
Network Working Group H. Tschofenig
Internet-Draft ARM Limited
Intended status: Informational E. Maler
Expires: September 10, 2015 Forgerock
 E. Wahlstroem
 S. Erdtman
 Nexus Technology
 March 9, 2015

Authentication and Authorization for Constrained Environments Using
OAuth and UMA

draft-maler-ace-oauth-uma-00.txt

Abstract

 Authentication and authorization are fundamental security features
 used in Internet and Web applications. Providing the same level of
 security functionality to the Internet of Things (IoT) environment as
 well is a logical enhancement and reduces the risk of unauthorized
 access to personal data.

 IoT devices, however, have limitations in terms of processing power,
 memory, user interface, Internet connectivity, etc. Since many use
 cases span Web and IoT environments and the question of "Web" vs.
 "IoT" can in some cases be considered a continuum, it is required to
 find security solutions that can accommodate the capabilities and
 constraints of both environments without significant compromises.

 Thus, an approach of adapting already standardized and deployed
 authentication and authorization technologies is worth examining.
 This document describes how the Web Authorization Protocol (OAuth) in
 combination with User-Managed Access (UMA) can be used for an IoT
 environment to bring Web-scale authorization services to the IoT
 world.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Tschofenig, et al. Expires September 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth/UMA for ACE March 2015

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Use Cases . 3
3.1. Using OAuth with Scales 4
3.2. Using UMA with Scales 6
3.3. Using OAuth and UMA with Cars 8
3.4. Using OAuth and UMA with Door Locks 9

4. Protocol Designs for the Web and Beyond 10
5. Instantiations . 11
5.1. Car Use Case . 12
5.2. Door Lock Use Case 14

6. UMA Use Case Mapping Exercise 16
7. Security Considerations 18
8. IANA Considerations . 19
9. Acknowledgements . 19
10. References . 19
10.1. Normative References 19
10.2. Informative References 21

 Authors' Addresses . 21

1. Introduction

 Deciding when a certain use case falls under the category of IoT and
 when it is not turns out to be a difficult task. For this reason,
 [RFC7228] made an attempt to describe characteristics of constrained-
 node networks and highlights some of the challenges. Companies often

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7228

Tschofenig, et al. Expires September 10, 2015 [Page 2]

Internet-Draft OAuth/UMA for ACE March 2015

 have some degree of freedom to make trade-off decisions, for example,
 in terms of cost vs. physically available resources to push the
 boundaries of what can be done with IoT devices.

 Manufacturers must take not only hardware costs into account, but
 also software development costs; reusing existing software,
 standards, practices, and expertise can help to lower the total cost
 of a product. Hence, the use cases combine the already existing
 identity and access management infrastructure with access control to
 objects in the physical world.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in "Key words for use in
 RFCs to Indicate Requirement Levels" [RFC2119].

 This document leverages terminology from [RFC6749] and
 [I-D.hardjono-oauth-umacore] . Especially pertinent definitions are
 paraphrased below.

 Resource Owner: An entity capable of granting access to a protected
 resource.

 Resource Server: The server hosting the protected resources, capable
 of accepting and responding to protected resource requests using
 access tokens.

 Authorization Server: The server issuing access tokens to the client
 after successfully authorizing it.

 Requesting Party: An entity (which may or may not be the same as the
 resource owner) that uses a client to seek access to a protected
 resource.

 Client: An application making protected resource requests with the
 resource owner's authorization and on the requesting party's
 behalf.

3. Use Cases

 The sub-sections below illustrate some use cases that start with
 classic OAuth functionality and then extend it to functionality only
 available with UMA-based environments. The scenarios involve Web,
 smart phone app, and IoT devices. Unlike the scenarios described in
 [I-D.ietf-ace-usecases] this write-up is not solution agnostic but

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Tschofenig, et al. Expires September 10, 2015 [Page 3]

Internet-Draft OAuth/UMA for ACE March 2015

 instead aims to take the OAuth/UMA solutions into account. In a
 stepwise refinement we then add even more details in Section 5.

3.1. Using OAuth with Scales

 In a classic OAuth flow, an end-user (the resource owner) can enable
 a client application to call an API (at the resource server) on his
 or her behalf securely and with authorized consent, without having to
 reveal his or her credentials, such as a username and password, to
 the client. An app-specific access token (issued by the
 authorization server at which the resource owner is able to
 authenticate), whose operation may be scoped to some subset of the
 API's capabilities, is substituted for the long-term credentials
 instead.

 The basic OAuth architecture is shown in Figure 1 and the
 corresponding message exchange in Figure 2.

 +-------------+
 |Authorization|
 |Server (AS) |\
 +-------------+ \
 ^ / ^ \
 Request / / \ \ *Token
 Access / Access / \ \ Introspection
 Token / Token / \ \
 / / \ \
 / / \ \
 / / \ \
 / / \ \
 O / v \ v
 /|\ +-----------+ +-----------+
 | -----> | | Access Token | Resource |
 / \ <----- | Client |----------------->| Server |
 Resource | |<================>| (RS) |
 Owner +-----------+ Application Data +-----------+

 *: indicates optional exchange.

 Figure 1: OAuth Architecture.

Tschofenig, et al. Expires September 10, 2015 [Page 4]

Internet-Draft OAuth/UMA for ACE March 2015

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | | ^ | *Token
 | | (F)| |(G) Introspection
 | | | v
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(H)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 2: OAuth 2.0 Message Exchange.

 We can apply a similar pattern to IoT devices as well. For example,
 envision an end-user Alice and her new purchase of an Internet-
 connected scale designed for "quantified self" scenarios. In our
 example, the scale has a micro-controller that was pre-provisioned
 with a certificate during manufacturing enabling the device to
 authenticate itself to the vendor-authorized software update server
 as well as to other parties. The identifier used for authentication
 of a scale is something as benign as an EUI-64 serial number.

 Once the identifier used by the scale and Alice's account information
 have been provisioned into an online repository, and if Alice can
 demonstrate appropriate control of the device -- for example, by
 entering a confirmable PIN code or serial number that was packaged
 with the shipped device into her online account record, whether
 through a Web or mobile app -- it is possible to treat the device as
 an OAuth client and issue it an OAuth token so that it can act on
 Alice's behalf.

 The value of this association is that any API calls made by the
 scale, for example to report Alice's weight, body mass index (BMI),
 or progress against health goals into her online account, will be
 associated with her alone. If other household members use the scale
 as well, their unique associations will ensure that their data will
 go to the right place (assuming there is a mechanism at the scale

Tschofenig, et al. Expires September 10, 2015 [Page 5]

Internet-Draft OAuth/UMA for ACE March 2015

 that allows family members to be differentiated). Further, each
 token can be revoked and expired exactly like any other OAuth token.

3.2. Using UMA with Scales

 UMA builds on top of OAuth (and optionally OpenID Connect [OIDC]) to
 let an end-user achieve three main goals:

 1. authorize other parties to access APIs under his or her control
 using client applications;

 2. set conditions for access so that those other parties may have to
 provide "claims" and do step-up authentication to get access (in
 a so-called claims gathering process); and

 3. centralize management of all these conditions for access in one
 cloud service.

 The basic architecture and flow is shown in Figure 3. A protection
 API token (PAT) is an OAuth token with a scope that gives the
 resource server access to the UMA-standardized protection API at the
 authorization server; an authorization API token (AAT) is an OAuth
 token with a scope that gives the client access to the UMA-
 standardized authorization API; and a requesting party token (RPT) is
 the main access token issued to a requesting party, which does not
 rely on resource owner presence for issuance.

Tschofenig, et al. Expires September 10, 2015 [Page 6]

Internet-Draft OAuth/UMA for ACE March 2015

 +--------------+
 | resource |
 +---------manage (A)------------ | owner |
 | +--------------+
 | Phase 1: |
 | protect a control (C)
 | resource |
 v v
 +------------+ +----------+--------------+
 | | |protection| |
 | resource | | API | authorization|
 | server |<-protect (B)--| (needs | server |
 | | | PAT) | |
 +------------+ +----------+--------------+
 | protected | | authorization|
 | resource | | API |
 |(needs RPT) | | (needs AAT) |
 +------------+ +--------------+
 ^ |
 | Phases 2 and 3: authorize (D)
 | get authorization, |
 | access a resource v
 | +--------------+
 +---------access (E)-------------| client |
 +--------------+

 requesting party

 Figure 3: OAuth++: The UMA Architecture.

 UMA can be thought of as "OAuth++", in that it adds two major
 elements: a formal protection API presented by the authorization
 server, so that resource servers running in different domains can be
 "authorization relying parties" to it, and the "requesting party"
 concept distinct from the resource owner (as discussed in Section 2).

 The requesting party may be required to interact with the
 authorization server when the client asks for permission to access a
 resource. However, if this interaction requires authentication, this
 authentication step may be outsourced to a variety of different
 identity providers, including the client (which may be allowed to
 "push" identity claims to the authorization server), the
 authorization server itself, or any other identity provider, with the
 authorization server functioning as a relying party in this case.

 Similarly to the previous use case in Section 3.1, there is value in
 extending the Web world to the world of devices because the data

Tschofenig, et al. Expires September 10, 2015 [Page 7]

Internet-Draft OAuth/UMA for ACE March 2015

 originating in a device often travels to the cloud. Alice may want
 to share her scale data with friends, with her doctor, or in
 anonymized form with a public health service.

 The benefit of using an UMA authorization server, requesting party
 tokens, and so on to manage Alice's control of her doctor's and
 others' access to the data her scale generates is that she:

 1. does not have to be present when they request access, crafting
 policies prior to access attempts or handling access approval
 requests after attempts;

 2. can demand that requesting parties present proof of their
 suitability (such as current valid hospital credentials);

 3. can change the length permission validity, including revoking
 sharing relationships;

 4. can set policies governing clients used by requesting parties as
 well; and

 5. can do this from a centralizable authorization point, crossing
 multiple resource servers (and thus devices feeding into them).

3.3. Using OAuth and UMA with Cars

 A connected car example illustrates other desirable aspects of IoT
 authentication and authorization.

 Alice buys a new car. At manufacture time, the car was registered at
 the manufacturer's authorization server. When buying the car, Alice
 can create an account at the manufacturer's website and reuse the
 already configured authorization server. Alice installs a car
 managing mobile app on her phone to manage her car. Alice authorizes
 the app to act on her behalf as OAuth client to perform actions, such
 as open car door, which would be similar to authorizing an app to
 send tweets on my behalf to the twitter API but in this case the
 resource server is the car and the API is accessed over Bluetooth
 Smart.

 Since the operation of opening the car is security sensitive, it is
 desirable to require more than a long term access token to open the
 door and to start the car. So instead of just accepting the access
 token the authorization server may require Alice to supply more
 information and a UMA claims gathering process is started, such as
 requiring a multi-factor authentication using a fingerprint or a PIN
 code on her phone.

Tschofenig, et al. Expires September 10, 2015 [Page 8]

Internet-Draft OAuth/UMA for ACE March 2015

 Furthermore, Alice wants to share driving rights with her husband
 Ted. Alice is owner of the car and is authorized to add new drivers
 to the car. To do this Alice can setup the policies at the
 authorization service governing who can do what with the car at what
 time. Alice configures a rule that allows Ted to request a token for
 the scope of driving the car, but just as Alice, Ted is required to
 download the app, authorize it and go through a claims gathering flow
 to actually get the token to start the car using his smart phone app.

 With this delegation of rights to the car Ted could potentially even
 create a valet key with geo fenced driving range and no access to
 trunk when he leaves the car in a parking garage and thereby create a
 valet key for the physical world.

 The use of standardized protocols allows Alice to use her own
 authorization server. Alice could choose to unregister the car at
 the manufacturer authorization server and register the car to an
 authorization server of her liking. The car would register available
 resources and scopes and Alice could configure policies as above
 using her own authorization server.

 Since cars are not always located in areas with Internet connectivity
 it is envisioned that cars need to be able to verify access tokens
 locally (without the need to consult an authorization server in real-
 time). Once the car is online again it could check whether any new
 revocation information is available and upload information about
 earlier authorization decisions to the audit log.

 A similiar situation may occur when Alice asks her friend Trudy to
 get the groceries from the trunk of her car (which she forgot there
 earlier) while they are at their remote summer cottage. Without
 Internet connectivity Alice cannot delegate access to her car to
 Trudy using the authorization server located in the cloud. Instead,
 she transfers an access token to Trudy using Bluetooth. This access
 token entitles Trudy to open the trunk but not to drive it and grants
 those permissions only for a limited period. To ensure that the car
 can actually verify the content of the access token the client app of
 Alice again uses the capabilities of the proof-of-possession tokens.

3.4. Using OAuth and UMA with Door Locks

 Alice, the owner of a small enterprise, buys a door lock system for
 her office. She would expect to be able to provision policies for
 access herself, in effect acting as "system administrator" for
 herself and for her five employees. She may also want to choose her
 own authorization server, since she wants to integrate the physical
 access control system with the rest of the resources in her company
 and the enterprise identity management system she already owns. She

Tschofenig, et al. Expires September 10, 2015 [Page 9]

Internet-Draft OAuth/UMA for ACE March 2015

 wants to control the cloud-based file system, financial and health
 data, as well as the version control and issue tracking software.

4. Protocol Designs for the Web and Beyond

 The design of OAuth was intentionally kept flexible to accommodate
 different deployment situations. For example, authentication of the
 resource owner to the authorization server before granting access is
 not standardized and different authentication technologies can be
 used for that purpose. The user interface shown to the resource
 owner when asking for access to the protected resource is not
 standardized either.

 Over the years various extensions have been standardized to the core
 OAuth protocol to reduce the need for proprietary extensions that
 offer token revocation, an access token format called JSON Web Token,
 or proof-of-possession tokens that offer an alternative security
 model for bearer tokens [RFC6750].

 Due to the nature of the Web, OAuth protocol interactions have used
 HTTPS as a transport; however, other transports have been
 investigated as well, such as OAuth for use over SASL (for use with
 email) and more recently OAuth over the Constrained Application
 Protocol (CoAP).

 This document provides the reader with information about which OAuth
 extensions will be useful for the IoT context. In its structure it
 is very similar to the DTLS/TLS IoT profile document that explains
 what TLS extensions and ciphersuites to use for different IoT
 deployment environments. Interestingly, very little standardization
 effort is necessary to make OAuth and UMA fit for IoT. To a large
 extend the work is centered around using alternative transports (such
 as CoAP and DTLS instead of HTTP over TLS) to minimize the on-the-
 wire overhead and to lower code-size and to define profiles for
 highly demanded use cases.

 The UMA group, benefiting from observing the OAuth experience and
 from the era in which UMA itself has been developed, has built
 extension points into the protocol, already anticipating a need for
 flexibility in transport bindings. Thus, UMA has three
 "extensibility profiles" that enable alternate bindings (such as
 CoAP) to be defined for communications between an authorization
 server and resource server, a resource server and client, and an
 authorization server and client respectively. It also, similarly to
 OAuth, as other extensibility options, such as token profiling and
 the ability to extend JSON formats to suit a variety of deployment
 needs.

https://datatracker.ietf.org/doc/html/rfc6750

Tschofenig, et al. Expires September 10, 2015 [Page 10]

Internet-Draft OAuth/UMA for ACE March 2015

5. Instantiations

 In this section we provide additional details about the use of OAuth
 and UMA for solving the use cases outlined in Section 3. In general,
 the following specifications are utilized:

 o OAuth 2.0 [RFC6749] for interacting with the authorization server.
 The use of the CoAP-OAuth profile [I-D.tschofenig-ace-oauth-iot]
 maybe used but is not essential for the examples in this section
 since the client is less constrained.

 o Bearer tokens and proof-of-possession tokens as two different
 security models for obtaining and presenting access tokens.
 Bearer tokens are defined in [RFC6750] and the architecture for
 proof-of-possession (PoP) tokens can be found at
 [I-D.ietf-oauth-pop-architecture]. PoP tokens introduce the
 ability to bind credentials, such as an ephemeral public key, to
 the access token.

 o UMA [I-D.hardjono-oauth-umacore] for registering the resource
 server with the authorization server provided by Alice and for
 management of policy.

 o Dynamic Client Registration [I-D.ietf-oauth-dyn-reg] for the
 client app to register at the authorization server.

 o Token introspection [I-D.ietf-oauth-introspection] for optionally
 allowing the resource server to verify the validity of the access
 token (if this step is not done locally at the resource server).
 The use of token introspection over CoAP
 [I-D.wahlstroem-ace-oauth-introspection] reduces overhead.

 o JSON Web Token (JWT) [I-D.ietf-oauth-json-web-token] for the
 format of the access token. JSON Web Signatures (JWT)
 [I-D.ietf-jose-json-web-signature] are used for creating a
 signature over the JWT. The use of a CBOR encoding of various
 JSON-based security specifications is under discussion to reduce
 the size of JSON-based tokens.

 o A new Bluetooth Smart service and profile for conveying access
 tokens securely from the client to the resource server. If CoAP
 runs between the client and a constrained resouce server then
 [I-D.tschofenig-ace-oauth-bt] provides additional overhead
 reduction.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Tschofenig, et al. Expires September 10, 2015 [Page 11]

Internet-Draft OAuth/UMA for ACE March 2015

5.1. Car Use Case

 In the car use case, as described in Section 3.3, the car acts as the
 resource server and an application on the smart phone plays the role
 of the client. Alice is first a delegated administrator then becomes
 a resource owner of the car.

 Alice creates an account, downloads and authorizes the mobile app:

 1. Alice creates an account on manufacturer's website.

 2. Alice selects that two factor authentication must be used to be
 able to start controlling car from an app.

 3. Alice downloads app and starts it.

 4. App has never been provisioned so a browser is started, user
 selects manufacturer's authorization server from a list.

 5. Alice authenticates using two factors and authorizes the
 application.

 6. Access and refresh tokens are provisioned to the app.

 Alice configures policies to add Tim as new driver:

 1. Alice opens the car-settings page within the app.

 2. Alice selects to add a new driver by supplying Tims email
 address.

 3. Alice checks the checkboxes that also makes Tim a delegated
 administrator.

 4. Alice saves the new policies.

 Alice opens car door over Bluetooth Smart:

 1. The smartphone detects the advertising packets of the door lock
 and asks Alice whether she wants to open the car door.

 2. Alice confirms and a request is sent to the authorization server
 together with an ephemeral public key created by the phone. The
 request indicates information about the car Alice is seeking
 access to.

 3. The authorization server evaluates the request to open the car
 door on the specific car and verifies it against the access

Tschofenig, et al. Expires September 10, 2015 [Page 12]

Internet-Draft OAuth/UMA for ACE March 2015

 control policy. Note that the app authenticated itself to the
 authorization server.

 4. The authorization server prompts Alice for a PIN code using
 claims gathering.

 5. Alice enters pin and the application communicates it to the
 authorization server.

 6. It turns out that the system administrator has granted her
 access to that specific car and she is given access by returning
 an access token.

 7. The smart phone app then uses the obtained access token to
 create a request (which includes the access token) over
 Bluetooth Smart using on the (not yet existing) Physical Access
 Control Profile, which is a security protocol that utilizes
 public key cryptography where the app demonstrates that it knows
 the private key corresponding to the finger of the public key
 found in the token.

 8. The car receives the request and verifies it.

 9. To check whether the permissions are still valid the car sends
 the access token to the introspection endpoint.

 10. The authorization server validates the access token and returns
 information about the validity of the token to the car. In this
 case it's a valid token.

 11. The request is logged.

 12. The car gets a response and opens the car door.

 Alice changes authorization server:

 1. Alice wants to connect the car to her own authorization server
 instead of the manufacturers default authorization server.

 2. Alice makes a request to the current authorization server to
 unbind the device from the authorization server.

 3. The authorization server validates Alice request to remove the
 authorization server.

 4. Alice configures a new authorization server in the apps UI.

Tschofenig, et al. Expires September 10, 2015 [Page 13]

Internet-Draft OAuth/UMA for ACE March 2015

 5. The app starts an authorization code grant flow with the private
 authorization server of Alice. Alice logs on and authorizes the
 app to act on her behalf.

 6. The app sends information about the new authorization server to
 the car using Bluetooth Smart.

 7. The car registers the resource it offers with the new
 authorization server.

 8. Alice configures herself as the car owner in the new
 authorization server.

 9. The car unbinds itself from the old authorization server by
 invalidating the access tokens using the revocation endpoint.

5.2. Door Lock Use Case

 In the constrained server use case, as described in Section 3.4, the
 door lock acts as the resource server and an application on the smart
 phone plays the role of the client.

 Since the client runs on a powerful smartphone standard OAuth
 according to OAuth Core can be used. To avoid leakage of the access
 token the use of a proof-of-possession token is utilized instead of a
 bearer token. This allows the client to demonstrate the possession
 of the private key to the client. Both symmetric as well as
 asymmetric cryptography can be used. The use of asymmetric
 cryptography is beneficial since it allows the client to create a
 public / private key pair and to never expose the private key to
 other parties.

 As a setup-step the following steps are taken as part of the
 enterprise IT

 1. Alice, as the enterprise network administrator and compay owner,
 enables the physical access control rights at the identity
 management server.

 2. Alice downloads the enterprise physical access control system app
 on her phone. By downloading the app she agrees to the terms of
 use and she accepts the permissions being asked for by the app.

 3. Alice associates her smart phone app with her account by login
 into the enterprise management software, which uses OAuth 2.0 for
 delegating access to the app.

Tschofenig, et al. Expires September 10, 2015 [Page 14]

Internet-Draft OAuth/UMA for ACE March 2015

 4. Alice, as the enterprise administrator, configures policies at
 the authorization server to give her employees access to the
 office building as well.

 5. In this use case each door lock is provisioned with an asymmetric
 key pair and the public key of the authorization server. The
 public key of each door lock is registered with the authorization
 server. Door locks use these keys when interacting with the
 authorization server (for authentication in case of token
 introspection), for authenticating towards the client, and for
 verifying the signature computed over the access token.

 When Alice uses her smartphone for the first time to access the
 office building the following steps take place:

 1. The smartphone detects the advertising packets of the door lock
 and asks Alice whether she wants access.

 2. Alice confirms and a request is sent to the authorization server
 together with an ephemeral public key created by the phone. The
 request indicates information about the door Alice is seeking
 access to. The request is protected using TLS.

 3. The authorization server evaluates the request and verifies it
 against the access control policy. Since Alice has added herself
 to access control policies already she is given access by
 returning an access token. This access token includes the
 fingerprint of the public key provided in the request. The
 access token is digitally signed to avoid any modification of the
 content.

 4. The smart phone app then uses the obtained information to create
 a request (which includes the access token) over Bluetooth Smart
 using the (not yet existing) Physical Access Control Profile,
 which is a security protocol that utilizes public key
 cryptography where the app demonstrates that it knows the private
 key corresponding to the finger of the public key found in the
 token.

 5. The door lock software receives the request and verifies the
 digital signature, inspects the content (such as expiry date, and
 scope), and determines whether the fingerprint of the public key
 corresponds to the private key used by the client. Once
 successfully verified the door is unlocked, and Alice is allowed
 to enter.

 6. The physical access control app caches the access token for
 future use.

Tschofenig, et al. Expires September 10, 2015 [Page 15]

Internet-Draft OAuth/UMA for ACE March 2015

 As a variation of the above-described procedure, the door lock might
 consult the authorization server using token introspection to
 determine the validity of the access token. This allows the
 enterprise system software to make real-time access control decisions
 and to better gain visibility about the number of employees in the
 building (in case of an emergency).

 When Alice approaches the door next time her physical access control
 app determines that a cached (and still valid) access token is
 available and no further interaction with the authorization server is
 needed. Decisions about how long to cache access tokens are a policy
 decision configurable into the system and impact the performance of
 the protocol execution.

 When Bob, who is employed by Alice, approaches the office building
 for the first time his downloaded physical access control app also
 interacts with the door. While Bob still has to consent to the use
 of app, Alice does not need to authorize access of Bob to the office
 building in real-time since she has already granted access to her
 employees earlier already.

6. UMA Use Case Mapping Exercise

 An analysis of [I-D.hardjono-oauth-umacore] suggests that its
 capabilities have a good architectural match with many published ACE
 use cases. The following are aggregated and paraphrased versions of
 use cases discussed in [I-D.ietf-ace-usecases]:

 Owner grants different resource access rights to different parties
 (U1.1, U2.3, U.3.2):

 UMA meets this use case because the requesting party is formally
 distinct from the resource owner and because each requesting
 party, and each client, is represented distinctly at each
 authorization server, able to have differential policy applied to
 it.

 Owner grants different access rights for different resources on a
 device (U1.3, U4.4, U5.2):

 UMA meets this use case because the resource server is able to
 register each resource set (according to boundaries it
 unilaterally determines) at the authorization server, so that the
 resource owner can apply policy to it distinctly.

 Owner not always present at time of access (U1.6, U5.5):

Tschofenig, et al. Expires September 10, 2015 [Page 16]

Internet-Draft OAuth/UMA for ACE March 2015

 UMA meets this use case because it is a profile of OAuth that
 defines an asynchronous authorization grant, meaning that the
 client's interactions during a resource access attempt do not
 require a resource owner's interaction.

 Owner grants temporary access permissions to a party (U1.7):

 UMA meets this use case because the default, mandatory-to-
 implement permissions associated with a requesting party token
 (the "bearer" profile) are able to be time-limited and are in a
 time-limitable JSON Web Token as well.

 Owner applies verifiable context-based conditions to authorizations
 (U2.4, U4.5, U6.3):

 UMA meets this use case because a resource owner can configure an
 authorization server with policies, or an authorization server can
 apply system-default policies, to demand "trust elevation" when a
 client requests authorization data, such that a requesting party
 or client must satisfy authentication, claims-based, or (through
 extension) any other criteria prior to being issued authorization
 data.

 Owner preconfigures access rights to specific data (U3.1, U6.3):

 UMA meets this use case because it defines an asynchronous
 authorization grant, as described above. Preconfiguration is a
 case when a resource owner sets policy prior to an access attempt.

 Owner adds a new device under protection (U4.1):

 UMA meets this use case because it enables a resource owner to
 associate a device and its corresponding resource server with an
 authorization server through consenting to the issuance of a
 protection API token (PAT), enabling the resource server to
 outsource protection of its resources to the authorization server.

 Owner puts a previously owned device under protection (U4.2):

 UMA meets this use case because a previous resource owner can
 revoke a pre-existing PAT if one existed, revoking the previous
 consent in place, and the new owner can mint a new PAT.

 Owner removes a device from protection (U4.3):

 UMA meets this use case because the resource owner can revoke the
 PAT.

Tschofenig, et al. Expires September 10, 2015 [Page 17]

Internet-Draft OAuth/UMA for ACE March 2015

 Owner revokes permissions (U4.6):

 UMA meets this use case because the resource owner can configure
 the authorization server to revoke or terminate an existing
 permission. The default, mandatory-to-implement requesting party
 token profile ("bearer") requires runtime token introspection,
 ensuring relatively timely retrieval of a revoked permission
 (barring authorization server caching policy). Other profiles may
 have different results.

 Owner grants access only to authentic, authorized clients (U7.1,
 U7.2):

 UMA meets this use case because it enables OAuth as well as OpenID
 Connect authentication of clients, including dynamic
 authentication, and also enables resource owners to configure
 authorization servers with policy, such that only desired clients
 wielded by desired requesting parties are given access to the
 owner's resources.

7. Security Considerations

 This specification re-uses several existing specifications, including
 OAuth and UMA, and hence the security-related discussion in those
 documents is applicable to this specification. A reader is
 encouraged to consult [RFC6819] for a discussion of security threats
 in OAuth and ways to mitigate them. On a high level, the security
 guidance provided in [I-D.iab-smart-object-architecture] will help to
 improve security of Internet of Things devices in general.

 Despite all the available guidance it is nevertheless worthwhile to
 repeat the most important aspects regarding the use of access tokens,
 which are a core security mechanism in the OAuth / UMA
 specifications.

 Safeguard bearer tokens: Client implementations MUST ensure that
 bearer tokens are not leaked to unintended parties, as they will
 be able to use them to gain access to protected resources. This
 is the primary security consideration when using bearer tokens and
 underlies all the more specific recommendations that follow. This
 document also outlines the use of proof-of-possessions, which
 provide stronger security properties than bearer tokens and their
 use is RECOMMENDED.

 Validate TLS certificates: TLS/DTLS clients MUST validate the
 certificates received during the handshaking procedure. TLS/DTLS
 is used heavily in OAuth/UMA between various parties. Failure to
 verify certificates will enable man-in-the-middle attacks.

https://datatracker.ietf.org/doc/html/rfc6819

Tschofenig, et al. Expires September 10, 2015 [Page 18]

Internet-Draft OAuth/UMA for ACE March 2015

 Always use TLS/DTLS: The use of TLS/DTLS is mandatory for use with
 OAuth as a default. Particularly when bearer tokens are exchanged
 the communication interaction MUST experience communication
 security protectoin using TLS (or DTLS). Failing to do so exposes
 bearer tokens to third parties and could consequently give
 attackers unintended access. Proof-of-possession tokens on the
 other hand do not necessarily require the use of TLS/DTLS but TLS/
 DTLS is RECOMMENDED even in those cases since TLS/DTLS offers many
 desireable security properties, such as authentication of the
 server side.

 Issue short-lived tokens: Authorization servers SHOULD issue short-
 lived tokens. Using short-lived bearer tokens reduces the impact
 of them being leaked and allows easier revocation in scenarios
 where resource servers are offline.

 Issue scoped tokens: Authorization servers MUST issue tokens that
 restrict tokens for use with a specific resource server and
 contains appropriate entitlements to control access in a fine-
 grained fashion.

8. IANA Considerations

 This document does not require actions by IANA.

9. Acknowledgements

 This is the first version of the document. We appreciate feedback.

10. References

10.1. Normative References

 [I-D.hardjono-oauth-umacore]
 Hardjono, T., Maler, E., Machulak, M., and D. Catalano,
 "User-Managed Access (UMA) Profile of OAuth 2.0", draft-

hardjono-oauth-umacore-12 (work in progress), February
 2015.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-41
 (work in progress), January 2015.

Tschofenig, et al. Expires September 10, 2015 [Page 19]

https://datatracker.ietf.org/doc/html/draft-hardjono-oauth-umacore-12
https://datatracker.ietf.org/doc/html/draft-hardjono-oauth-umacore-12
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-41

Internet-Draft OAuth/UMA for ACE March 2015

 [I-D.ietf-oauth-dyn-reg]
 ietf@justin.richer.org, i., Jones, M., Bradley, J.,
 Machulak, M., and P. Hunt, "OAuth 2.0 Dynamic Client
 Registration Protocol", draft-ietf-oauth-dyn-reg-24 (work
 in progress), February 2015.

 [I-D.ietf-oauth-introspection]
 ietf@justin.richer.org, i., "OAuth 2.0 Token
 Introspection", draft-ietf-oauth-introspection-05 (work in
 progress), February 2015.

 [I-D.ietf-oauth-json-web-token]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token-32 (work in
 progress), December 2014.

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., ietf@justin.richer.org, i., Mills, W., Mishra,
 P., and H. Tschofenig, "OAuth 2.0 Proof-of-Possession
 (PoP) Security Architecture", draft-ietf-oauth-pop-

architecture-01 (work in progress), March 2015.

 [I-D.tschofenig-ace-oauth-bt]
 Tschofenig, H., "The OAuth 2.0 Bearer Token Usage over the
 Constrained Application Protocol (CoAP)", draft-

tschofenig-ace-oauth-bt-01 (work in progress), March 2015.

 [I-D.tschofenig-ace-oauth-iot]
 Tschofenig, H., "The OAuth 2.0 Internet of Things (IoT)
 Client Credentials Grant", draft-tschofenig-ace-oauth-

iot-01 (work in progress), March 2015.

 [I-D.wahlstroem-ace-oauth-introspection]
 Wahlstroem, E., "OAuth 2.0 Introspection over the
 Constrained Application Protocol (CoAP)", draft-

wahlstroem-ace-oauth-introspection-00 (work in progress),
 October 2014.

 [OIDC] Sakimura, N., "OpenID Connect Core 1.0 incorporating
 Errata Set 1",

http://openid.net/specs/openid-connect-core-1_0.html,
 November 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-24
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-introspection-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-32
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-architecture-01
https://datatracker.ietf.org/doc/html/draft-tschofenig-ace-oauth-bt-01
https://datatracker.ietf.org/doc/html/draft-tschofenig-ace-oauth-bt-01
https://datatracker.ietf.org/doc/html/draft-tschofenig-ace-oauth-iot-01
https://datatracker.ietf.org/doc/html/draft-tschofenig-ace-oauth-iot-01
https://datatracker.ietf.org/doc/html/draft-wahlstroem-ace-oauth-introspection-00
https://datatracker.ietf.org/doc/html/draft-wahlstroem-ace-oauth-introspection-00
http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Tschofenig, et al. Expires September 10, 2015 [Page 20]

Internet-Draft OAuth/UMA for ACE March 2015

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

10.2. Informative References

 [I-D.iab-smart-object-architecture]
 Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
 "Architectural Considerations in Smart Object Networking",

draft-iab-smart-object-architecture-06 (work in progress),
 October 2014.

 [I-D.ietf-ace-usecases]
 Seitz, L., Gerdes, S., Selander, G., Mani, M., and S.
 Kumar, "ACE use cases", draft-ietf-ace-usecases-02 (work
 in progress), February 2015.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

Authors' Addresses

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Eve Maler
 Forgerock

 Email: eve.maler@forgerock.com

 Erik Wahlstroem
 Nexus Technology
 Sweden

 Email: erik.wahlstrom@nexusgroup.com
 URI: https://www.nexusgroup.com

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-iab-smart-object-architecture-06
https://datatracker.ietf.org/doc/html/draft-ietf-ace-usecases-02
https://datatracker.ietf.org/doc/html/rfc7228
http://www.tschofenig.priv.at
https://www.nexusgroup.com

Tschofenig, et al. Expires September 10, 2015 [Page 21]

Internet-Draft OAuth/UMA for ACE March 2015

 Samuel Erdtman
 Nexus Technology
 Sweden

 Email: samuel.erdtman@nexusgroup.com
 URI: https://www.nexusgroup.com

Tschofenig, et al. Expires September 10, 2015 [Page 22]

https://www.nexusgroup.com

