
Network Working Group N. Modadugu
Internet-Draft Stanford University
Expires: August 29, 2006 E. Rescorla
 Network Resonance
 February 25, 2006

Extensions for Datagram Transport Layer Security (TLS) in Low Bandwidth
 Environments

draft-modadugu-dtls-short-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 29, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes a series of extensions to Datagram Transport
 Layer Security (DTLS) which reduce the per-record bandwidth of the
 data channel. These extensions apply only to the on-the-wire
 representation of the protocol and do not affect cryptographic
 processing.

Modadugu & Rescorla Expires August 29, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/draft-modadugu-dtls-short-00.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft DTLS Low Bandwidth February 2006

Table of Contents

1. Introduction . 3
1.1. Conventions Used In This Document 3

2. Background . 3
3. Sequence Number Length . 4
4. Version Field Elimination 5
5. Length Field Elimination 6
6. Implicit Application Data Header 7
7. Security Considerations 8
8. IANA Considerations . 9
9. References . 9
9.1. Normative References 9
9.2. Informative References 9

 Authors' Addresses . 10
 Intellectual Property and Copyright Statements 11

Modadugu & Rescorla Expires August 29, 2006 [Page 2]

Internet-Draft DTLS Low Bandwidth February 2006

1. Introduction

 Datagram Transport Layer Security (DTLS) [5] is a protocol which
 provides channel-oriented communications security for datagram
 traffic. A communication channel that uses DTLS as security protocol
 incurs some bandwidth overhead that results from additional per-
 record headers and encryption overhead. Reducing this bandwidth
 overhead is desireable when DTLS is used in wireless environments or
 to secure real-time traffic. This document describes a series of
 extensions to DTLS which reduce the per-record bandwidth. These
 extensions apply only to the on-the-wire representation of the
 protocol and do not affect the data subject to cryptographic
 processing.

1.1. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [2].

2. Background

 The DTLS record format (based on the TLS [3] record format) is shown
 below:

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch;
 uint48 sequence_number;
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 The major sources of per-record overhead in DTLS are:

 +---+---------------+
 | Field | size(bytes) |
 +---+---------------+
type	1
version	2
epoch	2
sequence_number	6
length	2
MAC	10-20 bytes
encryption overhead	9-32
 +---+---------------+

Modadugu & Rescorla Expires August 29, 2006 [Page 3]

Internet-Draft DTLS Low Bandwidth February 2006

 The largest performance improvement can be obtained by moving to a
 cipher suite with less overhead. DTLS-CTR [7] describes such a mode.
 This document describes how to reduce packet size further by reducing
 the size of some of the fields in the record.

 All the optimizations described in this memo are implemented using
 the TLS Extensions mechanism [4].

3. Sequence Number Length

 TLS, on which DTLS is based, uses a 64-bit sequence number. However,
 because TLS must run on a reliable protocol, the sequence number is
 implicit and does not take up space on the wire. In DTLS, the
 sequence number is explicit and broken up into a 16-bit "epoch"
 describing the number of handshakes that have happened on this
 association and a 48-bit per-epoch sequence number. This has the
 advantage of simplicity, but the disadvantage of taking up a fair
 amount of space in the packet.

 The sequence_number_length extension shortens the on-the-wire
 representation of the sequence number without shortening the actual
 sequence number. This means that the high order bits are not present
 in the packet but rather MUST be deduced. Implementations SHOULD use
 the technique of Appendix A of [6] to compute the high order bits of
 the sequence number and epoch number.

 When the client sends the sequence_number_length extension
 "extension_data" field must contain a SequenceNumberLengthValues
 field:

 uint8 SequenceNumberLengthValue;
 SequenceNumberLengthValue SequenceNumberLengthValues<1..7>;

 This field contains the sequence number lengths which the client is
 willing to accept. These lengths are the combined length in bytes of
 the sequence number and epoch. Permissible values are 2,3,4,5,6,7,8,
 with the sequence number and epoch divided up according to the
 following table:

Modadugu & Rescorla Expires August 29, 2006 [Page 4]

Internet-Draft DTLS Low Bandwidth February 2006

 +----------------------+---------------------+----------------------+
 | Total | Epoch | Sequence |
 +----------------------+---------------------+----------------------+
2	2 bits	14 bits
3	4 bits	20 bits
4	6 bits	26 bits
5	1 byte	4 bytes
6	1 byte	5 bytes
7	1 byte	6 bytes
8	2 bytes	6 bytes
 +----------------------+---------------------+----------------------+

 When the sequence number crosses a byte boundary, the high order bits
 of that byte SHALL be considered to be the epoch and the low order
 bits SHALL be considered to be the high order bits of the sequence
 number. Note that the 8-byte value is equivalent to the default DTLS
 behavior and is provided purely for completeness.

 If the server receives a SequenceNumberLengthValue that is not one of
 the allowed values, it MUST abort the handshake with an
 "illegal_parameter" alert. If the server receives a
 sequence_number_length extension and does not wish to negotiate
 sequence_number_length it should ignore the sequence_number_length
 extension.

 If the server wishes to negotiate sequence_number_length it responds
 with its own sequence_number_length extension. The server's
 "extension_data" field for this extension shall consist of a single
 SequenceNumberLengthValue value, which MUST be selected from the list
 provided by the client. If the client receives a
 SequenceNumberLengthValue that was not on its supplied list, it MUST
 abort the handshake with an "illegal_parameter" exception.

 The new sequence number length takes effect following the
 change_cipher_spec for the new cipher suite. Because the epoch value
 is used to differentiate data from different cipher suite states
 (different negotiations) care must be taken when renegotiating
 sequence number length during active data transfer. In the worst
 case scenario, the receiver may need to try to parse/decrypt the
 packet under both potential state settings. Because only one
 produces a valid parse with a valid MAC, the correct choice is
 unambiguous.

4. Version Field Elimination

 Every TLS/DTLS record contains a two-byte version field. This field
 is mostly redundant because the correct version is negotiated during

Modadugu & Rescorla Expires August 29, 2006 [Page 5]

Internet-Draft DTLS Low Bandwidth February 2006

 the TLS/DTLS handshake. The NoVersionField extension eliminates the
 version field from the wire representation.

 In order to negotiate the non-use of the version field clients MAY
 include an extension of type "no_version_field" in the extended
 client hello. The "extension_data" field of this extension shall be
 empty.

 Servers that receive an extended hello containing a
 "no_version_field" extension, MAY agree to omit the version field
 including an extension of type "no_version_field", with empty
 "extension_data", in the extended server hello.

 Once the "no_version_field" extension is negotiated, packets in the
 newly negotiated association (i.e., after the change_cipher_spec)
 SHALL omit the version field. This does not affect the computation
 of the HMAC, which MUST include the version field as negotiated by
 the DTLS handshake, i.e., as it would have been included in the
 header.

5. Length Field Elimination

 DTLS records contain a length field, which allows more than one
 record to be carried in a single datagram (though each record must
 fit inside a single datagram). However, if the peers agree to place
 only one record per datagram, the length field becomes superfluous.
 The "no_length_field" extension is used to make this agreement.

 In order to negotiate the non-use of the length field clients MAY
 include an extension of type "no_length_field" in the extended client
 hello. The "extension_data" field of this extension shall be empty.

 Servers that receive an extended hello containing a "no_length_field"
 extension, MAY agree to omit the length field including an extension
 of type "no_length_field", with empty "extension_data", in the
 extended server hello.

 Once the "no_length_field" extension is negotiated, packets in the
 newly negotiated association (i.e., after the change_cipher_spec)
 SHALL omit the length field. This does not affect the computation of
 the HMAC, which MUST include the length field as negotiated by the
 DTLS handshake, i.e., as it would have been included in the header.
 When the "no_length_field" extension is in effect, implementations
 MUST NOT place more than one record per datagram.

Modadugu & Rescorla Expires August 29, 2006 [Page 6]

Internet-Draft DTLS Low Bandwidth February 2006

6. Implicit Application Data Header

 In principle, because all the data in the DTLS header is incorporated
 into the DTLS record MAC, the entire header can be omitted and
 reconstructed by trying all candidate headers. We propose a somewhat
 less radical approach: omitting the header for records of type
 "application_data". Because these records comprise the majority of
 the traffic on a DTLS connection, this extension provides a
 significant optimization while minimizing ambiguity.

 In order to negotiate the implicit application data header, clients
 MAY include an extension of type "implicit_header" in the extended
 client hello. The "extension_data" field of this extension shall be
 empty.

 Servers that receive an extended hello containing a "implicit_header"
 extension, MAY agree to this optimization extension of type
 "implicit_header", with empty "extension_data", in the extended
 server hello.

 Once the "implicit_header" extension is negotiated, application data
 records in the newly negotiated association (i.e., after the
 change_cipher_spec) SHOULD omit the following values in the DTLS
 header:
 Content type
 Version
 Length
 Sequence Number
 This does not affect the computation of the HMAC, which MUST include
 these values as if they were present. In addition, as with the
 "no_length_field" extension, there must only be one record per
 transport-level datagram.

 The "implicit_header" extension introduces some ambiguity in record
 receipt processing. This ambiguity can, however, be resolved by
 trial decryption. Implementations MAY use the algorithm described
 below in order to properly receive a given record. The initial value
 of ESN (the expected sequence number) is set to 1 + (sequence number
 of the Finished message record), which should be the sequence number
 of the first application data record.
 1. If the first byte does not match a known content type go to step
 5.
 2. If the version field does not match the current version go to
 step 5.
 3. If the length does not match the rest of the record, go to step
 5.

Modadugu & Rescorla Expires August 29, 2006 [Page 7]

Internet-Draft DTLS Low Bandwidth February 2006

 4. Attempt to decrypt the record as a record with header present.
 If the MAC verifies, set ESN to the record sequence number+1 and
 pass the record it to the next layer. Otherwise, proceed to step
 5.
 5. Prepend an application_data header with sequence number of ESN.
 Attempt to decrypt. If the MAC checks, set ESN to the record
 sequence number+1 and pass the record to the next layer.
 6. Repeat step 5 with all ESN values in the current replay window.
 7. If no valid ESN can be found, discard the record.

 The above algorithm is generic. However, in applications where an
 application layer sequence number is present in plaintext in the
 record payload (see TODO) (e.g., RTP), it MAY be appropriate to
 maintain an offset between the two sequence numbers and use that to
 generate the initial ESN estimate in step 5. However, they MUST
 still use the sequence number of the last valid packet to set the
 replay--and hence resynchronization--window.

 Note that although in principle this specification allows the inter-
 mixture of application_data records with and without the header,
 senders SHOULD generally send records without the header when the
 extension is in effect. The one reasonable exception would be if an
 application layer sequence number is present and makes a large jump.
 Implementations MAY add an explicit application_data header to
 several frames to effect a resynchronization.

7. Security Considerations

 There are two security concerns introduced by these extensions. The
 first involves the security of the negotiation and the second the
 security of the transport protocol. Because the negotiation is
 protected by the TLS/DTLS handshake, attackers can neither force the
 use of these extensions nor block them while allowing the negotiation
 to succeed.

 Although these extensions involve changing the bits on the wire, the
 transformations involved are made in authenticated but unencrypted
 data. This has two implications: (1) Any attacker who possesses the
 encrypted stream of an ordinary DTLS connection can generate a stream
 with any or all of these fields removed. Thus, if a connection uses
 these extensions and is weak, the underlying TLS connection must be
 weak as well. (2) Although the receiver needs to deduce certain
 values, this does not produce a security threat because the attacker
 could have replaced the real values on the wire with the values that
 the receiver deduces in the low bandwidth version. In both cases,
 what stops tampering is the use of a strong MAC.

Modadugu & Rescorla Expires August 29, 2006 [Page 8]

Internet-Draft DTLS Low Bandwidth February 2006

8. IANA Considerations

 This document defines four new extensions for DTLS, in accordance
 with [4]:

 enum { sequence_number_length (??), no_version_field (??),
 no_length_field(??), implicit_header (??)} ExtensionType;

 [[NOTE: These values need to be assigned by IANA]]

 The "sequence_number_length", "no_length_field" and "implicit_header"
 extensions MAY only be used with DTLS and MUST NOT be used with TLS.
 The "no_version_field" extension MAY be used with either DTLS or TLS.

9. References

9.1. Normative References

 [1] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications",

RFC 1889, January 1996.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Dierks, T. and E. Rescorla, "The TLS Protocol Version 1.1",
draft-ietf-tls-rfc2246-bis-13 (work in progress), June 2005.

 [4] Blake-Wilson, S., "Transport Layer Security (TLS) Extensions",
draft-ietf-tls-rfc3546bis-02 (work in progress), October 2005.

 [5] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", draft-rescorla-dtls-05 (work in progress), June 2005.

 [6] Kent, S., "IP Encapsulating Security Payload (ESP)",
draft-ietf-ipsec-esp-v3-10 (work in progress), March 2005.

9.2. Informative References

 [7] Modadugu, N. and E. Rescorla, "AES Counter Mode Cipher Suites
 for TLS and DTLS", draft-modadugu-tls-ctr-00 (work in progress),
 October 2005.

Modadugu & Rescorla Expires August 29, 2006 [Page 9]

https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc2246-bis-13
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc3546bis-02
https://datatracker.ietf.org/doc/html/draft-rescorla-dtls-05
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-esp-v3-10
https://datatracker.ietf.org/doc/html/draft-modadugu-tls-ctr-00

Internet-Draft DTLS Low Bandwidth February 2006

Authors' Addresses

 Nagendra Modadugu
 Stanford University
 353 Serra Mall
 Stanford, CA 94305
 USA

 Email: nagendra@cs.stanford.edu

 Eric Rescorla
 Network Resonance
 2483 E. Bayshore Rd., #212
 Palo Alto, CA 94303
 USA

 Email: ekr@networkresonance.com

Modadugu & Rescorla Expires August 29, 2006 [Page 10]

Internet-Draft DTLS Low Bandwidth February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Modadugu & Rescorla Expires August 29, 2006 [Page 11]

