol. The
 degree to which a middlebox participates varies from the basic
 functions that a router performs to full participation. For example,
 a SIP back-to-back user agent (B2BUA) [B2BUA] can be very deeply
 involved in the SIP protocol.

 By increasing the number of different actors involved in any single
 protocol exchange, the number of potential implementation bugs that a
 deployment needs to contend with also increases. In particular,
 incompatible changes to a protocol that might be negotiated between
 endpoints in ignorance of the presence of a middlebox can result in a
 middlebox acting badly.

 Thus, middleboxes can increase the difficulty of deploying changes to
 a protocol considerably.

3. Retaining Viable Protocol Evolution Mechanisms

 If design is insufficient, what then would give protocol designers
 the freedom to later change a deployed protocol?

 Michel Foucault defines freedom as a practice rather than a state
 that is bestowed or attained:

 Freedom is practice; [...] the freedom of men is never assured by
 the laws and the institutions that are intended to guarantee them.
 [...] I think it can never be inherent in the structure of things
 to guarantee the exercise of freedom. The guarantee of freedom is
 freedom. -[FOUCAULT]

 In the same way, the design of a protocol for extensibility and
 eventual replacement [EXTENSIBILITY] does not guarantee the ability
 to exercise those options.

3.1. Practice Can Ensure Viability

 Planning and careful specificiation of mechanisms that support
 protocol evolution is a necessary precondition for their later
 availability. However, whether those mechanisms are available for
 use depends on their correct implementation and deployment. The

Thomson Expires March 16, 2018 [Page 5]

Internet-Draft Use It Or Lose It September 2017

 nature of a protocol deployment has a significant effect on whether
 that protocol can be changed.

 The fact that the freedom to change depends on practice is evident in
 protocols that are known to have viable version negotiation or
 extension points. The definition of mechanisms alone is
 insufficient; it's the active use of those mechanisms that determines
 the existence of freedom.

 For example, header fields in email [SMTP], HTTP [HTTP] and SIP [SIP]
 all derive from the same basic design. There is no evidence of
 significant barriers to deploying header fields with new names and
 semantics in email and HTTP, though the widespread deployment of SIP
 B2BUAs means that new SIP header fields can be more difficult.

 In another example, the attribute-value pairs (AVPs) in Diameter
 [DIAMETER] are fundamental to the design of the protocol. The
 definition of new uses of Diameter regularly exercise the ability to
 add new AVPs and do so with no fear that the new feature might not be
 successfully deployed.

 These examples show extension points that are heavily used also being
 relatively unaffected by deployment issues preventing addition of new
 values for new use cases.

 These examples also confirm the case that good design is not a
 prerequisite for success. On the contrary, success is often despite
 shortcomings in the design. For instance, the shortcomings of HTTP
 header fields are significant enough that there are ongoing efforts
 to improve the syntax [HTTP-HEADERS].

 Only using a protocol capability is able to ensure availability of
 that capability. Protocols that fail to use a mechanism, or a
 protocol that only rarely uses a mechanism, suffer an inability to
 rely on that mechanism.

3.2. Dependency is Better

 The best way to guarantee that a protocol mechanism is used is to
 make it critical to an endpoint participating in that protocol. This
 means that implementations rely on both the existence of the protocol
 mechanism and its use.

 For example, the message format in SMTP relies on header fields for
 most of its functions, including the most basic functions. A
 deployment of SMTP cannot avoid including an implementation of header
 field handling. In addition to this, the regularity with which new
 header fields are defined and used ensures that deployments

Thomson Expires March 16, 2018 [Page 6]

Internet-Draft Use It Or Lose It September 2017

 frequently encounter header fields that it does not understand. An
 SMTP implementation therefore needs to be able to both process header
 fields that it understands and ignore those that it does not.

 In this way, implementing the extensibility mechanism is not merely
 mandated by the specification, it is critical to the functioning of a
 protocol deployment. Should an implementation fail to correctly
 implement the mechanism, that failure would quickly become apparent.

 Caution is advised to avoid assuming that this is sufficient to
 ensure extensibility in the long term. If the set of possible
 variations is small and deployments do not change over time,
 implementations might not see new variations. Those implementations
 might still exhibit errors when presented with a new variation.

3.3. Unused Extension Points Become Unusable

 In contrast, there are many examples of extension points in protocols
 that have been either completely unused, or their use was so
 infrequent that they could no longer be relied upon to function
 correctly.

 HTTP has a number of very effective extension points in addition to
 the aforementioned header fields. It also has some examples of
 extension point that are so rarely used that it is possible that they
 are not at all usable. Extension points in HTTP that might be unwise
 to use include the extension point on each chunk in the chunked
 transfer coding [HTTP], the ability to use transfer codings other
 than the chunked coding, and the range unit in a range request
 [HTTP-RANGE].

4. Defensive Design Principles for Protocols

 There are several potential approaches that can provide some measure
 of protection against a protocol deployment becoming resistant to
 change.

4.1. Active Use

 As discussed in Section 3, the most effective defense against misuse
 of protocol extension points is active use.

4.2. Grease

 "Grease" [GREASE] identifies lack of use as an issue (protocol
 mechanisms "rusting" shut) and proposes a system of use that
 exercises extension points by using dummy values.

Thomson Expires March 16, 2018 [Page 7]

Internet-Draft Use It Or Lose It September 2017

 The primary feature of the grease design is aimed at the style of
 negotiation most used in TLS, where the client offers a set of
 options and the server chooses the one that it most prefers from
 those that it supports. A client that uses grease randomly offers
 options (usually just one) from a set of reserved values. These
 values are guaranteed to never be assigned real meaning, so the
 server will never have cause to genuinely select one of these values.

 The principle that grease operates on is that an implementation that
 is regularly exposed to unknown values is not likely to become
 intolerant of new values when they appear. This depends somewhat on
 the fact that the difficulty of implementing the protocol mechanism
 correctly is not significantly more effort than implementing code to
 specifically filter out the randomized grease values.

 To avoid simple techniques for filtering greasing codepoints, grease
 values are not reserved from a single contiguous block of code
 points, but are distributed evenly across the entire space of code
 points. Reserving a randomly selected set of code points has a
 greater chance of avoiding this problem, though it might be more
 difficult to specify and implement, especially over larger code point
 spaces.

 Without reserved greasing codepoints, an implementation can use code
 points from spaces used for private or experimental use if such a
 range exists. In addition to the risk of triggering participation in
 an unwanted experiment, this can be less effective. Incorrect
 implementations might still be able to correctly identify these code
 points and ignore them.

 Grease is deployed with the intent of quickly detecting errors in
 implementing the mechanisms it safeguards. Any failure to properly
 handle grease values is more likely to be detected.

 This form of defensive design has some limitations. It does not
 necessarily create the need for an implementation to rely on the
 mechanism it safeguards; that is determined by the underlying
 protocol itself. More critically, it does not easily translate to
 other forms of extension point. Other techniques might be necessary
 for protocols that don't rely on the particular style of exchange
 that is predominant in TLS.

 For instance, grease works poorly for HMSV negotiation, where
 offering a higher version risks acceptance of a newly deployed
 version.

Thomson Expires March 16, 2018 [Page 8]

Internet-Draft Use It Or Lose It September 2017

4.3. Cryptography

 Cryptography can be used to reduce the number of entities that can
 participate in a protocol. Using tools like TLS ensures that only
 authorized participants are able to influence whether a new protocol
 feature is used.

 Data that is exchanged under encryption cannot be seen by
 middleboxes, excluding them from participating in that part of the
 protocol. Similarly, data that is exchanged with integrity
 protection cannot be modified by middleboxes.

 The QUIC protocol [QUIC] adopts both encryption and integrity
 protection. Encryption is used to carefully control what information
 is exposed to middleboxes. QUIC also uses integrity protection over
 all the data it exchanges to prevent modification.

4.4. Visibility of Faults

 Modern software engineering practice includes a strong emphasis on
 measuring the effects of changes and correcting based on that
 feedback. Runtime monitoring of system health is an important part
 of that, which relies on systems of logging and synthetic health
 indicators, such as aggregate transaction failure rates.

 Feedback is critical to the success of the grease technique (see
Section 4.2). The system only works if an implementer creates a way

 to ensure that errors are detected and analyzed. This process can be
 automated, but when operating at scale it might be difficult or
 impossible to collect details of specific errors.

 Treating errors in protocol implementation as fatal can greatly
 improve visibility. Disabling automatic recovery from protocol
 errors can be disruptive to users when those errors occur, but it
 also ensures that errors are made visible.

 Visibility of error conditions is especially important if users are
 part of the feedback system.

 New protocol designs are encouraged to define conditions that result
 in fatal errors. Competitive pressures often force implementations
 to favor strategies that mask or hide errors. Standardizing on error
 handling that ensures visibility of flaws avoids handling that
 suppresses problems.

 Feedback on errors is more important during the development and early
 deployment of a change. Disabling automatic error recovery methods
 during development improves visibility of errors.

Thomson Expires March 16, 2018 [Page 9]

Internet-Draft Use It Or Lose It September 2017

 Automated feedback systems are important for automated systems, or
 where error recovery is also automated. For instance, connection
 failures with HTTP alternative services [ALT-SVC] are not permitted
 to affect the outcome of transactions. A feedback system for
 capturing failures in alternative services is therefore crucial to
 ensuring that failures are detected and the mechanism remains viable.

5. Security Considerations

 The ability to design, implement, and deploy new protocol mechanisms
 can be critical to security. In particular, it is important to be
 able to replace cryptographic algorithms over time [AGILITY].

6. IANA Considerations

 This document makes no request of IANA.

7. Informative References

 [AGILITY] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

 [ALT-SVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [B2BUA] Kaplan, H. and V. Pascual, "A Taxonomy of Session
 Initiation Protocol (SIP) Back-to-Back User Agents",

RFC 7092, DOI 10.17487/RFC7092, December 2013,
 <https://www.rfc-editor.org/info/rfc7092>.

 [DIAMETER]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [EXTENSIBILITY]
 Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 DOI 10.17487/RFC6709, September 2012,
 <https://www.rfc-editor.org/info/rfc6709>.

 [FOUCAULT]
 Foucault, M. and P. Rabinow, Ed., "The Foucault Reader",
 ISBN 0394713400, November 1984.

https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://datatracker.ietf.org/doc/html/rfc7092
https://www.rfc-editor.org/info/rfc7092
https://datatracker.ietf.org/doc/html/rfc6733
https://www.rfc-editor.org/info/rfc6733
https://datatracker.ietf.org/doc/html/rfc6709
https://www.rfc-editor.org/info/rfc6709

Thomson Expires March 16, 2018 [Page 10]

Internet-Draft Use It Or Lose It September 2017

 [GREASE] Benjamin, D., "Applying GREASE to TLS Extensibility",
draft-ietf-tls-grease-00 (work in progress), January 2017.

 [HTTP] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [HTTP-HEADERS]
 Kamp, P., "HTTP Header Common Structure", draft-ietf-

httpbis-header-structure-01 (work in progress), April
 2017.

 [HTTP-RANGE]
 Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <https://www.rfc-editor.org/info/rfc7233>.

 [INTOLERANCE]
 Kario, H., "Re: [TLS] Thoughts on Version Intolerance",
 July 2016, <https://mailarchive.ietf.org/arch/msg/tls/

bOJ2JQc3HjAHFFWCiNTIb0JuMZc>.

 [PATH-SIGNALS]
 Hardie, T., "Path signals", draft-hardie-path-signals-01
 (work in progress), May 2017.

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-05 (work
 in progress), August 2017.

 [SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [SMTP] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [SNI] Langley, A., "Accepting that other SNI name types will
 never work", March 2016,
 <https://mailarchive.ietf.org/arch/msg/

tls/1t79gzNItZd71DwwoaqcQQ_4Yxc>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-grease-00
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-01
https://datatracker.ietf.org/doc/html/rfc7233
https://www.rfc-editor.org/info/rfc7233
https://mailarchive.ietf.org/arch/msg/tls/bOJ2JQc3HjAHFFWCiNTIb0JuMZc
https://mailarchive.ietf.org/arch/msg/tls/bOJ2JQc3HjAHFFWCiNTIb0JuMZc
https://datatracker.ietf.org/doc/html/draft-hardie-path-signals-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-05
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://mailarchive.ietf.org/arch/msg/tls/1t79gzNItZd71DwwoaqcQQ_4Yxc
https://mailarchive.ietf.org/arch/msg/tls/1t79gzNItZd71DwwoaqcQQ_4Yxc

Thomson Expires March 16, 2018 [Page 11]

Internet-Draft Use It Or Lose It September 2017

 [SUCCESS] Thaler, D. and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
 <https://www.rfc-editor.org/info/rfc5218>.

 [TLS-EXT] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

 [TRANSITIONS]
 Thaler, D., Ed., "Planning for Protocol Adoption and
 Subsequent Transitions", RFC 8170, DOI 10.17487/RFC8170,
 May 2017, <https://www.rfc-editor.org/info/rfc8170>.

Author's Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Expires March 16, 2018 [Page 12]

https://datatracker.ietf.org/doc/html/rfc5218
https://www.rfc-editor.org/info/rfc5218
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-21
https://datatracker.ietf.org/doc/html/rfc8170
https://www.rfc-editor.org/info/rfc8170

