
SIDR R. Kisteleki
Internet-Draft RIPE NCC
Intended status: Standards Track J. Boumans
Expires: April 30, 2009 RIPENCC
 October 27, 2008

Securing RPSL Objects with RPKI Signatures
draft-kisteleki-sidr-rpsl-sig-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 30, 2009.

Abstract

 This document describes a method to allow parties to electronically
 sign RPSL-like objects and validate such electronic signatures. This
 allows relying parties to detect accidental or malicious
 modifications on such objects. It also allows parties who run
 Internet Routing Registries or similar databases, but do not yet have
 RPSS-like authentication of the maintainers of certain objects, to
 verify that the additions or modifications of such database objects
 are done by the legitimate holder(s) of the Internet resources
 mentioned in those objects.

Kisteleki & Boumans Expires April 30, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Securing RPSL October 2008

Table of Contents

1. Introduction . 3
2. Meaning of a signature . 3
3. Actual Implementation, Syntax of a Signature 3
3.1. General Attributes, Meta Information of a Signature . . . 4
3.2. Selecting attributes-to-be-signed 5
3.3. Normalization . 6
3.3.1. Internal Normalizations in Databases 6
3.3.2. Normalization in Terms of an Electronic Signature . . 7

3.4. Storage of the Signature Data 7
4. Signature creation and validation steps 8
5. Signed Object Types, Minimum Set of Signed Attributes 9
6. Keys and Certificates used for Signature and Verification . . 10
7. Open Issues . 10
8. Security Considerations 11
9. IANA Considerations . 11
10. Normative References . 11

 Authors' Addresses . 11
 Intellectual Property and Copyright Statements 12

Kisteleki & Boumans Expires April 30, 2009 [Page 2]

Internet-Draft Securing RPSL October 2008

1. Introduction

 Objects issued by resource databases, like the RIPE DB, are generally
 protected by an authentication mechanism: anyone creating or
 modifying an object in the database has to have proper authorization
 to do so, therefore has to go through an authentication procedure
 (provide a password, certificate, e-mail signature, etc.) However,
 for objects transferred between resource databases, like for example
 AS Numbers, the authentication is not guaranteed. This means when
 one downloads an object issued from this database, one can reasonably
 safely claim that the object is valid, but for an imported object one
 can not. Also, once such an object is downloaded from the database,
 it becomes a simple (but still structured) text file with no
 integrity protection.

 A potential usage for resource certificates could be to use them to
 secure such (both imported and downloaded) database objects, by
 applying a form of electronic signature over the object contents.
 Maintainers of such signed database objects should have their
 relevant resource certificate, which shows them as the legitimate
 holder of an Internet number resource. This would allow for the
 users of such database objects to verify that the contents are in
 fact produced by the legitimate holder(s) of the legitimate holder(s)
 of the Internet resources mentioned in those objects.

 In other words, electronic signatures created using resource
 certificates can introduce object security in addition to the channel
 security already present in most of such databases.

2. Meaning of a signature

 By signing an RPSL object, the signer of the object expresses that:
 o they have the right to use the resource that the object refers to
 (ie. found as the primary key or in some other field of the
 object);
 o they are responsible for the contents of the object; and
 o they understand and agree with the contents of the object, up to
 the extend of the signed parts.

3. Actual Implementation, Syntax of a Signature

 When signing an RPSL object, the input for the signature process is
 treated as a well-structured piece of information. The approach is
 similar to the one used in DKIM (Domain Key Identified Mail)
 [RFC4871]. In RPSL's case, the object-to-be-signed closely resembles
 an SMTP header, so it seems reasonable to adapt DKIM's relevant

https://datatracker.ietf.org/doc/html/rfc4871

Kisteleki & Boumans Expires April 30, 2009 [Page 3]

Internet-Draft Securing RPSL October 2008

 features.

3.1. General Attributes, Meta Information of a Signature

 The actual signature over such an object is itself a new attribute.
 It has a proposed attribute name "signature" and its contents consist
 of mandatory and optional fields. These fields are structured in a
 sequence of name=value pairs, separated by a semicolon ";" and a
 white space except for the last field, which is not followed by this.
 Collectively these fields make up the value for the new "signature"
 attribute. The "name" part of such a component is always a single
 ASCII character identifier, whereas value is an ASCII string whose
 contents depend on the field type. Mandatory fields must appear
 exactly once, whereas optional fields MUST appear at most once.

 Mandatory fields of the "signature" attribute:

 1. Version number of the signature (field "v"). This field
 currently MUST be set to "1".

 2. Reference to the certificate corresponding to the private key
 used by the signer to sign this object (field "c"). This is a
 URL of type "rsync" or "http(s)" that points to a specific
 resource certificate in an RPKI repository. Inclusion of the
 certificate itself would have several drawbacks; the reference
 gives much more flexibility. The value of this field MUST be an
 "rsync://..." or an "http[s]://..." URL.

 3. Signature method: what hash and signature and what crypto
 algorithm is/was used to create the signature (field "m"). The
 value of this field MUST be set to "rsa-sha1" or "rsa-sha256".
 Software for signature creation and/or validation must understand
 both algorithms.

 4. Time of signing according to the signer's clock (field "t"). The
 format of the value of this field is the number of seconds since
 Unix EPOCH (00:00:00 on January 1, 1970 in the UTC time zone).
 The value is expressed as the decimal representation of an
 unsigned integer.

 5. The signed attributes (field "a"). This is a list of attribute
 names, separated by an ASCII "+" character if there are more than
 one attributes mentioned. The list must only include any
 attribute at most once.

 6. The signature itself (field "b"). This MUST be the last field in
 the list. The signature is the output of the signature algorithm
 used over the PKCS#1 version 1.5 (RFC3447) padded hash value over

https://datatracker.ietf.org/doc/html/rfc3447

Kisteleki & Boumans Expires April 30, 2009 [Page 4]

Internet-Draft Securing RPSL October 2008

 the input. The value of this field is the base64 encoded value
 of the signature.

 Optional fields of the "signature" attribute:

 1. Signature expiration time (field "x"). The format of the value
 of this field is the number of seconds since Unix EPOCH (00:00:00
 on January 1, 1970 in the UTC time zone). The value is expressed
 as the decimal representation of an unsigned integer.

 2. [Yet to be decided] Reference(s) to other party's certificate(s)
 (field "o"). If such certificates are mentioned (referred to) in
 any signature, then this signature should be considered valid
 only in case when there are other signatures over this current
 object, and these other signatures refer to and can be verified
 with the certificates mentioned in this field. This mechanism
 allows having multiple signatures over an object in such a way
 that all of these signatures have to be present and valid for the
 whole signature to be considered valid. This would allow
 interdependent multi-party signatures over an object. One
 application for such a mechanism can be the case of a route[6]
 object, where both the prefix owner's and the AS owner's
 signature is expected (if they are different parties). The value
 of this field MUST be a list of "rsync://..." or "http[s]://..."
 URLs. If there are more such reference URLs, then they must be
 separated with a plus "+" sign. Any non URL-safe characters
 (including semicolon ";" and plus "+") must be URL encoded in all
 such URLs.

3.2. Selecting attributes-to-be-signed

 One can look at an RPSL object as an (ordered) set of attributes,
 each having a "key: value" syntax. Understanding this structure can
 help in developing more flexible methods for applying electronic
 signatures.

 Some of these attributes are automatically added by the database,
 some are database-dependent, yet others do not carry operationally
 important information. Therefore it seems reasonable to define which
 attributes are actually signed and which are not; in other words, we
 define a way of including important attributes while excluding some
 irrelevant ones. Selecting such attributes and creating an
 electronic signature exclusively over these attributes provides a
 reasonable approach for this.

 The signer can pick which attributes are signed and in which order.
 The selection of the attributes carries operational value, while the
 order is an important detail needed for consistent signature

Kisteleki & Boumans Expires April 30, 2009 [Page 5]

Internet-Draft Securing RPSL October 2008

 verification. This approach can accommodate local policies (e.g.
 some maintainers would want to sign 'remark' attributes too if they
 contain contact information, while others would not want this).
 Also, if there are new attributes added to an object type in the
 future, or even completely new object types are introduced, then the
 signature software components can easily be configured to deal with
 them.

 A drawback of this approach is that the verifier not only has to
 check whether the signature itself is valid, but also has to check if
 the signed attributes contain everything that the verifier deems
 important. For example, the signer might have decided that the
 "origin" attribute is not signed, while the verifier's policy states
 that these attributes must be signed. In this case the verifier
 would reject the signature, which would render object as such less
 trusted in the verifier's eyes.

3.3. Normalization

3.3.1. Internal Normalizations in Databases

 Normalization defines how one transforms an object-to-be-signed into
 a series of bits that can be signed (fed into a hash algorithm, the
 result into a signature algorithm, etc). The task of normalization
 is to hide away differences over various representations of the same
 object, which would otherwise result in invalid signatures, even
 though the important bits do not differ in two different
 representations. An example of this could be the difference of line
 terminators across different systems.

 Because of database consistency rules and database operational
 reasons several database use internal normalization techniques that
 can change the format and/or actual content of some of the signed
 fields. Examples include:
 o Representation of IPv6 addresses: always use the long form over
 the short form.
 o Representation of IPv4 prefixes: use x.x.x.x-y.y.y.y notation, or
 x.x.x/y
 o Key-cert objects have their fingerprint, method and owner lines
 auto-corrected if supplied incorrectly.
 o "Changed" attribute is automatically corrected / filled in.

 This means that the destination database in fact can change parts of
 the submitted data after it was signed. Then results in an invalid
 signature. As a potential remedy, if the signer of an object is not
 fully aware of the transformations the database will do to the object
 upon submission, then:

Kisteleki & Boumans Expires April 30, 2009 [Page 6]

Internet-Draft Securing RPSL October 2008

 o the object should be first submitted to the destination database
 o the database will apply the internal normalization rules
 o the signer then downloads the object from the database and applies
 the signature to the resulting object.

 The drawback here is that if there happen to be two different
 databases with different such rules, then signed objects cannot
 'travel' between these without being re-signed in the appropriate
 format.

3.3.2. Normalization in Terms of an Electronic Signature

 The following steps must be applied in order to achieve a normalized
 form of an object, before the actual signature process can begin:

 1. Uppercase/lowercase conversion, except for the value of the to-
 be-created "signature" attribute. We believe that this causes no
 risks, although some parts of the input can potentially be case
 sensitive.

 2. Comments (anything beginning with a "#") must be dropped.

 3. Any trailing white space must be dropped.

 4. All multi-line attributes are converted into their single-line
 equivalent.

 5. The attribute names must be kept as part of one the attribute
 lines.

 6. Multiple whitespaces must be collapsed into a single space (" ")
 character.

 7. Add line endings must be converted to a singe new line ("\n")
 character (thus avoiding CR vs. CRLF differences).

3.4. Storage of the Signature Data

 The result of the signature mechanism is exactly one new attribute
 for the object. As a summary of the method described above, the
 structure of this is as follows:

 attribute1: value1
 attribute2: value2
 attribute3: value3
 ...
 signature: v=1; c=rsync://.....; m=rsa-sha1; t=9999999999;

Kisteleki & Boumans Expires April 30, 2009 [Page 7]

Internet-Draft Securing RPSL October 2008

 a=attribute1+attribute2+attribute3+...;
 b=<base64 data>

4. Signature creation and validation steps

 Given an RPSL object, in order to create the actual signature, the
 following steps are needed:

 o Potentially submit the object-to-be-signed to the destination
 database, and download the resulting database-normalized object.

 o Potentially create a one-off key pair and certificate to be used
 for signing this object this time. Alternatively, one can reuse
 the same key pair / certificate for multiple signatures.

 o Based on the object type, the minimum set and the local policies,
 create a list of attribute names referring to the attributes that
 will be signed (contents of the "a" field).

 o Arrange the selected attributes according to the selection
 sequence provided above, while filtering out the non-signed
 attributes.

 o Construct the would-be "signature" attribute, with all its fields,
 leaving the "b" field empty (NULL value).

 o Apply normalization procedure to the selected attributes
 (including the "signature" attribute).

 o Create the signature over the results of the previous step (hash
 and sign).

 o Attach the base64 encoded value of the signature to the "b" field.

 o Append the resulting final "signature" attribute to the original
 object.

 In order to validate a signature over such an object, the following
 steps are necessary:

 o Check proper syntax of the "signature" attribute.

 o Fetch the certificate referred to in the "c" field of the
 "signature" attribute, and check its validity using the steps
 described in [ID.sidr-res-certs].

Kisteleki & Boumans Expires April 30, 2009 [Page 8]

Internet-Draft Securing RPSL October 2008

 o Check whether the signature (base64 decoded value of the "b"
 field) is correct when verified with the public key found in the
 certificate.

 o Extract the list of attributes that were signed by the signer from
 the "a" field of the "signature" attribute".

 o Verify that the list of signed attributes contains the minimum set
 of attributes for that object type.

 o Potentially check local policy whether the list of the signed
 attributes conforms to it.

 o Arrange the selected attributes according to the selection
 sequence provided above, while filtering out the non-signed
 attributes.

 o Replace the value of the signature filed of the "signature"
 attribute with an empty string (NULL value).

 o Apply normalization procedure to the selected attributes
 (including the "signature" attribute).

 o Check whether the hash value of the so constructed input matches
 the one in the signature.

5. Signed Object Types, Minimum Set of Signed Attributes

 This section describes a list of object types that could be signed
 using this approach, and a minimum set of attributes which MUST be
 signed for those object types.

 The signer MAY chose to sign other attributes in addition to the
 required minimum set. In this case the additional attributes MUST be
 listed in the "a" field besides the minimum list.

 This list generally excludes attributes that are used to maintain
 referential integrity in the databases that carry these objects,
 since these usually only make sense within the context of such a
 database, whereas the scope of the signatures is only one specific
 object. Since the attributes in the referred object (such as mnt-by,
 admin-c, tech-c, ...) can change without any modifications to the
 signed object, signing such attributes could lead to false sense of
 security in terms of the contents of the signed data.

Kisteleki & Boumans Expires April 30, 2009 [Page 9]

Internet-Draft Securing RPSL October 2008

 as-block:
 * as-block
 * org

 aut-num:
 * aut-num
 * as-name
 * member-of
 * import
 * mp-import
 * export
 * mp-export
 * default
 * mp-default

 inet[6]num:
 * inet[6]num
 * netname
 * country
 * org
 * status

 route[6]:
 * route[6]
 * origin
 * holes
 * org
 * member-of

6. Keys and Certificates used for Signature and Verification

 The certificate that is referred to in the signature (in the "c"
 field):
 o MUST be an end-entity (ie. non-CA) certificate
 o MUST conform to the X.509 PKIX Resource Certificate profile
 [ID.sidr-res-certs]
 o MUST have an [RFC3779] extension that contains or covers at least
 one Internet resource mentioned in a signed attribute
 o SHOULD NOT be used to verify more than one signed object (ie.
 should be a "single-use" EE certificate, as defined in
 [ID.sidr-res-certs]).

7. Open Issues

 Work still needs to be done for the following questions:

https://datatracker.ietf.org/doc/html/rfc3779

Kisteleki & Boumans Expires April 30, 2009 [Page 10]

Internet-Draft Securing RPSL October 2008

 o Does character encoding pose a real problem?
 o Is it feasible and does it provide value, if, while creating
 multiple signatures, those signatures refer to each other?

8. Security Considerations

 [To be Completed.]

9. IANA Considerations

 [Note to IANA, to be removed prior to publication: there are no IANA
 considerations stated in this version of the document.]

10. Normative References

 [ID.sidr-res-certs]
 Huston, G., Michaleson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", Internet
 Draft draft-ietf-sidr-res-certs, October 2008.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779, June 2004.

Authors' Addresses

 Robert Kisteleki

 Email: robert@ripe.net
 URI: http://www.ripe.net

 Jos Boumans

 Email: jib@ripe.net
 URI: http://www.ripe.net

Kisteleki & Boumans Expires April 30, 2009 [Page 11]

https://datatracker.ietf.org/doc/html/draft-ietf-sidr-res-certs
https://datatracker.ietf.org/doc/html/rfc3779
http://www.ripe.net
http://www.ripe.net

Internet-Draft Securing RPSL October 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Kisteleki & Boumans Expires April 30, 2009 [Page 12]

