
TLS N. Sullivan
Internet-Draft CloudFlare Inc.
Intended status: Standards Track M. Thomson
Expires: February 6, 2017 Mozilla
 M. Bishop
 Microsoft
 August 5, 2016

Post-Handshake Authentication in TLS
draft-sullivan-tls-post-handshake-auth-00

Abstract

 This document describes a mechanism for performing post-handshake
 certificate-based authentication in Transport Layer Security (TLS)
 versions 1.3 and later. This includes both spontaneous and solicited
 authentication of both client and server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 6, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Sullivan, et al. Expires February 6, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS Post-Handshake Auth August 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Post-Handshake Authentication 3
2.1. Spontaneous Authentication 3
2.2. Solicited Authentication 4

3. Post-Handshake Authentication TLS Extension 4
4. Post-Handshake Authentication Messages 6
4.1. Certificate Request 6
4.2. Certificate Message 7
4.3. CertificateVerify Message 8
4.4. Finished Message . 9
4.5. Forgetting certificates 9

5. Security Considerations 9
6. Acknowledgements . 9
7. Normative References . 9

 Authors' Addresses . 10

1. Introduction

 This document defines a way to authenticate one party of a Transport
 Layer Security (TLS) communication to another using a certificate
 after the session has been established. This allows both the client
 and server to solicit proof of ownership of additional identities at
 any time after the handshake has completed. It also allows for both
 the client and server to spontaneously provide a certificate and
 proof of ownership of the private key to the other party.

 This mechanism is useful in the following situations:

 o servers that have the ability to serve requests from multiple
 domains over the same connection but do not have a certificate
 that is simultaneously authoritative for all of them

 o servers that have resources that require client authentication to
 access and need to request client authentication after the
 connection has started

 o clients that want to assert their identity to a server after a
 connection has been established

 o clients that want a server to re-prove ownership of their private
 key during a connection

Sullivan, et al. Expires February 6, 2017 [Page 2]

Internet-Draft TLS Post-Handshake Auth August 2016

 o clients that wish to ask a server to authenticate for a new domain
 not covered by the certificate included in the initial handshake

 This document intends to replace the use of renegotiation for
 changing the authentication of peers. It has an advantage over
 renegotiation in that it only takes at most one round trip and it
 does not include an additional key exchange.

 This document describes spontaneous and solicited modes for both
 client and server authentication. Spontaneous authentication allows
 an endpoint to advertise a certificate without explicitly being
 requested. Solicited authentication allows an endpoint to request
 that its peer provide authentication details.

 Support for different modes of authentication is negotiated using a
 new "post_handshake_auth" extension. New handshake messages are
 defined for use after completion of the initial handshake, these
 mirror the authentication messages that are used in the TLS 1.3
 handshake.

2. Post-Handshake Authentication

 There is a total of four different exchanges that are enabled by this
 specification. Solicited and spontaneous authentication exchanges
 are largely the same for both peers. This section describes how each
 exchange operates.

 In all cases, a unique value for the certificate_request_context is
 chosen. This allows for identification of the authentication flow in
 application protocols that use TLS. Exchanges that are initiated by
 the client start with an octet that has the most significant bit set;
 exchanges initiated by the server have the most significant bit
 cleared.

2.1. Spontaneous Authentication

 An endpoint that wishes to offer spontaneous authentication sends a
 Certificate, CertificateVerify, and Finished message.

 Certificate
 CertificateVerify
 Finished ---------->

 No application data records or any other handshake messages can be
 interleaved with these messages. An endpoint MUST abort a connection
 if it does not receive these messages in a contiguous sequence. A
 fatal "unexpected_message" alert SHOULD be sent if these messages do
 not appear in sequence.

Sullivan, et al. Expires February 6, 2017 [Page 3]

Internet-Draft TLS Post-Handshake Auth August 2016

 A client MUST NOT initiate spontaneous authentication unless the
 server included client_auth_spontaneous in its "post_handshake_auth"
 extension. Similarly, a server MUST NOT initiate spontaneous
 authentication unless it included server_auth_solicited in its
 "post_handshake_auth" extension.

2.2. Solicited Authentication

 Solicited authentication is initiated by sending a CertificateRequest
 message.

 Endpoints that request that their peer authenticate need to account
 for delays in processing requests. In particular, client
 authentication in some contexts relies on user interaction. This
 means that responses might not arrive in the order in which the
 requests were made.

 If a request for authentication is accepted, the sequence of
 Certificate, CertificateVerify, and Finished messages are sent by the
 responding peer. As with spontaneous authentication, these messages
 MUST form a contiguous sequence.

 CertificateRequest ---------->
 Certificate
 CertificateVerify
 <---------- Finished

 A request for authentication can be rejected by sending a Certificate
 message that contains an empty certificate_list field. The
 extensions field of this message MUST be empty.

 A client MUST NOT request server authentication unless the server
 included client_auth_solicited in its "post_handshake_auth"
 extension. Similarly, a server MUST NOT request client
 authentication unless it included client_auth_solicited in its
 "post_handshake_auth" extension.

3. Post-Handshake Authentication TLS Extension

 The "post_handshake_auth" TLS extension advertises support for post-
 handshake authentication.

Sullivan, et al. Expires February 6, 2017 [Page 4]

Internet-Draft TLS Post-Handshake Auth August 2016

 enum {
 client_auth_solicited(0),
 client_auth_spontaneous(1),
 server_auth_solicited(2),
 server_auth_spontaneous(3),
 (255)
 } AuthTypes;

 struct {
 AuthType auth_types<0..2^8-1>;
 } PostHandshakeAuth;

 The extension data for the "post_handshake_auth" extension is
 PostHandshakeAuth. This includes one or more AuthType. Each
 AuthType value represents support for a given authentication flow:

 client_auth_solicited: indicates support for client authentication
 solicited by a server request

 client_auth_spontaneous: indicates support for spontaneous client
 authentication

 server_auth_solicited: indicates support for server authentication
 solicited by a client request

 server_auth_spontaneous: indicates support for spontaneous server
 authentication

 The client includes a "post_handshake_auth" extension containing
 every type of authentication flow it supports in its ClientHello.
 The server replies with an EncryptedExtensions containing a
 "post_handshake_auth" extension containing a list of authentication
 types that it supports. The set of AuthTypes in the server's
 "post_handshake_auth" extension MUST be a subset of those sent by the
 client.

 The "post_handshake_auth" extension MUST be omitted if the server
 does not support any mode of post-handshake authentication in common
 with the client.

 If a server declares support for either client_auth_solicited, or
 client_auth_spontaneous, it MUST also include a
 "signature_algorithms" extension (see Section 4.2.2 of
 [I-D.ietf-tls-tls13]). This contains a list of the signature schemes
 that the server is able to use for client authentication, listed in
 descending order of preference.

Sullivan, et al. Expires February 6, 2017 [Page 5]

Internet-Draft TLS Post-Handshake Auth August 2016

 This extension is not compatible with the raw public key extension
 [RFC7250]. The server MUST NOT select the raw public key extension
 if it uses this mechanism.

4. Post-Handshake Authentication Messages

 The messages used for post-handshake authentication closely mirror
 those used to authenticate certificates in the standard TLS
 handshake.

4.1. Certificate Request

 For solicited post-handshake authentication, the first message is
 used to define the characteristics required in the solicited
 certificate.

 opaque DistinguishedName<1..2^16-1>;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } CertificateExtension;

 struct {
 opaque certificate_request_context<1..2^8-1>;
 select (Role) {
 case server:
 DistinguishedName certificate_authorities<0..2^16-1>;
 CertificateExtension certificate_extensions<0..2^16-1>;
 case client:
 HostName host_name<1..2^16-1>;
 }
 } CertificateRequest;

 The certificate_request_context is an opaque string which identifies
 the certificate request and which will be echoed in the corresponding
 Certificate message. The certificate_request_context value MUST be
 unique for the connection. A client MUST set the most significant
 bit of the first octet of the certificate_request_context; a server
 MUST clear this bit.

 For CertificateRequests sent from the server, the DistinguishedName
 and CertificateExtension fields are defined exactly as in the TLS 1.3
 specification.

 For CertificateRequests send from the client, a HostName containing
 the Server Name Indication (defined in [RFC6066]) used for selecting
 the certificate is included.

https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc6066

Sullivan, et al. Expires February 6, 2017 [Page 6]

Internet-Draft TLS Post-Handshake Auth August 2016

4.2. Certificate Message

 The certificate message is used to transport the certificate. It
 mirrors the Certificate message in the TLS with the addition of some
 certificate-specific extensions.

 opaque ASN1Cert<1..2^24-1>;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 ASN1Cert certificate_list<0..2^24-1>;
 Extension extensions<0..2^16-1>;
 } Certificate;

 certificate_request_context: If this message is in response to a
 CertificateRequest, the value of certificate_request_context in
 that message.

 certificate_list: This is a sequence (chain) of certificates. The
 sender's end entity certificate MUST come first in the list. Each
 following certificate SHOULD directly certify one preceding it.
 Because certificate validation requires that trust anchors be
 distributed independently, a certificate that specifies a trust
 anchor MAY be omitted from the chain, provided that supported
 peers are known to possess any omitted certificates.

 extensions: Valid extensions include OCSP Status extensions
 ([RFC6066] and [RFC6961]) and SignedCertificateTimestamps
 ([RFC6962]). Any extension presented in a Certificate message
 must only be presented if the associated ClientHello extension was
 presented in the initial handshake.

 The certificate_request_context is an opaque string that identifies
 the certificate. The certificate_request_context value MUST be
 unique for the connection. If the certificate is used in response to
 a CertificateRequest, certificate_request_context includes the
 certificate_request_context value in the corresponding
 CertificateRequest. If the Certificate message part of spontaneous
 authentication, the certificate_request_context value is chosen by
 the sender. When spontaneous authentication is used, a client MUST
 set the most significant bit of the first octet of the
 certificate_request_context; a server MUST clear this bit.

 Any certificates provided MUST be signed using a signature scheme
 found in the "signature_algorithms" extension provided by the peer in
 the initial handshake. The end entity certificate MUST allow the key
 to be used for signing (i.e., the digitalSignature bit MUST be set if
 the Key Usage extension is present) with a signature scheme indicated

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6961
https://datatracker.ietf.org/doc/html/rfc6962

Sullivan, et al. Expires February 6, 2017 [Page 7]

Internet-Draft TLS Post-Handshake Auth August 2016

 in the "signature_algorithms" extension provided by the peer in the
 initial handshake.

4.3. CertificateVerify Message

 The CertificateVerify message used in this document is defined in
 Section 4.3.2. of [I-D.ietf-tls-tls13].

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 The algorithm field specifies the signature algorithm used (see
 Section 4.2.2 of [I-D.ietf-tls-tls13]). The signature is a digital
 signature using that algorithm that covers the handshake context, the
 resumption context and a hash of the CertificateRequest and
 Certificate messages:

 Hash(handshake_context) + resumption_context +
 Hash(CertificateRequest* + Certificate)

 Note that the CertificateRequest message is omitted with spontaneous
 authentication.

 The value of handshake_context is the entire transcript of the
 initial handshake, starting from the first ClientHello up to the
 final Finished message from the client. The value of
 resumption_context is defined in Section 4.4.1 of
 [I-D.ietf-tls-tls13].

 The context string that is input to the digital signature is formed
 by taking the endpoint role and the authentication mode. The final
 value is the concatenation of the ASCII-encoded strings:

 o "TLS 1.3, "

 o either "client" if the client is authenticating, or "server" if
 the server is authenticating

 o a single space " " (0x20)

 o "spontaneous" if no request was made; "solicited" if the peer sent
 a CertificateRequest

 o " CertificateVerify"

Sullivan, et al. Expires February 6, 2017 [Page 8]

Internet-Draft TLS Post-Handshake Auth August 2016

 Thus, a client that is responding to a CertificateRequest will use
 the string "TLS 1.3, client solicited CertificateVerify" as the
 context string.

4.4. Finished Message

 Finished is defined in Section 4.3.3 of [I-D.ietf-tls-tls13]. When
 included in post-handshake authentication it includes a MAC over the
 value:

 Hash(Handshake Context) + resumption_context +
 Hash(CertificateRequest* + Certificate + CertificateVerify)

 Note that the CertificateRequest message is omitted with spontaneous
 authentication.

 The Finished message uses the current traffic secret
 (traffic_secret_N) as the MAC key; the hash function and HMAC
 function are the negotiated PRF hash function.

4.5. Forgetting certificates

 Certificate identity should not be maintained across resumption. If
 a connection is resumed, additional certificate identities for both
 client and server certificates SHOULD be forgotten. Either the
 client or the server MAY choose to forget a certificate identity at
 any time.

 Repeated requests for the same certificate should be expected. If
 multiple certificate requests are recieved that differ only in the
 certificate_request_context value, it is permitted to only answer the
 most recent request.

5. Security Considerations

 TBD

6. Acknowledgements

 Eric Rescorla and Andrei Popov were involved in helpful discussions
 around this draft.

7. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-13 (work in progress),
 May 2016.

Sullivan, et al. Expires February 6, 2017 [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-13

Internet-Draft TLS Post-Handshake Auth August 2016

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <http://www.rfc-editor.org/info/rfc6961>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <http://www.rfc-editor.org/info/rfc6962>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <http://www.rfc-editor.org/info/rfc7250>.

Authors' Addresses

 Nick Sullivan
 CloudFlare Inc.

 Email: nick@cloudflare.com

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

 Mike Bishop
 Microsoft

 Email: michael.bishop@microsoft.com

Sullivan, et al. Expires February 6, 2017 [Page 10]

https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6961
http://www.rfc-editor.org/info/rfc6961
https://datatracker.ietf.org/doc/html/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7250
http://www.rfc-editor.org/info/rfc7250

