
 TOC FecFrame V. Roca

Internet-Draft M. Cunche

Intended status: Experimental INRIA

Expires: January 13, 2011 J. Lacan

A. Bouabdallah

ISAE/LAAS-CNRS

K. Matsuzono

Keio University

July 12, 2010

Reed-Solomon Forward Error Correction (FEC) Schemes for FECFRAME
draft-roca-fecframe-rs-03

Abstract

This document describes two fully-specified simple FEC schemes for Reed-
Solomon codes that can be used to protect media streams along the lines
defined by the FECFRAME framework. Reed-Solomon codes belong to the
class of Maximum Distance Separable (MDS) codes which means they offer
optimal protection against packet erasures. They are also systematic
codes, which means that the source symbols are part of the encoding
symbols. The price to pay is a limit on the maximum source block size,
on the maximum number of encoding symbols, and a computational
complexity higher than that of LDPC codes for instance.
The first scheme is for Reed-Solomon codes over GF(2^^m), with 2 ≤ m ≤
16 and arbitrary packet flows. The second scheme is similar to the first
scheme, with the exception that it is restricted to a single sequenced
flow.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions
of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
This Internet-Draft will expire on January 13, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document
authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions
Relating to IETF Documents (http://trustee.ietf.org/license-info) in
effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. Definitions Notations and Abbreviations

3.1. Definitions
3.2. Notations
3.3. Abbreviations

4. Common Procedures Related to the ADU Block and Source Block Creation
4.1. Restrictions
4.2. ADU Block Creation
4.3. Source Block Creation

5. Simple Reed-Solomon FEC Encoding Scheme over GF(2^^m) for Arbitrary
ADU Flows

5.1. Formats and Codes
5.1.1. FEC Framework Configuration Information
5.1.2. Explicit Source FEC Payload ID
5.1.3. Repair FEC Payload ID

5.2. Procedures
5.3. FEC Code Specification

6. Reed-Solomon FEC Encoding Scheme over GF(2^^m) for a Single
Sequenced ADU Flow
7. Security Considerations

7.1. Problem Statement
7.2. Attacks Against the Data Flow

7.2.1. Access to Confidential Contents
7.2.2. Content Corruption

7.3. Attacks Against the FEC Parameters
8. IANA Considerations
9. Acknowledgments
10. References

10.1. Normative References
10.2. Informative References

§ Authors' Addresses

 TOC 1. Introduction

The use of Forward Error Correction (FEC) codes is a classic solution to
improve the reliability of unicast, multicast and broadcast Content
Delivery Protocols (CDP) and applications. The [FECFRAME‑FRAMEWORK]
(Watson, M., “Forward Error Correction (FEC) Framework,” July 2010.)
document describes a generic framework to use FEC schemes with media
delivery applications, and for instance with real-time streaming media
applications based on the RTP real-time protocol. Similarly the
[RFC5052] (Watson, M., Luby, M., and L. Vicisano, “Forward Error
Correction (FEC) Building Block,” August 2007.) document describes a
generic framework to use FEC schemes with with objects (e.g., files)
delivery applications based on the ALC [RFC5775] (Luby, M., Watson, M.,
and L. Vicisano, “Asynchronous Layered Coding (ALC) Protocol
Instantiation,” April 2010.) and NORM [RFC5740] (Adamson, B., Bormann,
C., Handley, M., and J. Macker, “Negative-acknowledgment (NACK)-Oriented
Reliable Multicast (NORM) Protocol,” November 2009.) reliable multicast
transport protocols.
More specifically, the [RFC5053] (Luby, M., Shokrollahi, A., Watson, M.,
and T. Stockhammer, “Raptor Forward Error Correction Scheme,”
June 2007.) and [RFC5170] (Roca, V., Neumann, C., and D. Furodet, “Low
Density Parity Check (LDPC) Forward Error Correction,” June 2008.) FEC
schemes introduce erasure codes based on sparse parity check matrices
for object delivery protocols like ALC and NORM. These codes are
efficient in terms of processing but not optimal in terms of erasure
recovery capabilities when dealing with "small" objects.
The Reed-Solomon FEC codes described in this document belong to the
class of Maximum Distance Separable (MDS) codes that are optimal in
terms of erasure recovery capability. It means that a receiver can
recover the k source symbols from any set of exactly k encoding symbols.
These codes are also systematic codes, which means that the k source
symbols are part of the encoding symbols. However they are limited in
terms of maximum source block size and number of encoding symbols. Since
the real-time constraints of media delivery applications usually limit
the maximum source block size, this is not considered to be a major
issue in the context of the FEC Framework for many (but not necessarily
all) use-cases. Additionally, if the encoding/decoding complexity is
higher with Reed-Solomon codes than it is with [RFC5053] (Luby, M.,
Shokrollahi, A., Watson, M., and T. Stockhammer, “Raptor Forward Error
Correction Scheme,” June 2007.) or [RFC5170] (Roca, V., Neumann, C., and
D. Furodet, “Low Density Parity Check (LDPC) Forward Error Correction,”
June 2008.) codes, it remains reasonable for most use-cases, even in
case of a software codec.
Many applications dealing with reliable content transmission or content
storage already rely on packet-based Reed-Solomon erasure recovery
codes. In particular, many of them use the Reed-Solomon codec of Luigi
Rizzo [RS‑codec] (Rizzo, L., “Reed-Solomon FEC codec (revised version of
July 2nd, 1998), available at http://info.iet.unipi.it/~luigi/vdm98/
vdm980702.tgz and mirrored at http://planete-bcast.inrialpes.fr/,”
July 1998.) [Rizzo97] (Rizzo, L., “Effective Erasure Codes for Reliable
Computer Communication Protocols,” April 1997.). The goal of the present

 TOC

 TOC

document is to specify simple Reed-Solomon schemes that are compatible
with this codec.
More specifically, the [RFC5510] (Lacan, J., Roca, V., Peltotalo, J.,
and S. Peltotalo, “Reed-Solomon Forward Error Correction (FEC) Schemes,”
April 2009.) document introduced such Reed-Solomon codes and several
associated FEC schemes that are compatible with the [RFC5052] (Watson,
M., Luby, M., and L. Vicisano, “Forward Error Correction (FEC) Building
Block,” August 2007.) framework. The present document inherits from
[RFC5510] (Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo, “Reed-
Solomon Forward Error Correction (FEC) Schemes,” April 2009.) the
specification of the core Reed-Solomon codes based on Vandermonde
matrices, and specifies FEC schemes that are compatible with the
FECFRAME framework [FECFRAME‑FRAMEWORK] (Watson, M., “Forward Error
Correction (FEC) Framework,” July 2010.). Therefore this document
specifies only the information specific to the FECFRAME context and
refers to [RFC5510] (Lacan, J., Roca, V., Peltotalo, J., and S.
Peltotalo, “Reed-Solomon Forward Error Correction (FEC) Schemes,”
April 2009.) for the core specifications of the codes.
To that purpose, the present document introduces:

the Fully-Specified FEC Scheme with FEC Encoding ID XXX that
specifies a simple way of using of Reed-Solomon codes over
GF(2^^m), with 2 ≤ m ≤ 16, with a simple FEC encoding for
arbitrary packet flows;

the Fully-Specified FEC Scheme with FEC Encoding ID XXX is similar
to Scheme XXX except that it is for a single sequenced flow;

For instance, with the first (resp. second) scheme, a set of Application
Data Units (or ADUs) coming from one or several (resp. one) media
delivery applications (e.g., a set of RTP packets), are grouped in a ADU
block and FEC encoded as a whole. With Reed-Solomon codes over GF(2^^8),
there is a strict limit over the number ADUs that can be protected
together, since the number of encoded symbols, n, must be inferior or
equal to 255. This constraint is relaxed when using a higher finite
field size (m > 8), at the price of an increased computational
complexity.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” .).

*

*

 TOC

Source symbol:

Encoding symbol:

Repair symbol:

Code rate:

Systematic code:

Source block:

Packet Erasure Channel:

Application Data Unit (ADU):

(Source) ADU Flow:

3. Definitions Notations and Abbreviations

3.1. Definitions

This document uses the following terms and definitions. Some of them are
FEC scheme specific and are in line with [RFC5052] (Watson, M., Luby,
M., and L. Vicisano, “Forward Error Correction (FEC) Building Block,”
August 2007.):

unit of data used during the encoding process. In
this specification, there is always one source symbol per ADU.

unit of data generated by the encoding process.
With systematic codes, source symbols are part of the encoding
symbols.

encoding symbol that is not a source symbol.

the k/n ratio, i.e., the ratio between the number of
source symbols and the number of encoding symbols. By definition,
the code rate is such that: 0 < code rate ≤ 1. A code rate close
to 1 indicates that a small number of repair symbols have been
produced during the encoding process.

FEC code in which the source symbols are part of
the encoding symbols. The Reed-Solomon codes introduced in this
document are systematic.

a block of k source symbols that are considered
together for the encoding.

a communication path where packets are
either dropped (e.g., by a congested router, or because the
number of transmission errors exceeds the correction capabilities
of the physical layer codes) or received. When a packet is
received, it is assumed that this packet is not corrupted.

Some of them are FECFRAME framework specific and are in line with
[FECFRAME‑FRAMEWORK] (Watson, M., “Forward Error Correction (FEC)
Framework,” July 2010.):

a unit of data coming from (sender) or
given to (receiver) the media delivery application. Depending on
the use-case, an ADU can use an RTP encapsulation. In this
specification, there is always one source symbol per ADU.

a flow of ADUs from a media delivery application
and to which FEC protection is applied. Depending on the use-

ADU Block:

ADU Information (ADUI):

FEC Framework Configuration Information:

FEC Source Packet:

FEC Repair Packet:

case, several ADU flows can be protected together by the FECFRAME
framework.

a set of ADUs that are considered together by the
FECFRAME instance for the purpose of the FEC scheme. Along with
the F[], L[], and Pad[] fields, they form the set of source
symbols over which FEC encoding will be performed.

a unit of data constituted by the ADU and
the associated Flow ID, Length and Padding fields (Section 4.3
(Source Block Creation)). This is the unit of data that is used
as source symbols.

the FEC scheme specific
information that enables the synchronization of the FECFRAME
sender and receiver instances.

a data packet submitted to (sender) or received
from (receiver) the transport protocol. It contains an ADU along
with its optional Explicit Source FEC Payload ID.

a repair packet submitted to (sender) or
received from (receiver) the transport protocol. It contains a
repair symbol along with its Explicit Repair FEC Payload ID.

The above terminology is illustrated in Figure 1 (Terminology used in
this document (sender).) (sender's point of view):

 TOC

k

max_k

n

E

GF(q)

+----------------------+
| Application |
+----------------------+
 |
 ADU flow | (1) Application Data Unit (ADU)
 v
+----------------------+ +----------------+
FEC Framework		
	------------------------- >	FEC Scheme
(2) Construct an ADU	(4) Source Symbols for	
block	this Source Block	(5) Perform FEC
(3) Construct ADU Info		Encoding
(7) Construct FEC Src	< -------------------------	
Packets and FEC	(6) Ex src FEC Payload Ids,	
Repair Packets	Repair FEC Payload Ids,	
+----------------------+ Repair Symbols +----------------+
 | |
 |(8) FEC Src |(8') FEC Repair
 | packets | packets
 v v
+----------------------+
| Transport Layer |
| (e.g., UDP) |
+----------------------+

 Figure 1: Terminology used in this document (sender).

3.2. Notations

This document uses the following notations: Some of them are FEC scheme
specific:

denotes the number of source symbols in a source block.

denotes the maximum number of source symbols for any source
block.

denotes the number of encoding symbols generated for a source
block.

denotes the encoding symbol length in bytes.

denotes a finite field (also known as Galois Field) with q
elements. We assume that q = 2^^m in this document.

m

q

CR

a^^b

B

max_B

 TOC

ADU

ESI

FEC

FFCI

RS

MDS

 TOC

 TOC

defines the length of the elements in the finite field, in bits.
In this document, m belongs to {2..16}.

defines the number of elements in the finite field. We have: q =
2^^m in this specification.

denotes the "code rate", i.e., the k/n ratio.

denotes a raised to the power b.

Some of them are FECFRAME framework specific:

denotes the number of ADUs per ADU block.

denotes the maximum number of ADUs for any ADU block.

3.3. Abbreviations

This document uses the following abbreviations:

stands for Application Data Unit.

stands for Encoding Symbol ID.

stands for Forward Error Correction code.

stands for FEC Framework Configuration Information.

stands for Reed-Solomon.

stands for Maximum Distance Separable code.

4. Common Procedures Related to the ADU Block and Source Block
Creation

This section introduces the procedures that are used during the ADU
block and the related source block(s) creation, for the various FEC
schemes considered.

 TOC

4.1. Restrictions

This specification has the following restrictions:

there MUST be exactly one source symbol per ADU;

there MUST be exactly one repair symbol per FEC Repair Packet;

there MUST be exactly one source block per ADU block;

4.2. ADU Block Creation

Several aspects must be considered, that impact the ADU block creation:

the maximum source block size (k parameter) and number of encoding
symbols (n parameter), that are constrained by the finite field
size (m parameter);

the potential real-time constraints, that impact the maximum ADU
block size, since the larger the block size, the larger the
decoding delay;

We now detail each of these aspects.
The finite field size parameter, m, defines the number of non zero
elements in this field which is equal to: q - 1 = 2^^m - 1. This q - 1
value is also the theoretical maximum number of encoding symbols that
can be produced for a source block. For instance, when m = 8 (default)
there is a maximum of 2^^8 - 1 = 255 encoding symbols. So: k < n ≤ 255.
Given the target FEC code rate (e.g., provided by the end-user or upper
application when starting the FECFRAME framework, and taking into
account the (known or estimated) packet loss rate), the sender
calculates:

max_k = floor((2^^m - 1) * CR)

This max_k value leaves enough room for the sender to produce the
desired number of repair symbols. Since there is one source symbol per
ADU, max_k is also an upper bound to the maximum number of ADUs per ADU
block.
The source ADU flows usually have real-time constraints. It means that
the maximum number of ADUs of an ADU block must not exceed a certain
threshold since it directly impacts the decoding delay. It is the role
of the developer, who knows the flow real-time features, to define an
appropriate upper bound to the ADU block size, max_rt.
If we take into account these constraints, we find: max_B = min(max_k,
max_rt). Then max_B gives an upper bound to the number of ADUs that can
constitute an ADU block.

*

*

*

*

*

 TOC 4.3. Source Block Creation

In its most general form the FECFRAME framework and the RS FEC schemes
are meant to protect a set of independent flows. Since the flows have no
relationship to one another, the ADU size of each flow can potentially
vary significantly. Even in the special case of a single flow, the ADU
sizes can largely vary (e.g., the various frames of a "Group of Pictures
(GOP) of an H.264 flow). This diversity must be addressed since the RS
FEC scheme requires a constant encoding symbol size (E parameter) per
source block. Since this specification requires that there is only one
source symbol per ADU, E must be large enough to contain all the ADUs of
an ADU block along with their prepended 3 bytes (see below).
In situations where E is determined per source block (default, specified
by the FCCI/FSSI with S = 0, Section 5.1.1.2 (FEC Scheme-Specific
Information)), E is equal to the size of the largest ADU of this source
block plus three (for the prepended 3 bytes, see below). In this case,
upon receiving the first FEC Repair Packet for this source block, since
this packet MUST contain a single repair symbol (Section 5.1.3 (Repair
FEC Payload ID)), a receiver determines the E parameter used for this
source block.
In situations where E is fixed (specified by the FCCI/FSSI with S = 1,
Section 5.1.1.2 (FEC Scheme-Specific Information)), then E must be
greater or equal to the size of the largest ADU of this source block
plus three (for the prepended 3 bytes, see below). If this is not the
case, an error is returned. How to handle this error is use-case
specific (e.g., a larger E parameter may be communicated to the
receivers in an updated FFCI message, using an appropriate mechanism)
and is not considered by this specification.
The ADU block is always encoded as a single source block. There are a
total of B ≤ max_B ADUs in this ADU block. For the ADU i, with 0 ≤ i ≤
B-1, 3 bytes are prepended (Figure 2 (Source block creation with the
simple encoding scheme, for code rate 1/2 (equal number of source and
repair symbols, 4 in this example), S = 0.)):

The first byte, FID[i] (Flow ID), contains the integer identifier
associated to the source ADU flow to which this ADU belongs to. It
is assumed that a single byte is sufficient, or said differently,
that no more than 256 flows will be protected by a single instance
of the FECFRAME framework.

The following two bytes, L[i] (Length), contain the length of this
ADU, in network byte order (i.e., big endian). This length is for
the ADU itself and does not include the FID[i], L[i], or Pad[i]
fields.

Then zero padding is added to ADU i (if needed) in field Pad[i], for
alignment purposes up to a size of exactly E bytes. The data unit
resulting from the ADU i and the F[i], L[i] and Pad[i] fields, is called
ADU Information (or ADUI). Each ADUI contributes to exactly one source
symbol to the source block.

*

*

 TOC

 Encoding Symbol Length (E)
< -- >
+----+----+-----------------------+------------------------------+
|F[0]|L[0]| ADU[0] | Pad[0] |
+----+----+----------+------------+------------------------------+
|F[1]|L[1]| ADU[1] | Pad[1] |
+----+----+----------+---+
|F[2]|L[2]| ADU[2] |
+----+----+------+---+
|F[3]|L[3]|ADU[3]| Pad[3] |
+----+----+------+---+
_______________________________ _______________________________/
 \/
 simple FEC encoding

+--+
| Repair 4 |
+--+
. .
. .
+--+
| Repair 7 |
+--+

 Figure 2: Source block creation with the simple encoding scheme, for code rate

1/2 (equal number of source and repair symbols, 4 in this example), S = 0.

Note that neither the initial 3 bytes nor the optional padding are sent
over the network. However, they are considered during FEC encoding. It
means that a receiver who lost a certain FEC source packet (e.g., the
UDP datagram containing this FEC source packet) will be able to recover
the ADUI if FEC decoding succeeds. Thanks to the initial 3 bytes, this
receiver will get rid of the padding (if any) and identify the
corresponding ADU flow.

5. Simple Reed-Solomon FEC Encoding Scheme over GF(2^^m) for
Arbitrary ADU Flows

This Fully-Specified FEC Scheme specifies the use of Reed-Solomon codes
over GF(2^^m), with 2 ≤ m ≤ 16, with a simple FEC encoding for arbitrary
packet flows.

 TOC

 TOC

 TOC

 TOC

5.1. Formats and Codes

5.1.1. FEC Framework Configuration Information

The FEC Framework Configuration Information (or FFCI) includes
information that MUST be communicated between the sender and
receiver(s). More specifically, it enables the synchronization of the
FECFRAME sender and receiver instances. It includes both mandatory
elements and scheme-specific elements, as detailed below.

5.1.1.1. Mandatory Information

FEC Encoding ID: the value assigned to this fully-specified FEC
scheme MUST be XXX, as assigned by IANA (Section 8 (IANA
Considerations)).

When SDP is used to communicate the FFCI, this FEC Encoding ID is
carried in the 'encoding-id' parameter.

5.1.1.2. FEC Scheme-Specific Information

The FEC Scheme Specific Information (FSSI) includes elements that are
specific to the present FEC scheme. More precisely:

Encoding symbol length (E): a non-negative integer that indicates
either the length of each encoding symbol in bytes (strict mode,
i.e., if S = 1), or the maximum length of any encoding symbol
(i.e., if S = 0).

Strict (S) flag: when set to 1 this flag indicates that the E
parameter is valid for the whole session, unless otherwise
notified. When set to 0 this flag indicates that the E parameter
is only the maximum length of each encoding symbol, for the whole
session, unless otherwise notified.

m parameter (m): an integer that defines the length of the
elements in the finite field, in bits. We have: 2 ≤ m ≤ 16.

These elements are required both by the sender (RS encoder) and the
receiver(s) (RS decoder).
When SDP is used to communicate the FFCI, this FEC scheme-specific
information is carried in the 'fssi' parameter in textual representation

*

*

*

*

 TOC

as specified in [SDP_ELEMENTS] (Begen, A., “SDP Elements for FEC
Framework,” April 2010.). For instance:
fssi = E:1400,S:0,m:8
If another mechanism requires the FSSI to be carried as an opaque octet
string (for instance after a Base64 encoding), the encoding format
consists of the following 3 octets:

Encoding symbol length (E): 16 bit field.

Strict (S) flag: 1 bit field.

m parameter (m): 7 bit field.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
| Encoding Symbol Length (E) |S| m |
+-+

 Figure 3: FSSI encoding format.

5.1.2. Explicit Source FEC Payload ID

A FEC source packet MUST contain an Explicit Source FEC Payload ID that
is appended to the end of the packet as illustrated in Figure 4
(Structure of a FEC source packet with the Explicit Source FEC Payload
ID.).

+--------------------------------+
| IP Header |
+--------------------------------+
| Transport Header |
+--------------------------------+
| ADU |
+--------------------------------+
| Explicit Source FEC Payload ID |
+--------------------------------+

*

*

*

Source Block Number (SBN) (32-m bit field):

Encoding Symbol ID (ESI) (m bit field):

Source Block Length (k) (16 bit field):

 Figure 4: Structure of a FEC source packet with the Explicit Source FEC Payload

ID.

More precisely, the Explicit Source FEC Payload ID is composed of the
Source Block Number, the Encoding Symbol ID, and the Source Block
Length. The length of the first two fields depends on the m parameter
(transmitted separately in the FFCI, Section 5.1.1.2 (FEC Scheme-
Specific Information)):

this field identifies
the source block to which this FEC source packet belongs.

this field identifies the
first source symbol associated to this FEC source packet in the
source block (remember there can be several source symbols per
ADUI, Section 4.3 (Source Block Creation)). This value is such
that 0 ≤ ESI ≤ k - 1 for source symbols.

this field provides the
number of source symbols for this source block, i.e., the k
parameter. If 16 bits are too much when m ≤ 8, it is needed when
8 < m ≤ 16. Therefore we provide a single common format
regardless of m.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Block Number (24 bits) | Enc. Symb. ID |
+-+
| Source Block Length (k) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 5: Source FEC Payload ID encoding format for m = 8 (default).

 TOC

Source Block Number (SBN) (32-m bit field):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Block Nb (16 bits) | Enc. Symbol ID (16 bits) |
+-+
| Source Block Length (k) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 6: Source FEC Payload ID encoding format for m = 16.

The format of the Source FEC Payload ID for m = 8 and m = 16 are
illustrated in Figure 5 (Source FEC Payload ID encoding format for m = 8
(default).) and Figure 6 (Source FEC Payload ID encoding format for m =
16.) respectively.

5.1.3. Repair FEC Payload ID

A FEC repair packet MUST contain a Repair FEC Payload ID that is
prepended to the repair symbol(s) as illustrated in Figure 7 (Structure
of a repair packet with the Repair FEC Payload ID.). There MUST be a
single repair symbol per FEC repair packet.

+--------------------------------+
| IP Header |
+--------------------------------+
| Transport Header |
+--------------------------------+
| Repair FEC Payload ID |
+--------------------------------+
| Repair Symbol |
+--------------------------------+

 Figure 7: Structure of a repair packet with the Repair FEC Payload ID.

More precisely, the Repair FEC Payload ID is composed of the Source
Block Number, the Encoding Symbol ID, and the Source Block Length. The
length of the first two fields depends on the m parameter (transmitted
separately in the FFCI, Section 5.1.1.2 (FEC Scheme-Specific
Information)):

Encoding Symbol ID (ESI) (m bit field)

Source Block Length (k) (16 bit field):

this field identifies the source block to which the FEC repair
packet belongs.

this field identifies the
repair symbol contained in this FEC repair packet. This value is
such that k ≤ ESI ≤ n - 1 for repair symbols.

this field provides the
number of source symbols for this source block, i.e., the k
parameter. If 16 bits are too much when m ≤ 8, it is needed when
8 < m ≤ 16. Therefore we provide a single common format
regardless of m.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Block Number (24 bits) | Enc. Symb. ID |
+-+
| Source Block Length (k) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 8: Repair FEC Payload ID encoding format for m = 8 (default).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Block Nb (16 bits) | Enc. Symbol ID (16 bits) |
+-+
| Source Block Length (k) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 9: Repair FEC Payload ID encoding format for m = 16.

The format of the Repair FEC Payload ID for m = 8 and m = 16 are
illustrated in Figure 8 (Repair FEC Payload ID encoding format for m = 8
(default).) and Figure 9 (Repair FEC Payload ID encoding format for m =
16.) respectively.

 TOC

 TOC

 TOC

 TOC

 TOC

5.2. Procedures

The following procedures apply:

The source block creation procedures are specified in Section 4.3
(Source Block Creation).

The SBN value is incremented for each new source block, starting
at 0 for the first block of the ADU flow. Wrapping to zero will
happen for long sessions, after value 2^^(32-m) - 1.

The ESI of source symbols is managed sequentially, starting at 0
for the first symbol. There are a maximum of 2^^m encoding symbols
per block. The first k values (0 ≤ ESI ≤ k - 1) identify source
symbols, whereas the last n-k values (k ≤ ESI ≤ n - 1) identify
repair symbols.

The FEC repair packet creation procedures are specified in
Section 5.1.3 (Repair FEC Payload ID).

5.3. FEC Code Specification

The present document inherits from [RFC5510] (Lacan, J., Roca, V.,
Peltotalo, J., and S. Peltotalo, “Reed-Solomon Forward Error Correction
(FEC) Schemes,” April 2009.) the specification of the core Reed-Solomon
codes based on Vandermonde matrices for a packet transmission channel.

6. Reed-Solomon FEC Encoding Scheme over GF(2^^m) for a Single
Sequenced ADU Flow

TBD

7. Security Considerations

7.1. Problem Statement

A content delivery system is potentially subject to many attacks. Some
of them target the network (e.g., to compromise the routing

*

*

*

*

 TOC

 TOC

 TOC

infrastructure, by compromising the congestion control component),
others target the Content Delivery Protocol (CDP) (e.g., to compromise
its normal behavior), and finally some attacks target the content
itself. Since this document focuses on various FEC schemes, this section
only discusses the additional threats that their use within the FECFRAME
framework can create to an arbitrary CDP.
More specifically, these attacks may have several goals:

those that are meant to give access to a confidential content
(e.g., in case of a non-free content),

those that try to corrupt the ADU Flows being transmitted (e.g.,
to prevent a receiver from using it),

and those that try to compromise the receiver's behavior (e.g., by
making the decoding of an object computationally expensive).

These attacks can be launched either against the data flow itself (e.g.,
by sending forged FEC Source/Repair Packets) or against the FEC
parameters that are sent either in-band (e.g., in the Repair FEC Payload
ID) or out-of-band (e.g., in a session description).

7.2. Attacks Against the Data Flow

First of all, let us consider the attacks against the data flow.

7.2.1. Access to Confidential Contents

Access control to the ADU Flow being transmitted is typically provided
by means of encryption. This encryption can be done within the content
provider itself, by the application (for instance by using the Secure
Real-time Transport Protocol (SRTP) [RFC3711] (Baugher, M., McGrew, D.,
Naslund, M., Carrara, E., and K. Norrman, “The Secure Real-time
Transport Protocol (SRTP),” March 2004.)), or at the Network Layer, on a
packet per packet basis when IPSec/ESP is used [RFC4303] (Kent, S., “IP
Encapsulating Security Payload (ESP),” December 2005.). If
confidentiality is a concern, it is RECOMMENDED that one of these
solutions be used. Even if we mention these attacks here, they are not
related nor facilitated by the use of FEC.

7.2.2. Content Corruption

Protection against corruptions (e.g., after sending forged FEC Source/
Repair Packets) is achieved by means of a content integrity

*

*

*

 TOC

verification/sender authentication scheme. This service is usually
provided at the packet level. In this case, after removing all forged
packets, the ADU Flow may be sometimes recovered. Several techniques can
provide this source authentication/content integrity service:

at the application level, the Secure Real-time Transport Protocol
(SRTP) [RFC3711] (Baugher, M., McGrew, D., Naslund, M., Carrara,
E., and K. Norrman, “The Secure Real-time Transport Protocol
(SRTP),” March 2004.) provides several solutions to authenticate
the source and check the integrity of RTP and RTCP messages, among
other services. For instance, associated to the Timed Efficient
Stream Loss-Tolerant Authentication (TESLA) [RFC4383] (Baugher, M.
and E. Carrara, “The Use of Timed Efficient Stream Loss-Tolerant
Authentication (TESLA) in the Secure Real-time Transport Protocol
(SRTP),” February 2006.), SRTP is an attractive solution that is
robust to losses, provides a true authentication/integrity
service, and does not create any prohibitive processing load or
transmission overhead. Yet, checking a packet requires a small
delay (a second or more) after its reception with TESLA. Other
building blocks can be used within SRTP to provide authentication/
content integrity services.

at the Network Layer, IPSec/ESP offers (among other services) an
integrity verification mechanism that can be used to provide
authentication/content integrity services.

It is up to the developer and deployer, who know the security
requirements and features of the target application area, to define
which solution is the most appropriate. Nonetheless it is RECOMMENDED
that at least one of these techniques be used.

7.3. Attacks Against the FEC Parameters

Let us now consider attacks against the FEC parameters included in the
FFCI that are usually sent out-of-band (e.g., in a session description).
Attacks on these FEC parameters can prevent the decoding of the
associated object. For instance modifying the m field (when applicable)
will lead a receiver to consider a different code. Modifying the E
parameter will lead a receiver to consider bad Repair Symbols for a
received FEC Repair Packet.
It is therefore RECOMMENDED that security measures be taken to guarantee
the FFCI integrity. When the FFCI is sent out-of-band in a session
description, this latter SHOULD be protected, for instance by digitally
signing it.
Attacks are also possible against some FEC parameters included in the
Explicit Source FEC Payload ID and Repair FEC Payload ID. For instance
modifying the Source Block Number of a FEC Source of Repair Packet will
lead a receiver to assign this packet to a wrong block.

*

*

 TOC

 TOC

 TOC

 TOC

 TOC

It is therefore RECOMMENDED that security measures be taken to guarantee
the Explicit Source FEC Payload ID and Repair FEC Payload ID integrity.
To that purpose, one of the packet-level source authentication/content
integrity techniques of Section 7.2.2 (Content Corruption) can be used.

8. IANA Considerations

Values of FEC Encoding IDs are subject to IANA registration.
TBD

9. Acknowledgments

The authors want to thank Hitoshi Asaeda for his valuable comments.

10. References

10.1. Normative References

[RFC2119] Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” RFC 2119.

[RFC5052] Watson, M., Luby, M., and L. Vicisano, “Forward
Error Correction (FEC) Building Block,” RFC 5052,
August 2007.

[RFC5510] Lacan, J., Roca, V., Peltotalo, J., and S.
Peltotalo, “Reed-Solomon Forward Error Correction
(FEC) Schemes,” RFC 5510, April 2009.

[FECFRAME-
FRAMEWORK]

Watson, M., “Forward Error Correction (FEC)
Framework,” Work in Progress, July 2010.

[SDP_ELEMENTS] Begen, A., “SDP Elements for FEC Framework,” Work
in Progress, April 2010.

10.2. Informative References

[RS-
codec]

Rizzo, L., “Reed-Solomon FEC codec (revised version of
July 2nd, 1998), available at http://info.iet.unipi.it/
~luigi/vdm98/vdm980702.tgz and mirrored at http://
planete-bcast.inrialpes.fr/,” July 1998.

[Rizzo97]

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5052
http://tools.ietf.org/html/rfc5052
http://tools.ietf.org/html/rfc5510
http://tools.ietf.org/html/rfc5510

 TOC

Rizzo, L., “Effective Erasure Codes for Reliable Computer
Communication Protocols,” ACM SIGCOMM Computer
Communication Review Vol.27, No.2, pp.24-36, April 1997.

[RFC5170] Roca, V., Neumann, C., and D. Furodet, “Low Density
Parity Check (LDPC) Forward Error Correction,” RFC 5170,
June 2008.

[RFC5053] Luby, M., Shokrollahi, A., Watson, M., and T.
Stockhammer, “Raptor Forward Error Correction Scheme,”
RFC 5053, June 2007.

[RFC5775] Luby, M., Watson, M., and L. Vicisano, “Asynchronous
Layered Coding (ALC) Protocol Instantiation,” RFC 5775,
April 2010 (TXT).

[RFC5740] Adamson, B., Bormann, C., Handley, M., and J. Macker,
“Negative-acknowledgment (NACK)-Oriented Reliable
Multicast (NORM) Protocol,” RFC 5740, November 2009.

[RFC4303] Kent, S., “IP Encapsulating Security Payload (ESP),”
RFC 4303, December 2005 (TXT).

[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, “The Secure Real-time Transport Protocol
(SRTP),” RFC 3711, March 2004 (TXT).

[RFC4383] Baugher, M. and E. Carrara, “The Use of Timed Efficient
Stream Loss-Tolerant Authentication (TESLA) in the Secure
Real-time Transport Protocol (SRTP),” RFC 4383,
February 2006 (TXT).

Authors' Addresses

Vincent Roca
INRIA
655, av. de l'Europe
Inovallee; Montbonnot
ST ISMIER cedex 38334
France

Email: vincent.roca@inria.fr
URI: http://planete.inrialpes.fr/people/roca/

Mathieu Cunche
INRIA
655, av. de l'Europe
Inovallee; Montbonnot
ST ISMIER cedex 38334
France

Email: mathieu.cunche@inria.fr
URI: http://planete.inrialpes.fr/people/cunche/

Jerome Lacan
ISAE/LAAS-CNRS
1, place Emile Blouin

http://tools.ietf.org/html/rfc5170
http://tools.ietf.org/html/rfc5170
http://tools.ietf.org/html/rfc5053
http://tools.ietf.org/html/rfc5775
http://tools.ietf.org/html/rfc5775
http://www.rfc-editor.org/rfc/rfc5775.txt
http://tools.ietf.org/html/rfc5740
http://tools.ietf.org/html/rfc5740
http://tools.ietf.org/html/rfc4303
ftp://ftp.isi.edu/in-notes/rfc4303.txt
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3711
ftp://ftp.isi.edu/in-notes/rfc3711.txt
http://tools.ietf.org/html/rfc4383
http://tools.ietf.org/html/rfc4383
http://tools.ietf.org/html/rfc4383
ftp://ftp.isi.edu/in-notes/rfc4383.txt
mailto:vincent.roca@inria.fr
http://planete.inrialpes.fr/people/roca/
mailto:mathieu.cunche@inria.fr
http://planete.inrialpes.fr/people/cunche/

Toulouse 31056
France

Email: jerome.lacan@isae.fr
URI: http://dmi.ensica.fr/auteur.php3?id_auteur=5

Amine Bouabdallah
ISAE/LAAS-CNRS
1, place Emile Blouin
Toulouse 31056
France

Email: Amine.Bouabdallah@isae.fr
URI: http://dmi.ensica.fr/

Kazuhisa Matsuzono
Keio University
Graduate School of Media and Governance
5322 Endo
Fujisawa, Kanagawa 252-8520
Japan

Email: kazuhisa@sfc.wide.ad.jp

mailto:jerome.lacan@isae.fr
http://dmi.ensica.fr/auteur.php3?id_auteur=5
mailto:Amine.Bouabdallah@isae.fr
http://dmi.ensica.fr/
mailto:kazuhisa@sfc.wide.ad.jp

	Reed-Solomon Forward Error Correction (FEC) Schemes for FECFRAMEdraft-roca-fecframe-rs-03
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Definitions Notations and Abbreviations
	3.1. Definitions
	3.2. Notations
	3.3. Abbreviations
	4. Common Procedures Related to the ADU Block and Source Block Creation
	4.1. Restrictions
	4.2. ADU Block Creation
	4.3. Source Block Creation
	5. Simple Reed-Solomon FEC Encoding Scheme over GF(2^^m) for Arbitrary ADU Flows
	5.1. Formats and Codes
	5.1.1. FEC Framework Configuration Information
	5.1.1.1. Mandatory Information
	5.1.1.2. FEC Scheme-Specific Information
	5.1.2. Explicit Source FEC Payload ID
	5.1.3. Repair FEC Payload ID
	5.2. Procedures
	5.3. FEC Code Specification
	6. Reed-Solomon FEC Encoding Scheme over GF(2^^m) for a Single Sequenced ADU Flow
	7. Security Considerations
	7.1. Problem Statement
	7.2. Attacks Against the Data Flow
	7.2.1. Access to Confidential Contents
	7.2.2. Content Corruption
	7.3. Attacks Against the FEC Parameters
	8. IANA Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses

