INTERNET-DRAFT Intended Status: Proposed Standard

Mingui Zhang Huawei Radia Perlman Hongjun Zhai JIT Muhammad Durrani Brocade Sujay Gupta IP Infusion October 27, 2014

Expires: April 30, 2015

TRILL Active-Active Edge Using Multiple MAC Attachments draft-ietf-trill-aa-multi-attach-02.txt

Abstract

TRILL active-active service provides end stations with flow level load balance and resilience against link failures at the edge of TRILL campuses as described in RFC 7379.

This draft specifies a method in which member RBridges in an activeactive edge RBridge group use their own nicknames as ingress RBridge nicknames to encapsulate frames from attached end systems. Thus, remote edge RBridges are required to keep multiple locations of one MAC address in one Data Label. Design goals of this specification are discussed in the document.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/lid-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright and License Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP-78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$. Introduction	<u>2</u>
2. Acronyms and Terminology	4
<u>2.1</u> . Acronyms	4
<u>2.2</u> . Terminology	4
3. Overview	4
4. Incremental Deployable Options	<u>5</u>
<u>4.1</u> . Detail of Option C	<u>6</u>
4.2. Multi-MAC-Attach Capability Flags TLV	8
5. Meeting the Design Goals	
5.1. No MAC Flip-Floping (Normal Unicast Egress)	<u>10</u>
<pre>5.2. Regular Unicast/Multicast Ingress</pre>	
<u>5.3</u> . Correct Multicast Egress	
<u>5.3.1</u> . No Duplication (Single Exit Point)	
<u>5.3.2</u> . No Echo (Split Horizon)	
<u>5.4</u> . No Black-hole or Triangular Forwarding	
5.5. Load Balance Towards the AAE	
<u>5.6</u> . Scalability	
6. E-L1FS Backwards Compatibility	
7. Security Considerations	
8. IANA Considerations	
8.1. TRILL APPsub-TLVs	
8.2. Active Active Flags	
9. Acknowledgements	
10. References	
<u>10.1</u> . Normative References	14
10.2. Informative References	
Appendix A. Scenarios for Split Horizon	
Author's Addresses	

1. Introduction

As discussed in [RFC7379], in the TRILL Active-Active Edge (AAE) topology, a Local Active-Active Link Protocol (LAALP), for example, a Multi-Chassis Link Aggregation Group (MC-LAG), is used to connect multiple RBridges to multiport Customer Equipment (CE), such as a switch, vSwitch or multi-port end station. An endnode clump is attached to this switch or vSwitch. It's required that data traffic within a specific VLAN from this endnode clump (including the multiport end station) can be ingressed and egressed by any of these RBridges simultaneously. End systems in the clump can spread their traffic among these edge RBridges at the flow level. When a link fails, end systems keep using the rest of links in the LAALP without waiting for the convergence of TRILL, which provides resilience to link failures.

Since a frame from each endnode can be ingressed by any RBridge in the AAE group, a remote edge RBridge may observe multiple attachment points (i.e., egress RBridges) for this endnode identified by its MAC address and Data Label (VLAN or Fine Grained Label (FGL)). This issue is known as the "MAC flip-flopping". Three potential solutions arise to address this issue:

- 1) AAE member RBridges use a pseudonode nickname, instead of their own, as the ingress nickname for end systems attached to the LAALP. [PN] falls within this category.
- 2) AAE member RBridges split work among themselves for which one will be responsible for which MAC addresses. A member RBridge will encapsulate the frame using its own nickname if it is responsible for the source MAC address. Otherwise, if the frame is known unicast, it encapsulates the frame using the nickname of the responsible RBridge; if the frame is multi-destination, it needs to redirect the frame to its responsible RBridge for encapsulation.
- 3) AAE member RBridges keep using their own nicknames. Remote edge RBridges are required to keep multiple points of attachment per MAC address and Data Label attached to the AAE.

The purpose of this document is to develop an approach based on solution 3. Although it focuses on exploring solution 3, the major design goals discussed here are common for all three AAE solutions. Through mirroring the scenarios studied in this draft, other potential solutions may benefit as well.

The main body of the document is organized as follows. Section 2 lists the acronyms and terminologies. Section 3 gives the overview model. Section 4 provides three options for incremental deployment. Section 5 describes how this approach meets the design goals. The

Sections after <u>Section 5</u> cover security, IANA, and some backwards compatibility considerations.

2. Acronyms and Terminology

2.1. Acronyms

AAE: Active-Active Edge

CE: Customer Equipment (end station or bridge). The device can be either physical or virtual equipment.

Data Label: VLAN or FGL

ESADI: End Station Address Distribution Information [RFC7357]

FGL: Fine Grained Label [RFC7172]

IS-IS: Intermediate System to Intermediate System [ISIS]

LAALP: As in [RFC7379], Local Active-Active Link Protocol. Any protocol similar to MC-LAG that runs in a distributed fashions on a CE, the links from that CE to a set of edge group RBridges, and on those RBridges.

MC-LAG: Multi-Chassis LAG. Proprietary extensions of Link Aggregation [802.1AX] that support multiple devices (chassis) at one end.

TRILL: TRansparent Interconnection of Lots of Links [RFC6325]

vSwitch: A virtual switch such as a hypervisor that also simulates a bridge.

2.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Familiarity with [RFC6325], [RFC6439] and [RFC7177] is assumed in this document.

3. Overview

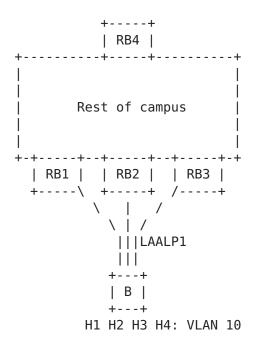


Figure 3.1: An example topology for TRILL Active-Active Edge

Figure 3.1 shows an example network for TRILL Active-Active Edge. In this figure, endnodes (H1, H2, H3 and H4) are attached to a bridge B that communicates with multiple RBridges (RB1, RB2 and RB3) via the LAALP. Suppose RB4 is a 'remote' RBridge out of the AAE group in the TRILL campus. This connection model is also applicable to the virtualized environment where the physical bridge can be replaced with a vSwitch while those bare metal hosts are replaced with virtual machines (VM).

For a frame received from its attached endnode clumps, a member RBridge of the AAE group always encapsulates that frame using its own nickname as the ingress nickname no matter whether it's unicast or multicast.

The remote RBridge RB4 will see multiple attachments for each MAC from one of the end-nodes.

4. Incremental Deployable Options

Three options are listed below to handle incremental deployment scenarios. Among them, Option C can be incrementally implemented throughout a TRILL campus with common existing TRILL fast path hardware.

-- Option A

A new capability announcement would appear in LSPs: "I can cope with data plane learning of multiple attachments for an endnode". Only if all edge RBridges to which the group has data connectivity announce this capability can the AAE group safely use this approach. For those legacy edge RBridges who are not capable of coping with multiple endnode attachments, new type TRILL switches will not establish data connectivity with them so that they are isolated from these new type TRILL switches, which may lead to network partition. Only edge RBridges (those that are Appointed Forwarders [RFC6439]) need to be able to support this. It does not affect transit RBridges.

-- Option B

Each edge RBridge in the AAE group ingresses frames from any LAALP into a specific TRILL topology [TRILL-MT]. In this way, the topology ID is used as the discriminator of different locations of a specific MAC address at the remote RBridge. TRILL could reserve a list of topology IDs to be dedicated to AAE. RBridges that do not support this reserved list would not establish connectivity with edge RBridges in the AAE group.

-- Option C

As pointed out in Section 4.2.6 of [RFC6325] and Section 5.3 of [RFC7357], one MAC address may be persistently claimed to be attached to multiple RBridges within the same Data Label in the TRILL ESADI-LSPs. For this option, AAE member RBridges make use of TRILL ESADI protocol to distribute multiple attachments of a MAC address. Remote RBridges SHOULD disable the data plane MAC learning for such multi-attached MAC addresses from TRILL Data packet decapsulation.

4.1. Detail of Option C

An RBridge in an AAE MUST advertise all Data Labels enabled for all its attached LAALPs. Receiver edge RBridges MUST avoid flip-flopping of MAC learned from the TRILL Data packet decapsulation for the originating RBridge within these Data Labels. It's RECOMMENDED that the receiver edge RBridge disable the data plane MAC learning from TRILL Data packet decapsulation within those advertised Data Labels for the originating RBridge. However, alternative implementations may be used to produce the same expected behavior. A promising way is to make use of the confidence level mechanism [RFC6325]. For example, let the receiver edge RBridge give a prevailing confidence value (e.g., 0x21) to the first MAC attachment learned from the data plane over others from the TRILL Data packet decapsulation. So the receiver edge RBridge will stick to this MAC attachment until it is overridden by one learned from the ESADI protocol [RFC7357]. The MAC attachment learned from ESADI is set to have higher confidence value (e.g., 0x80) to override any alternative learning from the decapsulation of received TRILL Data packets [RFC6325].

The advertisement of enabled Data Labels for LAALP can be realized by allocating one reserved flag from the Interested VLANs and Spanning Tree Roots Sub-TLV (Section 2.3.6 of [RFC7176]) and one reserved flag from the Interested Labels and Spanning Tree Roots Sub-TLV (Section 2.3.8 of [RFC7176]). When this flag is set to 1, the originating IS (RBridge) is advertising Data Labels for LAALPs rather than plain LAN links. (See Section 7.2)

Whenever a MAC from the LAALP of this AAE is learned, it needs to be advertised via the ESADI protocol [RFC7357]. In its TRILL ESADI-LSPs, the originating RBridge needs to include the identifier of this AAE. Remote RBridges need to know all nicknames of RBridges in this AAE. This is achieved by listening to the "LAALP Group RBridges" TRILL APPsub-TLV defined in <u>Section 5.3.2</u>. MAC Reachability TLVs [<u>RFC6165</u>] are composed in a way that each TLV only contains MAC addresses of end-nodes attached to a single LAALP. Each such TLV is enclosed in a TRILL APPsub-TLV defined as follows.

```
| Type = LAALP-GROUP-MAC | (2 bytes)
| Length
          | (2 bytes)
| LAALP ID Size |
           (1 byte)
| LAALP ID
           (k bytes)
| MAC-Reachability TLV
           (7 + 6*n bytes) |
```

- o Type: LAALP Group MAC (TRILL APPsub-TLV type #TBD)
- o Length: The MAC-Reachability TLV [RFC6165] is contained in the value field as a sub-TLV. The total number of bytes contained in the value field is given by k+8+6*n.
- o LAALP ID Size: The length of the LAALP ID in bytes.
- o LAALP ID: The ID of the LAALP which is in the size of variable k bytes. Here, it also serves as the identifier of the AAE. If the LAALP is an MC-LAG, it is the 8 byte ID as specified in Clause 5.3.2 in [802.1AX].

o MAC-Reachability sub-TLV: The LAALP-GROUP-MAC APPsub-TLV value contains the MAC-Reachability TLV as a sub-TLV. As specified in Section 2.2 in [RFC7356], the type and length fields of the MAC-Reachability TLV are encoded as unsigned 16 bit integers. The one octet unsigned Confidence along with these TLVs SHOULD be set to prevail over those MAC addresses learned from TRILL Data decapsulation by remote edge RBridges.

This LAALP-GROUP-MAC APPsub-TLV MUST be included in a TRILL GENINFO TLV [RFC7357] in the ESADI-LSP. There may be more than one occurrence of such TRILL APPsub-TLV in one ESADI-LSP fragment.

For those MAC addresses contained in an LAALP-GROUP-MAC APPsub-TLV, this document applies. Otherwise, [RFC7357] applies. For example, an AAE member RBridge continues to enclose MAC addresses learned from TRILL Data packet decapsulation in MAC-Reachability TLV as per [RFC6165] and advertise them using the ESADI protocol.

When the remote RBridge learns MAC addresses contained in the LAALP-GROUP-MAC APPsub-TLV via the ESADI protocol [RFC7357], it always sends the packets destined to these MAC addresses to the closest one (the one to which the remote RBridge has the least cost forwarding path) of those RBridges in the AAE identified by the LAALP ID in the LAALP-GROUP-MAC APPsub-TLV. If there are multiple equal least cost member RBridges, the ingress RBridge is required to select a unique one in a pseudo-random way as specified in Section 5.3 of [RFC7357].

When another RBridge in the same AAE group receives an ESADI-LSP with the LAALP-GROUP-MAC APPsub-TLV, it also learns MAC addresses of those end-nodes served by the corresponding LAALP. These MAC addresses SHOULD be learned as if those end-nodes are locally attached to this RBridge itself.

An AAE member RBridge MUST use the LAALP-GROUP-MAC APPsub-TLV to advertise the MAC addresses learned from a plain local link (a non LAALP link) with Data Labels that happen to be covered by the Data Labels of any attached LAALP. The reason is that MAC learning from TRILL Data packet decapsulation within these Data Labels at the remote edge RBridge has been disabled for this RBridge.

4.2. Multi-MAC-Attach Capability Flags TLV

The following Multi-MAC-Attach Capability Flags TLV will be included in an E-L1FS FS-LSP fragment zero [RFC7180bis] as an APPsub-TLV of the TRILL GENINFO-TLV.

- o Type: Multi-MAC-Attach Capability (TRILL APPsub-TLV type #TBD)
- o Length: Set to 1.
- o E: When this bit is set, it indicates the originating IS acts as specified in Option C.
- o H: When this bit is set, it indicates that the originating IS keeps multiple MAC attachments learned from TRILL Data packet decapsulation with fast path hardware.
- o Reserved: Reserved flags for future use. These MUST be sent as zero and ignored on receipt.

The Multi-MAC-Attach Capability Flags TRILL APPsub-TLV is used to notify other RBridges whether the originating IS supports the capability indicated by the E and H bits. For example, if E bit is set, it indicates the originating IS will act as defined in Option C. That is, it will disable the MAC learning from TRILL Data packet decapsulation for AAE RBridges within Data Labels advertised by them while waiting for the TRILL ESADI-LSPs to distribute the {MAC, Nickname, Data Label} association. Meanwhile, this RBridge is able to act as an AAE RBridge. It's required to advertise MAC addresses learned from LAALPs in TRILL ESADI-LSPs using the LAALP-GROUP-MAC APPsub-TLV defined in Section 4.1. AAE RBridges supporting Options C won't establish data connectivity with remote edge RBridges unless this RBridge has advertised this Multi-MAC-Attach Capability Flags TLV with E bit set. The following step can be taken to block the data reach-ability to legacy RBridges.

-- If an AAE RBridge supporting Option C observes a legacy RBridge from a port, for all adjacencies out of that port in the Report state [RFC7177], this AAE RBridge MUST report the adjacency cost as 2**24 - 1.

Capability specification for Option B is out the scope of this document. It may be specified in documents for TRILL multi-topology [TRILL-MT].

5. Meeting the Design Goals

How this specification meets the major design goals of AAE is explored in this section.

5.1. No MAC Flip-Floping (Normal Unicast Egress)

Since all RBridges talking with the AAE RBridges in the campus are able to keep multiple locations for one MAC address, a MAC address learned from one AAE member will not be overwritten by the same MAC address learned from another AAE member. Although multiple entries for this MAC address will be created, for return traffic the remote RBridge is required to adhere to a unique one of the locations (see Section 4.1) for each MAC address rather than keep flip-flopping among them.

<u>5.2</u>. Regular Unicast/Multicast Ingress

LAALP guarantees that each frame will be sent upward to the AAE via exactly one uplink. RBridges in the AAE can simply follow the process per [RFC6325] to ingress the frame. For example, each RBridge uses its own nickname as the ingress nickname to encapsulate the frame. In such a scenario, each RBridge takes for granted that it is the Appointed Forwarder for the VLANs enabled on the uplink of the LAALP.

5.3. Correct Multicast Egress

A fundamental design goal of AAE is that there must be no duplication or forwarding loop.

5.3.1. No Duplication (Single Exit Point)

When multi-destination TRILL Data packets for a specific Data Label are received from the campus, it's important that exactly one RBridge out of the AAE group let through each multi-destination packet so no duplication will happen. The LAALP will have defined its selection function (using hashing or election algorithm) to designated a forwarder for a multi-destination frame. Since AAE member RBridges support the LAALP, they are able to utilize that selection function to determine the single exit point. If the output of the selection function points to the port attached to the receiver RBridge itself (i.e., the packet should be egressed out of this node), it egresses this packet for that AAE group. Otherwise, the packet MUST be dropped.

5.3.2. No Echo (Split Horizon)

When a multi-destination frame originated from an LAALP is ingressed by an RBridge of an AAE group, distributed to the TRILL network and then received by another RBridge in the same AAE group, it is important that this RBridge does not egress this frame back to this LAALP. Otherwise, it will cause a forwarding loop (echo). The well known 'split horizon' technique can be used to eliminate the echo issue.

RBridges in the AAE group need to split horizon based on the ingress RBridge nickname plus the VLAN of the TRILL Data packet. They need to set up per port filtering lists consists of the tuple of <ingress nickname, VLAN>. Packets with information matching with any entry of the filtering list MUST NOT be egressed out of that port. The information of such filters is obtained by listening to the following "LAALP Group RBridges" APPsub-TLV included in the TRILL GENINFO TLV in FS-LSPs [RFC7180bis].

- o Type: LAALP Group RBridges (TRILL APPsub-TLV type #TBD)
- o Length: 3+k
- o Sender Nickname: The nickname of the originating IS.
- o LAALP ID Size: The length of the LAALP ID in bytes.
- o LAALP ID: The ID of the LAALP which is k bytes long. If the LAALP is an MC-LAG, it is the 8-byte ID specified in Clause 5.3.2 in [802.1AX].

All enabled VLANs MUST be consistent on all ports connected to an LAALP. So the enabled VLANs need not to be included in the LAALP Group RBridges TRILL APPsub-TLV. They can be locally obtained from the port attached to that LAALP.

Through parsing LAALP Group RBridges TRILL APPsub-TLVs, the receiver RBridge discovers all other RBridges connected to the same LAALP. The Sender Nickname of the originating IS will be added into the filtering list of the port attached to the LAALP. For example, RB3 in Figure 3.1 will set up a filtering list looks like {<RB1, VLAN10>,

<RB2, VLAN10>} on its port attached to LAALP1. According to split
horizon, TRILL Data packets within VLAN10 ingressed by RB1 or RB2
will not be egressed out of this port.

When there are multiple LAALPs connected to the same RBridge, these LAALPs may have overlap VLANs. Customer may need hosts within these overlap VLANs to communicate with each other. In <u>Appendix A</u>, several scenarios are given to explain how hosts communicate within the overlap VLANs and how split horizon happens.

5.4. No Black-hole or Triangular Forwarding

If a sub-link of the LAALP fails while remote RBridges continue to send packets towards the failed port, a black-hole happens. If the AAE member RBridge with that failed port starts to redirect the packets to other member RBridges for delivery, triangular forwarding occurs.

The member RBridge attached to the failed sub-link can make use of the ESADI protocol to flush those failure affected MAC addresses as defined in Section 5.2 of RFC7357]. After doing that, no packets will be sent towards the failed port, hence no black-hole will happen. Nor will the member RBridge need to redirect packets to other member RBridges, which may otherwise lead to triangular forwarding.

5.5. Load Balance Towards the AAE

Since a remote RBridge can record multiple attachments of one MAC address, this remote RBridge can choose to spread the traffic towards the AAE members. Each of them is able to act as the egress point. In doing this, the forwarding paths need not be limited to the least cost Equal Cost Multiple Paths from the ingress RBridge to the AAE RBridges. The traffic load from the remote RBridge towards the AAE RBridges can be balanced based on a pseudo-random selection method (see Section 4.1).

Note that the load balance method adopted at the ingress RBridge is not to replace the load balance mechanism of LAALP. These two load spreading mechanisms should take effect separately.

5.6. Scalability

With option A, multiple attachments need to be recorded for a MAC address learned from AAE RBridges. More entries may be consumed in the MAC learning table. However, MAC addresses attached to an LAALP are only a small part of all MAC addresses in the whole TRILL campus. As a result, the extra space required by the multi-attached MAC addresses can usually be accommodated by RBridges' unused MAC table

space.

INTERNET-DRAFT

With option C, remote RBridges will keep the multiple attachments of a MAC address in the ESADI link state databases. While in the MAC table, an RBridge still establishes only one entry for each MAC address.

6. E-L1FS Backwards Compatibility

The Extended TLVs defined in <u>Section 4</u> and 5 are to be used in a Level 1 Flooding Scope [RFC7356] [RFC7180bis]. For those RBridges that do not support E-L1FS, the MULTI-MAC-ATTACH-CAP TRILL APPsub-TLV will not be sent out either. AAE RBridges will not establish data connectivity with these RBridges.

Security Considerations

Authenticity for contents transported in IS-IS PDUs is enforced using regular IS-IS security mechanism [ISIS][RFC5310].

For security considerations pertain to extensions hosted by TRILL ESADI, see the Security Considerations section in [RFC7357].

For general TRILL security considerations, see [RFC6325].

8. IANA Considerations

8.1. TRILL APPsub-TLVs

IANA is requested to allocate three new types under the TRILL GENINFO FLV [RFC7357] for the TRILL APPsub-TLVs defined in Section 4.1, 4.2 and 5.3.2 of this document.

Reference: [RFC7180bis] and [This document]

Type	Name	Reference
Θ	Reserved	
1	ESADI-PARAM	[<u>RFC7357</u>]
2-251	Unassigned	
252	LAALP-GROUP-MAC	[This document]
253	MULTI-MAC-ATTACH-CAP	[This document]
254	LAALP-GROUP-RBRIDGES	[This document]
255	Reserved	
256-65534	Unassigned	
65535	Reserved	

8.2. Active Active Flags

IANA is requested to allocate two flag bits, as follows:

One flag bit appears in the "Interested VLANs and Spanning Tree Roots Sub-TLV".

Bit	Mnemonic	Description	Reference
0	M4	IPv4 Multicast Router Attached	[<u>RFC7176</u>]
1	M6	IPv6 Multicast Router Attached	[<u>RFC7176</u>]
2	-	Unassigned	
3	ES	ESADI Participation	[<u>RFC7357</u>]
4-15	5 -	(used for a VLAN ID)	[<u>RFC7176</u>]
16	AA	Enabled VLANs for Active-Active	[This document]
17 - 19	9 -	Unassigned	
20-31	l -	(used for a VLAN ID)	[RFC7176]

One flag bit appears in the "Interested Labels and Spanning Tree Roots Sub-TLV".

Bit	Mnemonic	Description	Reference
0	M4	IPv4 Multicast Router Attached	[<u>RFC7176</u>]
1	M6	IPv6 Multicast Router Attached	[<u>RFC7176</u>]
2	BM	Bit Map	[<u>RFC7176</u>]
3	ES	ESADI Participation	[<u>RFC7357</u>]
4	AA	FGLs for Active-Active	[This document]
5-7	-	Unassigned	

9. Acknowledgements

Authors would like to thank the comments and suggestions from Andrew Qu, Donald Eastlake, Erik Nordmark, Fangwei Hu, Liang Xia, Weiguo Hao, Yizhou Li and Mukhtiar Shaikh.

10. References

10.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.
- [RFC6165] Banerjee, A. and D. Ward, "Extensions to IS-IS for Layer-2 Systems", RFC 6165, April 2011.

- [RFC7172] D. Eastlake 3rd and M. Zhang and P. Agarwal and R. Perlman and D. Dutt, "Transparent Interconnection of Lots of Links (TRILL): Fine-Grained Labeling", RFC 7172, May 2014.
- [RFC7176] D. Eastlake 3rd and T. Senevirathne and A. Ghanwani and D.
 Dutt and A. Banerjee, "Transparent Interconnection of Lots
 of Links (TRILL) Use of IS-IS", RFC7176, May 2014.
- [RFC7177] D. Eastlake 3rd and R. Perlman and A. Ghanwani and H. Yang and V. Manral, "Transparent Interconnection of Lots of Links (TRILL): Adjacency", RFC 7177, May 2014.
- [RFC7356] Ginsberg, L., Previdi, S., and Y. Yang, "IS-IS Flooding Scope Link State PDUs (LSPs)", RFC 7356, September 2014.
- [RFC7379] Li, Y., Hao, W., Perlman, R., Hudson, J., and H. Zhai, "Problem Statement and Goals for Active-Active Connection at the Transparent Interconnection of Lots of Links (TRILL) Edge", RFC 7379, October 2014.
- [802.1AX] IEEE, "IEEE Standard for Local and metropolitan area networks / Link Aggregation", 802.1AX-2008, 1 January 2008.

10.2. Informative References

- [PN] H. Zhai, T. Senevirathne, et al, "TRILL: Pseudo-Nickname for Active-active Access", <u>draft-ietf-trill-pseudonode-nickname</u>, work in progress.
- [ISIS] ISO, "Intermediate system to Intermediate system routeing information exchange protocol for use in conjunction with the Protocol for providing the Connectionless-mode Network Service (ISO 8473)", ISO/IEC 10589:2002.
- [RFC5310] Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R.,

and M. Fanto, "IS-IS Generic Cryptographic Authentication", RFC 5310, February 2009.

Appendix A. Scenarios for Split Horizon

+		+	+		+	+		+
	RB1			RB2			RB3	
+		+	+		+	+		+
L1	L2	L3	L1	L2	L3	L1	L2	L3
VL10~20	VL15~25	VL15	VL10~20	VL15~25	VL15	VL10~20	VL15~25	VL15
LAALP1	LAALP2	LAN	LAALP1	LAALP2	LAN	LAALP1	LAALP2	LAN
B1	B2	B10	B1	B2	B20	B1	B2	B30

Figure A.1: An example topology to explain split horizon

Suppose RB1, RB2 and RB3 are the Active-Active group connecting LAALP1 and LAALP2. LAALP1 and LAALP2 are connected to B1 and B2 at their other ends. Suppose all these RBridges use port L1 to connect LAALP1 while they use port L2 to connect LAALP2. Assume all three L1 enable VLAN 10~20 while all three L2 enable VLAN 15~25. So that there is an overlap of VLAN 15~20. The customer needs hosts in these overlap VLANs to communicate with each other. That is, hosts attached to B1 in VLAN 15~20 need to communicate with hosts attached to B2 in VLAN 15~20. Assume the remote plain RBridge RB4 also has hosts attached in VLAN 15~20 which need to communicate with those hosts in these VLANs attached to B1 and B2.

Two major requirements:

- 1. Frames ingressed from RB1-L1-VLAN 15 \sim 20 MUST NOT be egressed out of ports RB2-L1 and RB3-L1. At the same time,
- 2. frames coming from B1-VLAN 15~20 should reach B2-VLAN 15~20.

RB3 stores the information for split horizon on its ports L1 and L2. On L1: {<ingress_nickname_RB1, VLAN 10~20>, <ingress_nickname_RB2, VLAN 10~20>} and on L2: {<ingress_nickname_RB1, VLAN 15~25>, <ingress_nickname_RB2, VLAN 15~25>}.

Five clarification scenarios:

a. Suppose RB2/RB3 receives a TRILL multi-destination data packet with VLAN 15 and ingress nickname RB1. RB3 is the single exit point (selected out according to the hashing function of LAALP)

INTERNET-DRAFT

for this packet. On ports L1 and L2, RB3 has covered <ingress nickname RB1, VLAN 15>, so that RB3 will not egress this packet out of either L1 or L2. Here, split horizon happens.

Beforehand, RB1 obtains a native frame on port L1 from B1 in VLAN 15. RB1 judges it should be forwarded as a multi-destination packet across the TRILL campus. Also, RB1 replicates this frame without TRILL encapsulation and sends it out of port L2, so that B2 will get this frame.

- b. Suppose RB2/RB3 receives a TRILL multi-destination data packet with VLAN 15 and ingress nickname RB4. RB3 is the single exit point. On ports L1 and L2, since RB3 has not stored any tuple with ingress nickname RB4, RB3 will decapsulate the packet and egress it out of both ports L1 and L2. So both B1 and B2 will receive the frame.
- c. Suppose there is a plain LAN link port L3 on RB1, RB2 and RB3, connecting to B10, B20 and B30 respectively. These L3 ports happen to be configured with VLAN 15. On port L3, RB2 and RB3 stores no information of split horizon for AAE (since this port has not been configured to be in any LAALP). They will egress the packet ingressed from RB1-L1 in VLAN 15.
- d. If a packet is ingressed from RB1-L1 or RB1-L2 with VLAN 15, port RB1-L3 will not egress packets with ingress-nickname-RB1. RB1 needs to replicate this frame without encapsulation and sends it out of port L3. This kind of 'bounce' behavior for multidestination frames is just as specified in paragraph 2 of Section 4.6.1.2 of [RFC6325].
- e. If a packet is ingressed from RB1-L3, since RB1-L1 and RB1-L2 cannot egress packets with VLAN 15 and ingress-nickname-RB1, RB1 needs to replicate this frame without encapsulation and sends it out of port L1 and L2. (Also see paragraph 2 of Section 4.6.1.2 of [RFC6325].)

Author's Addresses

Mingui Zhang Huawei Technologies No.156 Beiging Rd. Haidian District, Beijing 100095 P.R. China

EMail: zhangmingui@huawei.com

Radia Perlman EMC 2010 256th Avenue NE, #200 Bellevue, WA 98007 USA

EMail: radia@alum.mit.edu

Hongjun Zhai Jinling Institute of Technology 99 Hongjing Avenue, Jiangning District Nanjing, Jiangsu 211169 China

EMail: honjun.zhai@tom.com

Muhammad Durrani Brocade 130 Holger Way San Jose, CA 95134

EMail: mdurrani@brocade.com

Sujay Gupta IP Infusion, RMZ Centennial Mahadevapura Post Bangalore - 560048 India

EMail: sujay.gupta@ipinfusion.com