
NFVRG S. Natarajan
Internet Draft Google
Category: Informational R. Krishnan
 A. Ghanwani
 Dell
 D. Krishnaswamy
 IBM Research
 P. Willis
 BT
 A. Chaudhary
 Verizon
 F. Huici
 NEC

Expires: January 2017 July 8, 2016

An Analysis of Lightweight Virtualization Technologies for NFV

draft-natarajan-nfvrg-containers-for-nfv-03

Abstract

 Traditionally, NFV platforms were limited to using standard
 virtualization technologies (e.g., Xen, KVM, VMWare, Hyper-V, etc.)
 running guests based on general-purpose operating systems such as
 Windows, Linux or FreeBSD. More recently, a number of light-weight
 virtualization technologies including containers, unikernels
 (specialized VMs) and minimalistic distributions of general-purpose
 OSes have widened the spectrum of possibilities when constructing an
 NFV platform. This draft describes the challenges in building such a
 platform and discusses to what extent these technologies, as well as
 traditional VMs, are able to address them.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents

Natarajan et al. Expires January 2017 [Page 1]

https://datatracker.ietf.org/doc/html/draft-natarajan-nfvrg-containers-for-nfv-03
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Lightweight Virtualization for NFV September 2015

 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire in January 2017.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Table of Contents

1. Introduction...3
2. Lightweight Virtualization Background..........................3

2.1. Containers..3
2.2. OS Tinyfication...3
2.3. Unikernels..4

3. Challenges in Building NFV Platforms...........................4
3.1. Performance (SLA)...4

3.1.1. Challenges...4
3.2. Continuity, Elasticity and Portability....................5

3.2.1. Challenges:..5
3.3. Security..6

3.3.1. Challenges...6
3.4. Management..7

3.4.1. Challenges...8
4. Benchmarking Experiments.......................................8

4.1. Experimental Setup..8

Natarajan et al. Expires January 2017 [Page 2]

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Lightweight Virtualization for NFV September 2015

4.2. Instantiation Times.......................................9
4.3. Throughput..9
4.4. RTT..10
4.5. Image Size...11
4.6. Memory Usage...11

5. Discussion..12
6. Conclusion..13
7. Future Work...13
8. IANA Considerations...14
9. Security Considerations.......................................14
10. Contributors...14
11. Acknowledgements...14
12. References...14

12.1. Normative References....................................14
12.2. Informative References..................................14

 Authors' Addresses...16

1. Introduction

 This draft describes the challenges when building an NFV platform by
 describing to what extent different types of lightweight
 virtualization technologies, such as VMs based on minimalistic
 distributions, unikernels and containers, are able to address them.

2. Lightweight Virtualization Background

2.1. Containers

 Containers are a form of operating-system virtualization. To provide
 isolation, containers such as Docker rely on features of the Linux
 kernel such as cgroups, namespaces and a union-capable file system
 such as aufs and others [AUFS]. Because they run within a single OS
 instance, they avoid the overheads typically associated with
 hypervisors and virtual machines.

2.2. OS Tinyfication

 OS tinyfication consists of creating a minimalistic distribution of
 a general-purpose operating system such as Linux or FreeBSD. This
 involves two parts: (1) configuring the kernel so that only needed
 features and modules are enabled/included (e.g., removing extraneous
 drivers); and (2) including only the required user-level libraries
 and applications needed for the task at hand, and running only the
 minimum amount of required processes. The most notable example of a
 tinyfied OS is the work on Linux tinyfication [LINUX-TINY].

Natarajan et al. Expires January 2017 [Page 3]

Internet-Draft Lightweight Virtualization for NFV September 2015

2.3. Unikernels

 Unikernels are essentially single-application virtual machines based
 on minimalistic OSes. Such minimalistic OSes have minimum overhead
 and are typically single-address space (so no user/kernel space
 divide and no expensive system calls) and have a co-operative
 scheduler (so reducing context switch costs). Examples of such
 minimalistic OSes are MiniOS [MINIOS] which runs on Xen and OSv
 [OSV] which runs on KVM, Xen and VMWare.

3. Challenges in Building NFV Platforms

 In this section, we outline the set of main challenges for an NFV
 platform in the context of lightweight virtualization technologies
 as well as traditional VMs.

3.1. Performance (SLA)
 Performance requirements vary with each VNF type and configuration.
 The platform should support the specification, realization and
 runtime adaptation of different performance metrics. Achievable
 performance can vary depending on several factors such as the
 workload type, the size of the workload, the set of virtual machines
 sharing the underlying infrastructure, etc. Here we highlight some
 of the challenges based on potential deployment considerations.

 3.1.1. Challenges

 . VNF provisioning time (including up/down/update) constitutes the
 time it takes to spin-up the VNF process, its application-specific
 dependencies, and additional system dependencies. The resource
 choices such as the hypervisor type, the guest and host OS flavor
 and the need for hardware and software accelerators, etc.,
 constitute a significant portion of this processing time
 (instantiation or down time) when compared to just bringing up the
 actual VNF process.

 . The runtime performance (achievable throughput, line rate speed,
 maximum concurrent sessions that can be maintained, number of new
 sessions that can be added per second) for each VNF is directly
 dependent on the amount of resources (e.g., virtual CPUs, RAM)
 allocated to individual VMs. Choosing the right resource setting
 is a tricky task. If VM resources are over-provisioned, we end up
 under-utilizing the physical resources. On the contrary if we
 under-provision the VM resources, then upgrading the resource to
 an advanced system setting might require scaling out or scaling up
 of the resources and re-directing traffic to the new VM; scaling
 up/down operations consume time and add to the latency. This

Natarajan et al. Expires January 2017 [Page 4]

Internet-Draft Lightweight Virtualization for NFV September 2015

 overhead stems from the need to account resources of components
 other than the actual VNF process (e.g., guest OS requirements).

 . If each network function is hosted in individual VMs/containers,
 then an efficient inter-VM networking solution is required for
 performance.

3.2. Continuity, Elasticity and Portability

 VNF service continuity can be interrupted due to several factors:
 undesired state of the VNF (e.g., VNF upgrade progress), underlying
 hardware failure, unavailability of virtualized resources, VNF SW
 failure, etc. Some of the requirements that need consideration are:

 3.2.1. Challenges:

 o VNF's are not completely decoupled from the underlying
 infrastructure. As discussed in the previous section, most VNFs
 have a dependency on the guest OS, hypervisor type, accelerator
 used, and the host OS (this last one applies to containers too).
 Therefore porting VNFs to a new platform might require identifying
 equivalent resources (e.g., hypervisor support, new hardware
 model, understanding resource capabilities) and repeating the
 provisioning steps to bring back the VNF to a working state.

 o Service continuity requirements can be classified as follows:
 seamless (with zero impact) or non-seamless continuity (accepts
 measurable impacts to offered services). To achieve this, the
 virtualization technology needs to provide an efficient high
 availability solution or a quick restoration mechanism that can
 bring back the VNF to an operational state. For example, an
 anomaly caused by a hardware failure can impact all VNFs hosted on
 that infrastructure resource. To restore the VNF to a working
 state, the user should first provision the VM/container, spin-up
 and configure the VNF process inside the VM, setup the
 interconnects to forward network traffic, manage the VNF-related
 state, and update any dependent runtime agents.

 o Addressing the service elasticity challenges require a holistic
 view of the underlying resources. The challenges for presenting a
 holistic view include the following

 o Performing Scalable Monitoring: Scalable continuous
 monitoring of the individual resource's current state is
 needed to spin-up additional resources (auto-scale or auto-

Natarajan et al. Expires January 2017 [Page 5]

Internet-Draft Lightweight Virtualization for NFV September 2015

 heal) when the system encounters performance degradation or
 spin-down idle resources to optimize resource usage.

 o Handling CPU-intensive vs I/O-intensive VNFs: For CPU-
 intensive VNFs the degradation can primarily depend on the
 VNF processing functionality. On the other hand, for I/O
 intense workloads, the overhead is significantly impacted by
 to the hypervisor/host features, its type, the number of
 VMs/contaiers it manages, the modules loaded in the guest OS,
 etc.

3.3. Security

 Broadly speaking, security can be classified into:

 o Security features provided by the VNFs to manage the state, and

 o Security of the VNFs and its resources.

 Some considerations on the security of the VNF infrastructure are
 listed here.

 3.3.1. Challenges

 o The adoption of virtualization techniques (e.g., para-
 virtualization, OS-level) for hosting network functions and the
 deployment need to support multi-tenancy requires secure slicing
 of the infrastructure resources. In this regard, it is critical to
 provide a solution that can ensure the following:

 o Provision the network functions by guaranteeing complete
 isolation across resource entities (hardware units,
 hypervisor, virtual networks, etc.). This includes secure
 access between VM/container and host interface, VM-VM or
 container-to-container communication, etc. For maximizing
 overall resource utilization and improving service
 agility/elasticity, sharing of resources across network
 functions must be possible.

 o When a resource component is compromised, quarantine the
 compromised entity but ensure service continuity for other
 resources.

 o Securely recover from runtime vulnerabilities or attacks and
 restore the network functions to an operational state.
 Achieving this with minimal or no downtime is important.

Natarajan et al. Expires January 2017 [Page 6]

Internet-Draft Lightweight Virtualization for NFV September 2015

 Realizing the above requirements is a complex task in any type of
 virtualization option (virtual machines, containers, etc.)

 o Resource starvation / Availability: Applications hosted in
 VMs/containers can starve the underlying physical resources such
 that co-hosted entities become unavailable. Ideally,
 countermeasures are required to monitor the usage patterns of
 individual VMs/containers and ensure fair use of individual
 resources.

3.4. Management

 The management and operational aspects are primarily focused on the
 VNF lifecycle management and its related functionalities. In
 addition, the solution is required to handle the management of
 failures, resource usage, state processing, smooth rollouts, and
 security as discussed in the previous sections. Some features of
 management solutions include:

 oCentralized control and visibility: Support for web client,
 multi-hypervisor management, single sign-on, inventory search,
 alerts & notifications.

 oProactive Management: Creating host profiles, resource management
 of VMs/containers, dynamic resource allocation, auto-restart in
 HA model, audit trails, patch management.

 oExtensible platform: Define roles, permissions and licenses
 across resources and use of APIs to integrate with other
 solutions.

 Thus, the key requirements for a management solution

 o Simple to operate and deploy VNFs.

 o Uses well-defined standard interfaces to integrate seamlessly
 with different vendor implementations.

 o Creates functional automation to handle VNF lifecycle
 requirements.

 o Provide APIs that abstracts the complex low-level information
 from external components.

 o Is secure.

Natarajan et al. Expires January 2017 [Page 7]

Internet-Draft Lightweight Virtualization for NFV September 2015

 3.4.1. Challenges

 The key challenge is addressing the aforementioned requirements for
 a management solution while dealing with the multi-dimensional
 complexity introduced by the hypervisor, guest OS, VNF
 functionality, and the state of network.

4. Benchmarking Experiments

 Having considered the basic requirements and challenges of building
 an NFV platform, we now provide a benchmark of a number of
 lightweight virtualization technologies to quantify to what extent
 they can be used to build such a platform.

4.1. Experimental Setup

 In terms of hardware, all tests are run on an x86-64 server with an
 Intel Xeon E5-1630 v3 3.7GHz CPU (4 cores) and 32GB RAM.

 For the hypervisors we use KVM running on Linux 4.4.1 and Xen
 version 4.6.0. The virtual machines running on KVM and Xen are of
 three types:

 (1)Unikernels, on top of the minimalistic operating systems OSv and
 MiniOS for KVM and Xen, respectively. The only application
 built into them is iperf. To denote them we use the shorthand
 unikernel.osv.kvm or unikernels.minios.xen.

 (2)Tinyfied Linux (a.k.a. Tinyx), consisting of a Linux kernel
 version 4.4.1 with only a reduced set of drivers (ext4, and
 netfront/blkfront for Xen), and a distribution containing only
 busybox, an ssh server for convenience, and iperf. We use the
 shorthand tinyx.kvm and tinyx.xen.

 (3)Standard VM, consisting of a Debian distribution including iperf
 and Linux version 4.4.1. We use the shorthand standardvm.kvm
 and standardvm.xen for it.

 For containers, we use Docker version 1.11 running on Linux 4.4.1.

 It is worth noting that the numbers reported here for virtual
 machines (whether standard, Tinyx or unikernels) include the
 following optimizations to the underlying virtualization
 technologies. For Xen, we use the optimized Xenstore, toolstack and
 hotplug scripts reported in [SUPERFLUIDITY] as well as the
 accelerated packet I/O derived from persistent grants (for Tx)

Natarajan et al. Expires January 2017 [Page 8]

Internet-Draft Lightweight Virtualization for NFV September 2015

 [PGRANTS]. For KVM, we remove the creation of a tap device from the
 VM's boot process and use a pre-created tap device instead.

4.2. Instantiation Times

 We begin by measuring how long it takes to create and boot a
 container or VM. The beginning time is when we issue the create
 operation. To measure the end time, we carry out a SYN flood from an
 external server and measure the time it takes for the container/VM
 to respond with a RST packet. The reason for a SYN flood is that it
 guarantees the shortest reply time after the unikernels/container is
 booted. It is just to measure boot time, nothing to do with real-
 world deployments and DoS attacks.

 +-----------------------+--------------+
 | Technology Type | Time (msecs) |
 |--------------------------------------+
 | standardvm.xen | 6500 |
 | standardvm.kvm | 2988 |
 | Container | 1711 |
 | tinyx.kvm | 1081 |
 | tinyx.xen | 431 |
 | unikernel.osv.kvm | 330 |
 | unikernels.minios.xen | 31 |
 +-----------------------+--------------+

 The table above shows the results. Unsurprisingly, standard VMs with
 a regular distribution (in this case Debian) fare the worst, with
 times in the seconds: 6.5s on Xen and almost 3s on KVM. The Docker
 container with iperf comes next, clocking in at 1.7s. The next best
 times are from Tinyx: 1s approximately on KVM and 431ms on Xen.
 Finally, the best numbers come from unikernels, with 330ms for OSv
 on KVM and 31ms for MiniOS on Xen. These results show that at least
 when compared to unoptimized containers, minimalistic VMs or
 unikernels can have instantiation times comparable to or better than
 containers.

4.3. Throughput

 To measure throughput we use the iperf application that is built in
 to the unikernels, included as an application in Tinyx and the
 Debian-based VMs, and containerized for Docker. The experiments in
 this section are for TCP traffic between the guest and the host

Natarajan et al. Expires January 2017 [Page 9]

Internet-Draft Lightweight Virtualization for NFV September 2015

 where the guest resides: there are no NICs involved so that rates
 are not bound by physical medium limitations.

 +-----------------------+-------------------+-------------------+
 | Technology | Throughput (Gb/s) | Throughput (Gb/s) |
 | Type | Tx | Rx |
 |-----------------------+-------------------+-------------------+
standardvm.xen	23.1	24.5
standardvm.kvm	20.1	38.9
Container	45.1	43.8
tinyx.kvm	21.5	37.9
tinyx.xen	28.6	24.9
unikernel.osv.kvm	47.9	47.7
unikernels.minios.xen	49.5	32.6
 +-----------------------+-------------------+-------------------+
 The table above shows the results for Tx and Rx. The first thing to
 note is that throughput is not only dependent on the guest's
 efficiency, but also on the host's packet I/O framework (e.g., see
 [CLICKOS] for an example of how optimizing Xen's packet I/O
 subsystem can lead to large performance gains). This is evident from
 the Xen numbers, where Tx has been optimized and Rx not. Having said
 that, the guest also matters, which is why, for example, Tinyx
 scores somewhat higher throughput than standard VMs. Containers and
 unikernels (at least for Tx and for Tx/Rx for KVM) are fairly
 equally matched and perform best, with unikernels having a slight
 edge.

4.4. RTT

 To measure round-trip time (RTT) from an external server to the
 VM/container we carry out a ping flood and report the average RTT.

 +-----------------------+--------------+
 | Technology Type | Time (msecs) |
 |--------------------------------------+
 | standardvm.xen | 34 |
 | standardvm.kvm | 18 |
 | Container | 4 |
 | tinyx.kvm | 19 |
 | tinyx.xen | 15 |
 | unikernel.osv.kvm | 9 |
 | unikernels.minios.xen | 5 |
 +-----------------------+--------------+

Natarajan et al. Expires January 2017 [Page 10]

Internet-Draft Lightweight Virtualization for NFV September 2015

 As shown in the table above, the Docker container comes out on top
 with 4ms, but unikernels achieve for all practical intents and
 purposes the same RTT (5ms on MiniOS/Xen and 9ms on OSv/KVM). Tinyx
 fares slightly better than the standard VMs.

4.5. Image Size

 We measure image size using the standard "ls" tool.

 +-----------------------+------------+
 | Technology Type | Size (MBs) |
 |------------------------------------+
 | standardvm.xen | 913 |
 | standardvm.kvm | 913 |
 | Container | 61 |
 | tinyx.kvm | 3.5 |
 | tinyx.xen | 3.7 |
 | unikernel.osv.kvm | 12 |
 | unikernels.minios.xen | 2 |
 +-----------------------+------------+

 The table shows the standard VMs to be unsurprisingly the largest
 and, followed by the Docker/iperf container. OSv-based unikernels
 are next with about 12MB, followed by Tinyx (3.5MB or 3.7MB on KVM
 and Xen respectively). The smallest image is the one based on
 MiniOS/Xen with 2MB.

4.6. Memory Usage

 For the final experiment we measure memory usage for the various
 VMs/container. To do so we use standard tools such as "top" and "xl"
 (Xen's management tool).

 +-----------------------+-------------+
 | Technology Type | Usage (MBs) |
 |-------------------------------------+
 | standardvm.xen | 112 |
 | standardvm.kvm | 82 |
 | Container | 3.8 |
 | tinyx.kvm | 30 |
 | tinyx.xen | 31 |
 | unikernel.osv.kvm | 52 |
 | unikernels.minios.xen | 8 |
 +-----------------------+-------------+

Natarajan et al. Expires January 2017 [Page 11]

Internet-Draft Lightweight Virtualization for NFV September 2015

 The largest memory consumption, as shown in the table above, comes
 from the standard VMs. The OSv-based unikernels comes next due to
 the fact that OSv pre-allocates memory for buffers, among other
 things. Tinyx is next with about 30MB. From there there's a big jump
 to the MiniOS-based unikernels with 8MB. The best result comes from
 the Docker container, which is expected given that it relies on the
 host and its memory allocations to function.

5. Discussion

 In this section we provide a discussion comparing and contrasting
 the various lightweight virtualization technologies in view of the
 reported benchmarks. There are a number of issues at stake:

 . Service agility/elasticity: this is largely dependent on the
 ability to quickly spin up/down VMs/containers and migrate
 them. Clearly the best numbers in this category come from
 unikernels and containers.

 . Memory consumption: containers use and share resources from
 the common host they use and so each container instance uses up
 less memory than VMs, as shown in the previous section
 (although unikernels are not far behind). Note: VMs also have a
 common host (or dom0 in the case of Xen) but they incur the
 overhead of each having its own guest OS.

 . Security/Isolation: an NFV platform needs to provide good
 isolation for its tenants. Generally speaking, VM-based
 technologies have been around for longer and so have had time
 to iron out most of the security issues they had. Type-1
 hypervisors (e.g., Xen), in addition, provide a smaller attack
 surface than Type-2 ones (e.g., KVM) so should in principle be
 more robust. Containers are relatively newcomers and as such
 still have a number of open issues [CONTAINER-SECURITY]. Use of
 kernel security modules like SELinux [SELINUX], AppArmor
 [APPARMOR] along with containers can provide at least some of
 the required features for a secure VNF deployment. Use of
 resource quota techniques such as those in Kubernetes
 [KUBERNETES-RESOURCE-QUOTA] can provide at least some of the
 resource guarantees for a VNF deployment.

 . Management frameworks: both virtual machines and containers
 have fully-featured management frameworks with large open
 source communities continually improving them. Unikernels might
 need a bit of "glue" to adapt them to an existing framework
 (e.g., OpenStack).

Natarajan et al. Expires January 2017 [Page 12]

Internet-Draft Lightweight Virtualization for NFV September 2015

 . Compatibility with applications. Both containers and standard
 VMs can run any application that is able to run on the general-
 purpose OS those VMs/containers are based on (typically Linux).
 Unikernels, on the hand, use minimalistic OSes, which might
 present a problem. OSv, for example, is able to build a
 unikernels as long as the application can be recompiled as a
 shared library. MiniOS requires that the application be
 directly compiled with it (c/c++ is the default, but MiniOS
 unikernels based on OCaml, Haskell and other languages exist).

 Overall, the choice between standard virtual machines, tinyfied
 ones, unikernels or containers is often not a black and white one.
 Rather, these technologies present points in a spectrum where
 criteria such as security/isolation, performance, and compatibility
 with existing applications and frameworks may point NFV operators,
 and their clients, towards a particular solution. For instance, an
 operator for whom excellent isolation and multi-tenancy is a must
 might lean towards hypervisor-based solutions. If that operator
 values ease of application deployment he will further choose guests
 based on a general-purpose OS (whether tinfyied or not). Another
 operator might put a prime on performance and so might prefer
 unikernels. Yet another one might not have a need for multi-tenancy
 (e.g., Google, Edge use cases such as CPE) and so would lean towards
 enjoying the benefits of containers. Hybrid solutions, where
 containers are run within VMs, are also possible. In short, choosing
 a virtualization technology for an NFV platform is (no longer) as
 simple as choosing VMs or containers.

6. Conclusion

 In this draft we presented the challenges when building an NFV
 platform. We further introduced a set of benchmark results to
 quantify to what extent a number of virtualization technologies
 (standard VMs, tinfyied VMs, unikernels and containers) can meet
 those challenges. We conclude that choosing a solution is nuanced,
 and depends on how much value different NFV operators place on
 criteria such as strong isolation, performance and compatibility
 with applications and management frameworks.

7. Future Work

 Opportunistic areas for future work include but not limited to
 developing solutions to address the VNF challenges described in

Section 3, distributed micro-service network functions, etc.

Natarajan et al. Expires January 2017 [Page 13]

Internet-Draft Lightweight Virtualization for NFV September 2015

8. IANA Considerations

 This draft does not have any IANA considerations.

9. Security Considerations

 VM-based VNFs can offer a greater degree of isolation and security
 due to technology maturity as well as hardware support. Light-weight
 virtualization technologies such as unikernels (specialized VMs) and
 tinyfied VMs which were discussed enjoyed the security benefits of a
 standard VM. Since container-based VNFs provide abstraction at the
 OS level, it can introduce potential vulnerabilities in the system
 when deployed without proper OS-level security features. This is one
 of the key implementation/deployment challenges that needs to be
 further investigated.

 In addition, as containerization technologies evolve to leverage the
 virtualization capabilities provided by hardware, they can provide
 isolation and security assurances similar to VMs.

10. Contributors

11. Acknowledgements

 The authors would like to thank Vineed Konkoth for the Virtual
 Customer CPE Container Performance white paper. The authors would
 like to acknowledge Louise Krug (BT) for their valuable comments.

12. References

12.1. Normative References

12.2. Informative References

 [AUFS] "Advanced Multi-layered Unification Filesystem,"
https://en.wikipedia.org/wiki/Aufs

 [CONTAINER-SECURITY] "Container Security article,"
http://www.itworld.com/article/2920349/security/for-containers-
security-is-problem-1.html

 [ETSI-NFV-WHITE] "ETSI NFV White Paper,"
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

 [ETSI-NFV-USE-CASES] "ETSI NFV Use Cases,"
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_N
FV001v010101p.pdf

Natarajan et al. Expires January 2017 [Page 14]

https://en.wikipedia.org/wiki/Aufs
http://www.itworld.com/article/2920349/security/for-containers-security-is-problem-1.html
http://www.itworld.com/article/2920349/security/for-containers-security-is-problem-1.html
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf

Internet-Draft Lightweight Virtualization for NFV September 2015

 [ETSI-NFV-REQ] "ETSI NFV Virtualization Requirements,"
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_60/gs_N
FV004v010101p.pdf

 [ETSI-NFV-ARCH] "ETSI NFV Architectural Framework,"
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_N
FV002v010101p.pdf

 [ETSI-NFV-TERM] "Terminology for Main Concepts in NFV,"
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_n
fv003v010101p.pdf

 [KUBERNETES-RESOURCE-QUOTA] "Kubernetes Resource Quota,"
http://kubernetes.io/v1.0/docs/admin/resource-quota.html

 [KUBERNETES-SELF-HEALING] "Kubernetes Design Overview,"
http://kubernetes.io/v1.0/docs/design/README.html

 [LINUX-TINY] "Linux Kernel Tinification,"
https://tiny.wiki.kernel.org/

 [MINIOS] "Mini-OS - Xen," http://wiki.xenproject.org/wiki/Mini-OS

 [OSV] "OSv - The Operating System Designed for the Cloud,"
http://osv.io/

 [PGRANTS] http://lists.xenproject.org/archives/ html/xen-
 devel/2015- 05/msg01498.html

 [SELINUX] "Security Enhanced Linux (SELinux) project,"
http://selinuxproject.org/

 [SUPERFLUIDITY] "The Case for the Suplerfluid Cloud," F. Manco, J.
 Martins, K. Yasukata, J. Mendes, S. Kuenzer, and F. Huici. USENIX
 HotCloud 2015

 [APPARMOR] "Mandatory Access Control Framework,"
https://wiki.debian.org/AppArmor

 [VCPE-CONTAINER-PERF] "Virtual Customer CPE Container Performance
 White Paper," http://info.ixiacom.com/rs/098-FRB-840/images/Calsoft-

Labs-CaseStudy2015.pdf

Natarajan et al. Expires January 2017 [Page 15]

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_60/gs_NFV004v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_60/gs_NFV004v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_nfv003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_nfv003v010101p.pdf
http://kubernetes.io/v1.0/docs/admin/resource-quota.html
http://kubernetes.io/v1.0/docs/design/README.html
https://tiny.wiki.kernel.org/
http://wiki.xenproject.org/wiki/Mini-OS
http://osv.io/
http://lists.xenproject.org/archives/
http://selinuxproject.org/
https://wiki.debian.org/AppArmor
http://info.ixiacom.com/rs/098-FRB-840/images/Calsoft-Labs-CaseStudy2015.pdf
http://info.ixiacom.com/rs/098-FRB-840/images/Calsoft-Labs-CaseStudy2015.pdf

Internet-Draft Lightweight Virtualization for NFV September 2015

Authors' Addresses

 Sriram Natarajan
 Google
 natarajan.sriram@gmail.com

 Ram (Ramki) Krishnan
 Dell
 ramki_krishnan@dell.com

 Anoop Ghanwani
 Dell
 anoop@alumni.duke.edu

 Dilip Krishnaswamy
 IBM Research
 dilikris@in.ibm.com

 Peter Willis
 BT
 peter.j.willis@bt.com

 Ashay Chaudhary
 Verizon
 the.ashay@gmail.com

 Felipe Huici
 NEC
 felipe.huici@neclab.eu

Natarajan et al. Expires January 2017 [Page 16]

