
TRAM T. Reddy
Internet-Draft P. Patil
Intended status: Standards Track R. Ravindranath
Expires: August 1, 2015 Cisco
 J. Uberti
 Google
 January 28, 2015

Session Traversal Utilities for NAT (STUN) Extension for Third Party
Authorization

draft-ietf-tram-turn-third-party-authz-08

Abstract

 This document proposes the use of OAuth to obtain and validate
 ephemeral tokens that can be used for Session Traversal Utilities for
 NAT (STUN) authentication. The usage of ephemeral tokens ensure that
 access to a STUN server can be controlled even if the tokens are
 compromised.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 1, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Reddy, et al. Expires August 1, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft STUN for 3rd party Authorization January 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Solution Overview . 3
4. Obtaining a Token Using OAuth 6
4.1. Key Establishment . 7
4.1.1. DSKPP . 8
4.1.2. HTTP interactions 8
4.1.3. Manual provisioning 9

5. Forming a Request . 9
6. STUN Attributes . 10
6.1. THIRD-PARTY-AUTHORIZATION 10
6.2. ACCESS-TOKEN . 10

7. Receiving a request with ACCESS-TOKEN attribute 12
8. Changes to STUN Client 13
9. Usage with TURN . 13
10. Security Considerations 15
11. IANA Considerations . 15
12. Acknowledgements . 16
13. References . 16
13.1. Normative References 16
13.2. Informative References 17

Appendix A. Sample tickets 18
 Authors' Addresses . 20

1. Introduction

 Session Traversal Utilities for NAT (STUN) [RFC5389] provides a
 mechanism to control access via "long-term" username/ password
 credentials that are provided as part of the STUN protocol. It is
 expected that these credentials will be kept secret; if the
 credentials are discovered, the STUN server could be used by
 unauthorized users or applications. However, in web applications,
 ensuring this secrecy is typically impossible.

 To address this problem and the ones described in
 [I-D.ietf-tram-auth-problems], this document proposes the use of
 third party authorization using OAuth for STUN. Using OAuth, a
 client obtains an ephemeral token from an authorization server e.g.
 WebRTC server, and the token is presented to the STUN server instead
 of the traditional mechanism of presenting username/password

https://datatracker.ietf.org/doc/html/rfc5389

Reddy, et al. Expires August 1, 2015 [Page 2]

Internet-Draft STUN for 3rd party Authorization January 2015

 credentials. The STUN server validates the authenticity of the token
 and provides required services.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 o WebRTC Server: A web server that supports WebRTC
 [I-D.ietf-rtcweb-overview].

 o Access Token: OAuth 2.0 access token.

 o mac_key: The session key generated by the authorization server.
 This session key has a lifetime that corresponds to the lifetime
 of the access token, is generated by the authorization server and
 bound to the access token.

 o kid: An ephemeral and unique key identifier. The kid also allows
 the resource server to select the appropriate keying material for
 decryption.

3. Solution Overview

 This specification uses the token type 'Assertion' (aka self-
 contained token) described in [RFC6819] where all the information
 necessary to authenticate the validity of the token is contained
 within the token itself. This approach has the benefit of avoiding a
 protocol between the STUN server and the authorization server for
 token validation, thus reducing latency. The exact mechanism used by
 a client to obtain a token from the OAuth authorization server is
 outside the scope of this document. For example, a client could make
 an HTTP request to an authorization server to obtain a token that can
 be used to avail STUN services. The STUN token is returned in JSON,
 along with other OAuth Parameters like token type, mac_key, kid,
 token lifetime etc. The client is oblivious to the content of the
 token. The token is embedded within a STUN request sent to the STUN
 server. Once the STUN server has determined the token is valid, it's
 services are offered for a determined period of time.

Reddy, et al. Expires August 1, 2015 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6819

Internet-Draft STUN for 3rd party Authorization January 2015

 +-------------------+ +--------+ +---------+
......... STUN		STUN		WebRTC
.WebRTC . Client				
.Client .		Server		Server
.........				
 +-------------------+ +--------+ +---------+
 | | STUN request | |
 | |-->| |
 | | | |
 | | STUN error response | |
 | | (401 Unauthorized) | |
 | |<--| |
 | | THIRD-PARTY-AUTHORIZATION | |
 | | | |
 | | | |
 | | HTTP Request for token | |
 |-->|
 | | HTTP Response with token parameters | |
 |<--|
 |OAuth | | |
 Attributes | |
 |------>| | |
 | | STUN request with ACCESS-TOKEN | |
 | |-->| |
 | | | |
 | | STUN success response | |
 | |<--| |
 | | STUN Messages | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |

 Figure 1: STUN Third Party Authorization

 Note : An implementation may choose to contact the WebRTC server to
 obtain a token even before it makes a STUN request, if it knows the
 server details before hand. For example, once a client has learnt
 that a STUN server supports Third Party authorization from a WebRTC
 server, the client can obtain the token before making subsequent STUN
 requests.

 [I-D.ietf-oauth-pop-key-distribution] describes the interaction
 between the client and the authorization server. For example, the
 client learns the STUN server name "stun1@example.com" from THIRD-
 PARTY-AUTHORIZATION attribute value and makes the following HTTP
 request for the access token using transport-layer security (with
 extra line breaks for display purposes only):

Reddy, et al. Expires August 1, 2015 [Page 4]

Internet-Draft STUN for 3rd party Authorization January 2015

 POST /o/oauth2/token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 aud=stun1@example.com
 timestamp=1361471629
 grant_type=implicit
 token_type=pop
 alg=HMAC-SHA-1 HMAC-SHA-256-128

 Figure 2: Request

 In the future STUNbis [I-D.ietf-tram-stunbis] will support hash
 agility and accomplish this agility by conveying the HMAC algorithms
 supported by the STUN server along with a STUN error message to the
 client. The client then signals the intersection-set of algorithms
 supported by it and the STUN server to the authorization server in
 the 'alg' parameter defined in [I-D.ietf-oauth-pop-key-distribution].
 Authorization server selects an HMAC algorithm from the list of
 algorithms client had provided and determines length of the mac_key
 based on the selected HMAC algorithm. Note that until STUN supports
 hash agility HMAC-SHA1 is the only valid hash algorithm that client
 can signal to the authorization server and vice-versa.

 If the client is authorized then the authorization server issues an
 access token. An example of successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":
 "U2FsdGVkX18qJK/kkWmRcnfHglrVTJSpS6yU32kmHmOrfGyI3m1gQj1jRPsr0uBb
 HctuycAgsfRX7nJW2BdukGyKMXSiNGNnBzigkAofP6+Z3vkJ1Q5pWbfSRroOkWBn",
 "token_type":"pop",
 "expires_in":1800,
 "kid":"22BIjxU93h/IgwEb",
 "mac_key":"v51N62OM65kyMvfTI08O"
 "alg":HMAC-SHA-256-128
 }

 Figure 3: Response

 Access token and other attributes issued by the authorization server
 are explained in Section 6.2. OAuth in [RFC6749] defines four grant
 types. This specification uses the OAuth grant type "Implicit"
 explained in section 1.3.2 of [RFC6749] where the WebRTC client is

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.2

Reddy, et al. Expires August 1, 2015 [Page 5]

Internet-Draft STUN for 3rd party Authorization January 2015

 issued an access token directly. The value of the scope parameter
 explained in section 3.3 of [RFC6749] MUST be 'stun' string.

4. Obtaining a Token Using OAuth

 A STUN client should know the authentication capability of the STUN
 server before deciding to use third party authorization. A STUN
 client initially makes a request without any authorization. If the
 STUN server supports third party authorization, it will return an
 error message indicating that the client can authorize to the STUN
 server using OAuth access token. The STUN server includes an ERROR-
 CODE attribute with a value of 401 (Unauthorized), a nonce value in a
 NONCE attribute and a SOFTWARE attribute that gives information about
 the STUN server's software. The STUN servers also includes
 additional STUN attribute THIRD-PARTY-AUTHORIZATION signaling the
 STUN client that the STUN server supports third party authorization.

 Consider the following example that illustrates the use of OAuth to
 achieve third party authorization for TURN. In this example, a
 resource owner i.e. WebRTC server, authorizes a TURN client to
 access resources on a TURN server.

 +----------------------+----------------------------+
 | OAuth | WebRTC |
 +======================+============================+
 | Client | WebRTC client |
 +----------------------+----------------------------+
 | Resource owner | WebRTC server |
 +----------------------+----------------------------+
 | Authorization server | Authorization server |
 +----------------------+----------------------------+
 | Resource server | TURN Server |
 +----------------------+----------------------------+

 Figure 4: OAuth terminology mapped to WebRTC terminology

 Using the OAuth 2.0 authorization framework, a WebRTC client (third-
 party application) obtains limited access to a TURN (resource server)
 on behalf of the WebRTC server (resource owner or authorization
 server). The WebRTC client requests access to resources controlled
 by the resource owner (WebRTC server) and hosted by the resource
 server (TURN server). The WebRTC client obtains access token,
 lifetime, session key (in the mac_key parameter) and kid. The TURN
 client conveys the access token and other OAuth parameters learnt
 from the authorization server to the resource server (TURN server).
 The TURN server obtains the session key from the access token. The
 TURN server validates the token, computes the message integrity of

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Reddy, et al. Expires August 1, 2015 [Page 6]

Internet-Draft STUN for 3rd party Authorization January 2015

 the request and takes appropriate action i.e permits the TURN client
 to create allocations. This is shown in an abstract way in Figure 5.

 +---------------+
 | +<******+
 +------------->| Authorization | *
 | | Server | *
 | +----------|(WebRTC Server)| * AS-RS,
 | | | | * AUTH keys
 (2) | | +---------------+ * (1)
 Access | | (3) *
 Token | | Access Token *
 Request | | + *
 | | Session Key *
 | | *
 | V V
 +-------+---+ +-+----=-----+
 | | (4) | |
 | | TURN Request + Access | |
 | WebRTC | Token | TURN |
 | Client |---------------------->| Server |
 | (Alice) | Allocate Response (5) | |
 | |<----------------------| |
 +-----------+ +------------+

 User : Alice
 ****: Out-of-Band Long-Term Key Establishment

 Figure 5: Interactions

4.1. Key Establishment

 The authorization server shares a long-term secret (like asymmetric
 credentials) with the resource server for mutual authentication. The
 STUN server and authorization server MUST establish a symmetric key
 (K), using an out of band mechanism. Symmetric key MUST be chosen to
 ensure that the size of encrypted token is not large because usage of
 asymmetric keys will result in large encrypted tokens which may not
 fit into a single STUN message. The AS-RS, AUTH keys will be derived
 from K. AS-RS key is used for encrypting the self-contained token
 and message integrity of the encrypted token is calculated using the
 AUTH key. The STUN and authorization servers MUST establish the
 symmetric key over an authenticated secure channel. The
 establishment of symmetric key is outside the scope of this
 specification. For example, implementations could use one of the
 following mechanisms to establish a symmetric key.

Reddy, et al. Expires August 1, 2015 [Page 7]

Internet-Draft STUN for 3rd party Authorization January 2015

4.1.1. DSKPP

 The two servers could choose to use Dynamic Symmetric Key
 Provisioning Protocol (DSKPP) [RFC6063] to establish a symmetric key
 (K). The encryption and MAC algorithms will be negotiated using the
 KeyProvClientHello, KeyProvServerHello messages. A unique key
 identifier (referred to as KeyID) for the symmetric key is generated
 by the DSKPP server (i.e. Authorization server) and signalled to the
 DSKPP client (i.e STUN server) which is equivalent to the kid defined
 in this specification. The AS-RS, AUTH keys would be derived from
 the symmetric key using (HMAC)-based key derivation function (HKDF)
 [RFC5869] and the default hash function MUST be SHA-256. For example
 if the input symmetric key (K) is 32 octets length, encryption
 algorithm is AES_256_CBC and HMAC algorithm is HMAC-SHA-256-128 then
 the secondary keys AS-RS, AUTH are generated from the input key K as
 follows

 1. HKDF-Extract(zero, K) -> PRK

 2. HKDF-Expand(PRK, zero, 32) -> AS-RS key

 3. HKDF-Expand(PRK, zero, 32) -> AUTH key

 If Authenticated Encryption with Associated Data (AEAD) algorithm
 defined in [RFC5116] is used then there is no need to generate the
 AUTH key.

4.1.2. HTTP interactions

 The two servers could choose to use REST API to establish a symmetric
 key. To retrieve a new symmetric key, the STUN server makes an HTTP
 GET request to the authorization server, specifying STUN as the
 service to allocate the symmetric keys for, and specifying the name
 of the STUN server. The response is returned with content-type
 "application/json", and consists of a JSON object containing the
 symmetric key.

Reddy, et al. Expires August 1, 2015 [Page 8]

https://datatracker.ietf.org/doc/html/rfc6063
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5116

Internet-Draft STUN for 3rd party Authorization January 2015

 Request

 service - specifies the desired service (turn)
 name - STUN server name be associated with the key

 example: GET /?service=stun&name=turn1@example.com

 Response

 key - Long-term key (K)
 ttl - the duration for which the key is valid, in seconds.

 example:
 {
 "key" :
 "ESIzRFVmd4iZABEiM0RVZgKn6WjLaTC1FXAghRMVTzkBGNaaN496523WIISKerLi",
 "ttl" : 86400,
 "kid" :"22BIjxU93h/IgwEb"
 "enc" : A256CBC-HS512
 }

 The AS-RS, AUTH keys are derived from K using HKDF as discussed in
Section 4.1.1. Authorization server must also signal kid to the STUN

 server which will be used to select the appropriate keying material
 for decryption. A256CBC-HS512 and other encryption algorithms are
 defined in [I-D.ietf-jose-json-web-algorithms]. In this case AS-RS
 key length must be 256-bit, AUTH key length must be 256-bit (section

2.6 of [RFC4868]).

4.1.3. Manual provisioning

 STUN and authorization servers could be manually configured with a
 symmetric key (K) and kid. Mandatory to support authenticated
 encryption algorithm MUST be AES_256_CBC_HMAC_SHA_512.

 Note : The mechanism specified in Section 4.1.3 is easy to implement
 and deploy compared to DSKPP, REST but lacks encryption and HMAC
 algorithm agility.

5. Forming a Request

 When a STUN server responds that third party authorization is
 required, a STUN client re-attempts the request, this time including
 access token and kid values in ACCESS-TOKEN and USERNAME STUN
 attributes. The STUN client includes a MESSAGE-INTEGRITY attribute

https://datatracker.ietf.org/doc/html/rfc4868#section-2.6
https://datatracker.ietf.org/doc/html/rfc4868#section-2.6

Reddy, et al. Expires August 1, 2015 [Page 9]

Internet-Draft STUN for 3rd party Authorization January 2015

 as the last attribute in the message over the contents of the STUN
 message. The HMAC for the MESSAGE-INTEGRITY attribute is computed as
 described in section 15.4 of [RFC5389] where the mac_key is used as
 the input key for the HMAC computation. The STUN client and server
 will use the mac_key to compute the message integrity and doesn't
 have to perform MD5 hash on the credentials.

6. STUN Attributes

 The following new STUN attributes are introduced by this
 specification to accomplish third party authorization.

6.1. THIRD-PARTY-AUTHORIZATION

 This attribute is used by the STUN server to inform the client that
 it supports third party authorization. This attribute value contains
 the STUN server name. The STUN server may have tie-up with multiple
 authorization servers and vice versa, so the client MUST provide the
 STUN server name to the authorization server so that it can select
 the appropriate keying material to generate the self-contained token.
 The THIRD-PARTY-AUTHORIZATION attribute is a comprehension-optional
 attribute (see Section 15 from [RFC5389]). If the client is able to
 comprehend THIRD-PARTY-AUTHORIZATION it MUST ensure that third party
 authorization takes precedence over first party authentication
 (explained in section 10 of [RFC5389]). If the client does not
 support or is not capable of doing third party authorization then it
 defaults to first party authentication.

6.2. ACCESS-TOKEN

 The access token is issued by the authorization server. OAuth does
 not impose any limitation on the length of the access token but if
 path MTU is unknown then STUN messages over IPv4 would need to be
 less than 548 bytes (Section 7.1 of [RFC5389]), access token length
 needs to be restricted to fit within the maximum STUN message size.
 Note that the self-contained token is opaque to the client and it
 MUST NOT examine the ticket. The ACCESS-TOKEN attribute is a
 comprehension-required attribute (see Section 15 from [RFC5389]).

 The token is structured as follows:

Reddy, et al. Expires August 1, 2015 [Page 10]

https://datatracker.ietf.org/doc/html/rfc5389#section-15.4
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389#section-10
https://datatracker.ietf.org/doc/html/rfc5389#section-7.1
https://datatracker.ietf.org/doc/html/rfc5389

Internet-Draft STUN for 3rd party Authorization January 2015

 struct {
 opaque {
 uint16_t key_length;
 opaque mac_key[key_length];
 uint64_t timestamp;
 uint32_t lifetime;
 } encrypted_block;
 opaque mac[mac_length];
 } token;

 Figure 6: Self-contained token format

 Note: uintN_t means an unsigned integer of exactly N bits. Single-
 byte entities containing uninterpreted data are of type opaque. All
 values in the token are stored in network byte order.

 The fields are described below:

 key_length: Length of the session key in octets. Key length of
 160-bits MUST be supported (i.e only 160-bit key is used by HMAC-
 SHA-1 for message integrity of STUN message). The key length
 facilitates the hash agility plan discussed in section 16.3 of
 [RFC5389].

 mac_key: The session key generated by the authorization server.

 timestamp: 64-bit unsigned integer field containing a timestamp.
 The value indicates the time since January 1, 1970, 00:00 UTC, by
 using a fixed point format. In this format, the integer number of
 seconds is contained in the first 48 bits of the field, and the
 remaining 16 bits indicate the number of 1/64K fractions of a
 second (Native format - Unix).

 lifetime: The lifetime of the access token, in seconds. For
 example, the value 3600 indicates one hour. The lifetime value
 MUST be greater than or equal to the "expires_in" parameter
 defined in section 4.2.2 of [RFC6749], otherwise resource server
 could revoke the token but the client assumes that the token has
 not expired and would not refresh the token.

 encrypted_block: The encrypted_block is encrypted using the
 symmetric long-term key established between the resource server
 and the authorization server. Shown in Figure 5 as AS-RS key.

 mac: The Hashed Message Authentication Code (HMAC) is calculated
 with the AUTH key over the 'encrypted_block' and the STUN server
 name (N) conveyed in the THIRD-PARTY-AUTHORIZATION response. This
 ensures that the client does not use the same token to gain

https://datatracker.ietf.org/doc/html/rfc5389#section-16.3
https://datatracker.ietf.org/doc/html/rfc5389#section-16.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.2.2

Reddy, et al. Expires August 1, 2015 [Page 11]

Internet-Draft STUN for 3rd party Authorization January 2015

 illegal access to other STUN servers provided by the same
 administrative domain i.e., when multiple STUN servers in a single
 administrative domain share the same symmetric key with an
 authorization server. The length of the mac field is known to the
 STUN and authorization server based on the negotiated MAC
 algorithm.

 An example encryption process is illustrated below. Here C, N denote
 Ciphertext and STUN server name respectively.

 o C = AES_256_CBC(AS-RS, encrypted_block)

 o mac = HMAC-SHA-256-128(AUTH, C | | N)

 Encryption is applied before message authentication on the sender
 side and conversely on the receiver side. The entire token i.e., the
 'encrypted_block' and 'mac' is base64 encoded (see section 4 of
 [RFC4648]) and the resulting access token is signaled to the client.
 If AEAD algorithm is used then there is no need to explicitly compute
 HMAC, the associated data MUST be the STUN server name (N) and the
 mac field MUST carry the nonce. The length of nonce MUST be 12
 octets.

7. Receiving a request with ACCESS-TOKEN attribute

 The STUN server, on receiving a request with ACCESS-TOKEN attribute,
 performs checks listed in section 10.2.2 of [RFC5389] in addition to
 the following steps to verify that the access token is valid:

 o STUN server selects the keying material based on kid signalled in
 the USERNAME attribute.

 o It performs the verification of the token message integrity by
 calculating HMAC over the encrypted portion in the self-contained
 token and STUN server name using AUTH key and if the resulting
 value does not match the mac field in the self-contained token
 then it rejects the request with an error response 401
 (Unauthorized). If AEAD algorithm is used then it has only a
 single output, either a plaintext or a special symbol FAIL that
 indicates that the inputs are not authentic.

 o STUN server obtains the mac_key by retrieving the content of the
 access token (which requires decryption of the self-contained
 token using the AS-RS key).

 o The STUN server verifies that no replay took place by performing
 the following check:

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc5389#section-10.2.2

Reddy, et al. Expires August 1, 2015 [Page 12]

Internet-Draft STUN for 3rd party Authorization January 2015

 * The access token is accepted if the timestamp field (TS) in the
 self-contained token is recent enough to the reception time of
 the STUN request (RDnew) using the following formula: Lifetime
 + Delta > abs(RDnew - TS). The RECOMMENDED value for the
 allowed Delta is 5 seconds. If the timestamp is NOT within the
 boundaries then the STUN server discards the request with error
 response 401 (Unauthorized).

 o The STUN server uses the mac_key to compute the message integrity
 over the request and if the resulting value does not match the
 contents of the MESSAGE-INTEGRITY attribute then it rejects the
 request with an error response 401 (Unauthorized).

 o If all the checks pass, the STUN server continues to process the
 request. Any response generated by the server MUST include the
 MESSAGE-INTEGRITY attribute, computed using the mac_key.

8. Changes to STUN Client

 o A STUN response is discarded by the client if the value computed
 for message integrity using mac_key does not match the contents of
 the MESSAGE-INTEGRITY attribute.

 o If the access token expires then the client MUST obtain a new
 token from the authorization server and use it for new STUN
 requests.

9. Usage with TURN

 Traversal Using Relay NAT (TURN) [RFC5766] an extension to the STUN
 protocol is often used to improve the connectivity of P2P
 applications. TURN ensures that a connection can be established even
 when one or both sides is incapable of a direct P2P connection.
 However, as a relay service, it imposes a nontrivial cost on the
 service provider. Therefore, access to a TURN service is almost
 always access-controlled. In order to achieve third party
 authorization, a resource owner e.g. WebRTC server, authorizes a
 TURN client to access resources on the TURN server.

Reddy, et al. Expires August 1, 2015 [Page 13]

https://datatracker.ietf.org/doc/html/rfc5766

Internet-Draft STUN for 3rd party Authorization January 2015

 +-------------------+ +--------+ +---------+
......... TURN		TURN		WebRTC
.WebRTC . Client				
.Client .		Server		Server
.........				
 +-------------------+ +--------+ +---------+
 | | Allocate request | |
 | |-->| |
 | | | |
 | | Allocate error response | |
 | | (401 Unauthorized) | |
 | |<--| |
 | | THIRD-PARTY-AUTHORIZATION | |
 | | | |
 | | | |
 | | HTTP Request for token | |
 |-->|
 | | HTTP Response with token parameters | |
 |<--|
 |OAuth | | |
 Attributes | |
 |------>| | |
 | | Allocate request ACCESS-TOKEN | |
 | |-->| |
 | | | |
 | | Allocate success response | |
 | |<--| |
 | | TURN Messages | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |

 Figure 7: TURN Third Party Authorization

 In the above figure, the client sends an Allocate request to the
 server without credentials. Since the server requires that all
 requests be authenticated using OAuth, the server rejects the request
 with a 401 (Unauthorized) error code and STUN attribute THIRD-PARTY-
 AUTHORIZATION. The WebRTC client obtains access token from the
 WebRTC server and then tries again, this time including access token.
 This time, the server validates the token, accepts the Allocate
 request and returns an Allocate success response containing (amongst
 other things) the relayed transport address assigned to the
 allocation.

 Changes specific to TURN are listed below:

Reddy, et al. Expires August 1, 2015 [Page 14]

Internet-Draft STUN for 3rd party Authorization January 2015

 o The access token can be reused for multiple Allocate requests to
 the same TURN server. The TURN client MUST include the ACCESS-
 TOKEN attribute only in Allocate and Refresh requests. Since the
 access token is only valid for a specific period of time, the TURN
 server MUST cache it so that it need not to be provided in every
 request within an existing allocation.

 o The lifetime provided by the TURN server in the Allocate and
 Refresh responses MUST be less than or equal to the lifetime of
 the token. It is RECOMMENDED that the TURN server calculate the
 maximum allowed lifetime value using the formula:

 lifetime + Delta - abs(RDnew - TS)

 o If the access token expires then the client MUST obtain a new
 token from the authorization server and use it for new
 allocations. The client MUST use the new token to refresh
 existing allocations. This way client has to maintain only one
 token per TURN server.

10. Security Considerations

 When OAuth is used the interaction between the client and the
 authorization server requires Transport Layer Security (TLS) with a
 ciphersuite offering confidentiality protection. The session key
 MUST NOT be transmitted in clear since this would completely destroy
 the security benefits of the proposed scheme. If an attacker tries
 to replay message with ACCESS-TOKEN attribute then the server can
 detect that the transaction ID as used for an old request and thus
 prevent the replay attack. The client may know some (but not all) of
 the token fields encrypted with a unknown secret key and the token
 can be subjected to known-plaintext attack, but AES is secure against
 this attack.

 Threat mitigation discussed in section 5 of
 [I-D.ietf-oauth-pop-architecture] and security considerations in
 [RFC5389] are to be taken into account.

11. IANA Considerations

 [Paragraphs below in braces should be removed by the RFC Editor upon
 publication]

 [IANA is requested to add the following attributes to the STUN
 attribute registry [iana-stun], The THIRD-PARTY-AUTHORIZATION
 attribute requires that IANA allocate a value in the "STUN attributes
 Registry" from the comprehension-optional range (0x8000-0xBFFF)]

https://datatracker.ietf.org/doc/html/rfc5389

Reddy, et al. Expires August 1, 2015 [Page 15]

Internet-Draft STUN for 3rd party Authorization January 2015

 This document defines the THIRD-PARTY-AUTHORIZATION STUN attribute,
 described in Section 6. IANA has allocated the comprehension-
 optional codepoint TBD for this attribute.

 [The ACCESS-TOKEN attribute requires that IANA allocate a value in
 the "STUN attributes Registry" from the comprehension-required range
 (0x0000-0x3FFF)]

 This document defines the ACCESS-TOKEN STUN attribute, described in
Section 6. IANA has allocated the comprehension-required codepoint

 TBD for this attribute.

12. Acknowledgements

 Authors would like to thank Dan Wing, Pal Martinsen, Oleg Moskalenko,
 Charles Eckel, Spencer Dawkins and Hannes Tschofenig for comments and
 review. The authors would like to give special thanks to Brandon
 Williams for his help.

 Thanks to Oleg Moskalenko for providing ticket samples in the
 Appendix section.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868, May 2007.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

Reddy, et al. Expires August 1, 2015 [Page 16]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4868
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Internet-Draft STUN for 3rd party Authorization January 2015

 [iana-stun]
 IANA, , "IANA: STUN Attributes", April 2011,
 <http://www.iana.org/assignments/stun-parameters/stun-pa

rameters.xml>.

13.2. Informative References

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-40 (work in progress), January 2015.

 [I-D.ietf-oauth-pop-architecture]
 Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", draft-ietf-oauth-pop-architecture-00 (work
 in progress), July 2014.

 [I-D.ietf-oauth-pop-key-distribution]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", draft-ietf-oauth-pop-key-

distribution-00 (work in progress), July 2014.

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", draft-ietf-rtcweb-overview-13
 (work in progress), November 2014.

 [I-D.ietf-tram-auth-problems]
 Reddy, T., R, R., Perumal, M., and A. Yegin, "Problems
 with STUN long-term Authentication for TURN", draft-ietf-

tram-auth-problems-05 (work in progress), August 2014.

 [I-D.ietf-tram-stunbis]
 Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
 D., Mahy, R., and P. Matthews, "Session Traversal
 Utilities for NAT (STUN)", draft-ietf-tram-stunbis-00
 (work in progress), November 2014.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

http://www.iana.org/assignments/stun-parameters/stun-parameters.xml
http://www.iana.org/assignments/stun-parameters/stun-parameters.xml
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-40
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-architecture-00
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-00
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-overview-13
https://datatracker.ietf.org/doc/html/draft-ietf-tram-auth-problems-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-auth-problems-05
https://datatracker.ietf.org/doc/html/draft-ietf-tram-stunbis-00
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5869

Reddy, et al. Expires August 1, 2015 [Page 17]

Internet-Draft STUN for 3rd party Authorization January 2015

 [RFC6063] Doherty, A., Pei, M., Machani, S., and M. Nystrom,
 "Dynamic Symmetric Key Provisioning Protocol (DSKPP)", RFC

6063, December 2010.

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

Appendix A. Sample tickets

 Input data (same for all samples below):

 //STUN SERVER NAME
 server_name = "blackdow.carleon.gov";

 //Shared password between AS and RS
 long_term_password = "HGkj32KJGiuy098sdfaqbNjOiaz71923";

 //MAC key of the session (included in the token)
 mac_key = "ZksjpweoixXmvn67534m";

 //length of the MAC key
 mac_key_length = 20;

 //The timestamp field in the token
 token_timestamp = 92470300704768;

 //The lifetime of the token
 token_lifetime = 3600;

 //nonce for AEAD when AEAD is used
 aead_nonce = "h4j3k2l2n4b5";

 Samples:

 1)
 hkdf hash function = SHA-256,
 token encryption algorithm = AES-256-CBC
 token auth algorithm = HMAC-SHA-256

 Result:
 AS_RS key (32 bytes) = \xd\x7e\x54\x5b\x7e\x15\xc9\x81\x8c\x81\x4b\x83
 \xdc\x4e\xce\x24\x55\xde\x73\xe\xab\x8\x8a\x94
 \xc4\x29\xab\x45\xfd\x61\xa\xb5

 AUTH key (32 bytes) = \xd\x7e\x54\x5b\x7e\x15\xc9\x81\x8c\x81\x4b\x83
 \xdc\x4e\xce\x24\x55\xde\x73\xe\xab\x8\x8a\x94
 \xc4\x29\xab\x45\xfd\x61\xa\xb5

https://datatracker.ietf.org/doc/html/rfc6063
https://datatracker.ietf.org/doc/html/rfc6063
https://datatracker.ietf.org/doc/html/rfc6819

Reddy, et al. Expires August 1, 2015 [Page 18]

Internet-Draft STUN for 3rd party Authorization January 2015

 Encrypted token (80 bytes = 48+32) =

 \x1b\xb6\x4b\x4f\xbf\x99\x6d\x60\x55\xda\xf3\x9f\xa1\xed\x3\x73\x4e
 \x1c\x95\x64\x84\xc1\xeb\xc3\x63\x9b\x70\xe6\xb8\x21\x45\xe6\x45\xa0
 \x23\xaf\xc1\xee\x87\x91\x7b\xea\xb8\x4a\x7f\x80\xb2\x0\xa5\xad\x14
 \x97\x17\xf9\xbc\xfa\xa1\xc6\x2f\x4d\xfc\xaf\xc1\xc5\x11\xc5\x55\x7d
 \xb0\x35\x58\xcf\xc6\xce\x6e\x10\x7\xd1\x98\xbd

 2)

 hkdf hash function = SHA-256,
 token encryption algorithm = AEAD_AES_256_GCM
 token auth algorithm = N/A

 Result:
 AS_RS key (32 bytes) = \xd\x7e\x54\x5b\x7e\x15\xc9\x81\x8c\x81\x4b\x83
 \xdc\x4e\xce\x24\x55\xde\x73\xe\xab\x8\x8a\x94
 \xc4\x29\xab\x45\xfd\x61\xa\xb5
 AUTH key = N/A

 Encrypted token (62 bytes = 34 + 16 + 12) =

 \xa8\x52\x90\x64\xc7\xd9\x3b\x6c\xe\x9\xe\xcf\x9e\x7d\x0\x70\x47\xe2
 \x99\x8d\xe3\x31\xe1\x39\x20\xed\x88\x90\x4\xd8\xcf\x82\x93\x3f\xc6\
 x4\xd1\xaa\xe6\xf5\x62\xea\x3c\x94\x45\x8\x3d\xfa\xe9\x5f\x68\x34\x6a
 \x33\x6b\x32\x6c\x32\x6e\x34\x62\x35

 3)

 hkdf hash function = SHA-1,
 token encryption algorithm = AES-128-CBC
 token auth algorithm = HMAC-SHA-256-128

 Result:
 AS_RS key (16 bytes) = \x8c\x48\x5f\x1e\x1\x3a\xc6\x50\x36\x70\x84\x37
 \xa5\x4e\xd7\x70
 AUTH key (32 bytes) = \x8c\x48\x5f\x1e\x1\x3a\xc6\x50\x36\x70\x84\x37
 \xa5\x4e\xd7\x70\x17\xcc\xcd\xa1\x7c\xd7\x8\x39
 \xfa\xc8\xee\x14\xf9\x77\xb4\xcf

 Encrypted token (64 bytes = 48+16) =

 \x13\xcd\x17\x4a\xde\x54\xe1\xe6\x65\xe6\xbb\x3a\xb9\x4d\x1c\xf7\x3b
 \x60\x31\x8b\xc4\x7\x4b\x3b\x5f\x1c\xda\xf4\x60\x4\x7\x88\x8e\xc9\xc7
 \xd3\xf4\x71\x94\x87\x85\xd9\xad\xf7\x6a\xda\x77\x4e\x11\x13\x8d\x8e
 \xe8\x93\x9\x76\xa3\x85\x96\x1f\x5e\xd3\xc4\x55

Reddy, et al. Expires August 1, 2015 [Page 19]

Internet-Draft STUN for 3rd party Authorization January 2015

 Figure 8: Sample tickets

Authors' Addresses

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: tireddy@cisco.com

 Prashanth Patil
 Cisco Systems, Inc.
 Bangalore
 India

 Email: praspati@cisco.com

 Ram Mohan Ravindranath
 Cisco Systems, Inc.
 Cessna Business Park,
 Kadabeesanahalli Village, Varthur Hobli,
 Sarjapur-Marathahalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: rmohanr@cisco.com

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA
 98033
 USA

 Email: justin@uberti.name

Reddy, et al. Expires August 1, 2015 [Page 20]

