
TCPM Working Group G. Fairhurst
Internet-Draft A. Sathiaseelan
Obsoletes: 2861 (if approved) R. Secchi
Updates: 5681 (if approved) University of Aberdeen
Intended status: Experimental February 23, 2015
Expires: August 27, 2015

Updating TCP to support Rate-Limited Traffic
draft-ietf-tcpm-newcwv-08

Abstract

 This document updates RFC 5681 to address issues that arise when TCP
 is used to support traffic that exhibits periods where the sending
 rate is limited by the application rather than the congestion window.
 It provides an experimental update to TCP that allows a TCP sender to
 restart quickly following a rate-limited interval. This method is
 expected to benefit applications that send rate-limited traffic using
 TCP, while also providing an appropriate response if congestion is
 experienced.

 It also evaluates the Experimental specification of TCP Congestion
 Window Validation, CWV, defined in RFC 2861, and concludes that RFC

2861 sought to address important issues, but failed to deliver a
 widely used solution. This document therefore recommends that the
 status of RFC 2861 is moved from Experimental to Historic, and that
 it is replaced by the current specification.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 27, 2015.

Fairhurst, et al. Expires August 27, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft new-CWV February 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Standards Status of this Document 4

2. Reviewing experience with TCP-CWV 5
3. Terminology . 6
4.1. Initialisation . 8
4.2. Estimating the validated capacity supported by a path . . 8
4.3. Preserving cwnd during a rate-limited period. 9
4.4. TCP congestion control during the non-validated phase . . 9
4.4.1. Response to congestion in the non-validated phase . . 10

 4.4.2. Sender burst control during the non-validated phase . 12
4.4.3. Adjustment at the end of the non-validated phase . . 12

4.5. Examples of Implementation 13
4.5.1. Implementing the pipeACK measurement 13

 4.5.2. Implementing detection of the cwnd-limited condition 14
5. Determining a safe period to preserve cwnd 15
6. Security Considerations 16
7. IANA Considerations . 16
8. Acknowledgments . 16
9. Author Notes . 16
9.1. Other related work 16
9.2. Revision notes . 18

10. References . 21
10.1. Normative References 21
10.2. Informative References 22

 Authors' Addresses . 23

1. Introduction

 TCP is used to support a range of application behaviours. The TCP
 congestion window (cwnd) controls the number of unacknowledged
 packets/bytes that a TCP flow may have in the network at any time, a

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Fairhurst, et al. Expires August 27, 2015 [Page 2]

Internet-Draft new-CWV February 2015

 value known as the FlightSize [RFC5681]. A bulk application will
 always have data available to transmit. The rate at which it sends
 is therefore limited by the maximum permitted by the receiver
 advertised window and the sender congestion window (cwnd). In
 contrast, a rate-limited application will experience periods when the
 sender is either idle or is unable to send at the maximum rate
 permitted by the cwnd. The update in this document targets the
 operation of TCP in such rate-limited cases.

 Standard TCP [RFC5681] states that a TCP sender SHOULD set cwnd to no
 more than the Restart Window (RW) before beginning transmission, if
 the TCP sender has not sent data in an interval exceeding the
 retransmission timeout, i..e when an application becomes idle.
 [RFC2861] noted that this TCP behaviour was not always observed in
 current implementations. Experiments [Bis08] confirm this to still
 be the case.

 Congestion Window Validation, CWV, introduced the terminology of
 "application limited periods". This document describes any time that
 an application limits the sending rate, rather than being limited by
 the transport, as "rate-limited". This update improves support for
 applications that vary their transmission rate, either with (short)
 idle periods between transmission or by changing the rate the
 application sends. These applications are characterised by the TCP
 FlightSize often being less than cwnd. Many Internet applications
 exhibit this behaviour, including web browsing, http-based adaptive
 streaming, applications that support query/response type protocols,
 network file sharing, and live video transmission. Many such
 applications currently avoid using long-lived (persistent) TCP
 connections (e.g. [RFC2616] servers typically support persistent
 HTTP connections, but do not enable this by default). Such
 applications often instead either use a succession of short TCP
 transfers or use UDP.

 Standard TCP does not impose additional restrictions on the growth of
 the congestion window when a TCP sender is unable to send at the
 maximum rate allowed by the cwnd. In this case the rate-limited
 sender may grow a cwnd far beyond that corresponding to the current
 transmit rate, resulting in a value that does not reflect current
 information about the state of the network path the flow is using.
 Use of such an invalid cwnd may result in reduced application
 performance and/or could significantly contribute to network
 congestion.

 [RFC2861] proposed a solution to these issues in an experimental
 method known as CWV. CWV was intended to help reduce cases where TCP
 accumulated an invalid (inappropriately large) cwnd. The use and

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2616

Fairhurst, et al. Expires August 27, 2015 [Page 3]

Internet-Draft new-CWV February 2015

 drawbacks of using the CWV algorithm in RFC 2861 with an application
 are discussed in Section 2.

Section 3 defines relevant terminology.

Section 4 specifies an alternative to CWV that seeks to address the
 same issues, but does this in a way that is expected to mitigate the
 impact on an application that varies its sending rate. The updated
 method applies to the rate-limited conditions (including both an
 application-limited and idle sender).

 The goals of this update are:

 o To not change the behaviour of a TCP sender that performs bulk
 transfers that consume the cwnd.

 o To provide a method that co-exists with Standard TCP and other
 flows that use this updated method.

 o To reduce transfer latency for applications that change their rate
 over short intervals of time.

 o To avoid a TCP sender growing a large "non-validated" cwnd, when
 it has not recently sent using this cwnd.

 o To remove the incentive for ad-hoc application or network stack
 methods (such as "padding") solely to maintain a large cwnd for
 future transmission.

 o To incentivise the use of long-lived connections, rather than a
 succession of short-lived flows, benefiting both flows and network
 when actual congestion is encountered.

Section 5 describes the rationale for selecting the safe period to
 preserve the cwnd.

1.1. Standards Status of this Document

 This document was produced by the TCP Maintenance and Minor
 Extensions (tcpm) working group.

 The document updates and obsoletes the methods described in
 [RFC2861]. It recommends a set of mechanisms, including the use of
 pacing during a non-validated period. The updated mechanisms are
 intended to have a less aggressive congestion impact than would be
 exhibited by a standard TCP sender.

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861

Fairhurst, et al. Expires August 27, 2015 [Page 4]

Internet-Draft new-CWV February 2015

 The specification in this draft is classified as "Experimental"
 pending experience with deployed implementations of the methods.

2. Reviewing experience with TCP-CWV

 [RFC2861] described a simple modification to the TCP congestion
 control algorithm that decayed the cwnd after the transition to a
 "sufficiently-long" idle period. This used the slow-start threshold
 (ssthresh) to save information about the previous value of the
 congestion window. The approach relaxed the standard TCP behaviour
 [RFC5681] for an idle session, intended to improve application
 performance. CWV also modified the behaviour where a sender
 transmitted at a rate less than allowed by cwnd.

 [RFC2861] proposed two set of responses, one after an "application-
 limited" and one after an "idle period". Although this distinction
 was argued, in practice differentiating the two conditions was found
 problematic in actual networks (e.g.[Bis10]). This offers
 predictable performance for long on-off periods (>>1 RTT), or slowly
 varying rate-based traffic, the performance could be unpredictable
 for variable-rate traffic and depended both upon whether an accurate
 RTT had been obtained and the pattern of application traffic relative
 to the measured RTT.

 Many applications can and often do vary their transmission over a
 wide range of rates. Using [RFC2861] such applications often
 experienced varying performance, which made it hard for application
 developers to predict the TCP latency even when using a path with
 stable network characteristics. We argue that an attempt to classify
 application behaviour as application-limited or idle is problematic
 and also inappropriate. This document therefore explicitly avoids
 trying to differentiate these two cases, instead treating all rate-
 limited traffic uniformly.

 [RFC2861] has been implemented in some mainstream operating systems
 as the default behaviour [Bis08]. Analysis (e.g. [Bis10] [Fai12])
 has shown that a TCP sender using CWV is able to use available
 capacity on a shared path after an idle period. This can benefit
 variable-rate applications, especially over long delay paths, when
 compared to the slow-start restart specified by standard TCP.
 However, CWV would only benefit an application if the idle period
 were less than several Retransmission Time Out (RTO) intervals
 [RFC6298], since the behaviour would otherwise be the same as for
 standard TCP, which resets the cwnd to the TCP Restart Window after
 this period.

 To enable better performance for variable-rate applications with TCP,
 some operating systems have chosen to support non-standard methods,

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc6298

Fairhurst, et al. Expires August 27, 2015 [Page 5]

Internet-Draft new-CWV February 2015

 or applications have resorted to "padding" streams by sending dummy
 data to maintain their sending rate when they have no data to
 transmit. Although transmitting redundant data across a network path
 provides good evidence that the path can sustain data at the offered
 rate, padding also consumes network capacity and reduces the
 opportunity for congestion-free statistical multiplexing. For
 variable-rate flows, the benefits of statistical multiplexing can be
 significant and it is therefore a goal to find a viable alternative
 to padding streams.

 Experience with [RFC2861] suggests that although the CWV method
 benefited the network in a rate-limited scenario (reducing the
 probability of network congestion), the behaviour was too
 conservative for many common rate-limited applications. This
 mechanism did not therefore offer the desirable increase in
 application performance for rate-limited applications and it is
 unclear whether applications actually use this mechanism in the
 general Internet.

 It is therefore concluded that CWV, as defined in [RFC2861], was
 often a poor solution for many rate-limited applications. It had the
 correct motivation, but had the wrong approach to solving this
 problem.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The document assumes familiarity with the terminology of TCP
 congestion control [RFC5681].

 The following terminology is used in this document:

 cwnd-limited: A TCP flow that has sent the maximum number of segments
 permitted by the cwnd, where the application utilises the allowed
 sending rate (see Section 4.5.2).

 pipeACK sample: A measure of the volume of data acknowledged by the
 network within an RTT.

 pipeACK variable: A variable that measures the available capacity
 using the set of pipeACK samples.

 pipeACK Sampling Period: The maximum period that a measured pipeACK
 sample may influence the pipeACK variable.

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires August 27, 2015 [Page 6]

Internet-Draft new-CWV February 2015

 Non-validated phase: The phase where the cwnd reflects a previous
 measurement of the available path capacity.

 Non-validated period, NVP: The maximum period for which cwnd is
 preserved in the non-validated phase.

 Rate-limited: A TCP flow that does not consume more than one half of
 cwnd, and hence operates in the non-validated phase. This includes
 periods when an application is either idle or chooses to send at a
 rate less than the maximum permitted by the cwnd.

 Validated phase: The phase where the cwnd reflects a current estimate
 of the available path capacity.

4. A New Congestion Window Validation method

 This section proposes an update to the TCP congestion control
 behaviour during a rate-limited interval. This new method
 intentionally does not differentiate between times when the sender
 has become idle or chooses to send at a rate less than the maximum
 allowed by the cwnd.

 The period where actual usage is less than allowed by cwnd, is named
 the non-validated phase. The update allows an application in the
 non-validated phase to resume transmission at a previous rate without
 incurring the delay of slow-start. However, if the TCP sender
 experiences congestion using the preserved cwnd, it is required to
 immediately reset the cwnd to an appropriate value specified by the
 method. If a sender does not take advantage of the preserved cwnd
 within the Non-validated period, NVP, the value of cwnd is reduced,
 ensuring the value better reflects the capacity that was recently
 actually used.

 It is expected that this update will satisfy the requirements of many
 rate-limited applications and at the same time provide an appropriate
 method for use in the Internet. New-CWV reduces this incentive for
 an application to send "padding" data simply to keep transport
 congestion state.

 The method is specified in following subsections and is expected to
 encourage applications and TCP stacks to use standards-based
 congestion control methods. It may also encourage the use of long-
 lived connections where this offers benefit (such as persistent
 http).

Fairhurst, et al. Expires August 27, 2015 [Page 7]

Internet-Draft new-CWV February 2015

4.1. Initialisation

 A sender starts a TCP connection in the validated phase and
 initialises the pipeACK variable to the "undefined" value. This
 value inhibits use of the value in cwnd calculations.

4.2. Estimating the validated capacity supported by a path

 [RFC6675] defines a variable, FlightSize, that indicates the
 instantaneous amount of data that has been sent, but not cumulatively
 acknowledged. In this method a new variable "pipeACK" is introduced
 to measure the acknowledged size of the network pipe. This is used
 to determine if the sender has validated the cwnd. pipeACK differs
 from FlightSize in that it is evaluated over a window of acknowledged
 data, rather than reflecting the amount of data outstanding.

 A sender determines a pipeACK sample by measuring the volume of data
 that was acknowledged by the network over the period of a measured
 Round Trip Time (RTT). Using the variables defined in [RFC6675], a
 value could be measured by caching the value of HighACK and after one
 RTT measuring the difference between the cached HighACK value and the
 current HighACK value. Other equivalent methods may be used.

 A sender is not required to continuously update the pipeACK variable
 after each received ACK, but SHOULD perform a pipeACK sample at least
 once per RTT when it has sent unacknowledged segments.

 The pipeACK variable MAY consider multiple pipeACK samples over the
 pipeACK Sampling Period. The value of the pipeACK variable MUST NOT
 exceed the maximum (highest value) within the sampling period. This
 specification defines the pipeACK Sampling Period as Max(3*RTT, 1
 second). This period enables a sender to compensate for large
 fluctuations in the sending rate, where there may be pauses in
 transmission, and allows the pipeACK variable to reflect the largest
 recently measured pipeACK sample.

 When no measurements are available, the pipeACK variable is set to
 the "undefined value". This value is used to inhibit entering the
 non-validated phase until the first new measurement of a pipeACK
 sample.

 The pipeACK variable MUST NOT be updated during TCP Fast Recovery.
 That is, the sender stops collecting pipeACK samples during loss
 recovery. The method RECOMMENDS that the TCP SACK option [RFC2018]
 is enabled and the method defined on [RFC6675]is used to recover
 missing segments. This allows the sender to more accurately
 determine the number of missing bytes during the loss recovery phase,

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675

Fairhurst, et al. Expires August 27, 2015 [Page 8]

Internet-Draft new-CWV February 2015

 and using this method will result in a more appropriate cwnd
 following loss.

4.3. Preserving cwnd during a rate-limited period.

 The updated method creates a new TCP sender phase that captures
 whether the cwnd reflects a validated or non-validated value. The
 phases are defined as:

 o Validated phase: pipeACK >=(1/2)*cwnd, or pipeACK is undefined.
 This is the normal phase, where cwnd is expected to be an
 approximate indication of the capacity currently available along
 the network path, and the standard methods are used to increase
 cwnd (currently [RFC5681]).

 o Non-validated phase: pipeACK <(1/2)*cwnd. This is the phase where
 the cwnd has a value based on a previous measurement of the
 available capacity, and the usage of this capacity has not been
 validated in the pipeACK Sampling Period. That is, when it is not
 known whether the cwnd reflects the currently available capacity
 along the network path. The mechanisms to be used in this phase
 seek to determine a safe value for cwnd and an appropriate
 reaction to congestion.

 Note: A threshold is needed to determine whether a sender is in the
 validated or non-validated phase. A standard TCP sender in slow-
 start is permitted to double its FlightSize from one RTT to the next.
 This motivated the choice of a threshold value of 1/2. This
 threshold ensures a sender does not further increase the cwnd as long
 as the FlightSize is less than (1/2*cwnd). Furthermore, a sender
 with a FlightSize less than (1/2*cwnd) may in the next RTT be
 permitted by the cwnd to send at a rate that more than doubles the
 FlightSize, and hence this case needs to be regarded as non-validated
 and a sender therefore needs to employ additional mechanisms while in
 this phase.

4.4. TCP congestion control during the non-validated phase

 A TCP sender MUST enter the non-validated phase when the pipeACK is
 less than (1/2)*cwnd.

 A TCP sender that enters the non-validated phase SHOULD preserve the
 cwnd (i.e., this neither grows nor reduces while the sender remains
 in this phase). If the sender receives an indication of congestion,
 it uses the method described below. The phase is concluded after a
 fixed period of time (the NVP, as explained in Section 4.4.3) or when
 the sender transmits sufficient data so that pipeACK > (1/2)*cwnd
 (i.e. the sender is no longer rate-limited).

https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires August 27, 2015 [Page 9]

Internet-Draft new-CWV February 2015

 The behaviour in the non-validated phase is specified as:

 o A sender determines whether to increase the cwnd based upon
 whether it is cwnd-limited (see Section 4.5.2):

 o

 * A sender that is cwnd-limited MAY use the standard TCP method
 to increase cwnd (i.e. a TCP sender that fully utilises the
 cwnd is permitted to increase cwnd each received ACK using
 standard methods).

 * A sender that is not cwnd-limited MUST NOT increase the cwnd
 when ACK packets are received in this phase.

 o If the sender receives an indication of congestion while in the
 non-validated phase (i.e., detects loss), the sender MUST exit the
 non-validated phase (reducing the cwnd as defined in

Section 4.4.1).

 o If the Retransmission Time Out (RTO) expires while in the non-
 validated phase, the sender MUST exit the non-validated phase. It
 then resumes using the standard TCP RTO mechanism [RFC5681].

 o A sender with a pipeACK variable greater than (1/2)*cwnd SHOULD
 enter the validated phase. (A rate-limited sender will not
 normally be impacted by whether it is in a validated or non-
 validated phase, since it will normally not consume the entire
 cwnd. However a change to the validated phase will release the
 sender from constraints on the growth of cwnd, and restore the use
 of the standard congestion response.)

 The cwnd-limited behaviour may be triggered during a transient
 condition that occurs when a sender is in the non-validated phase and
 receives an ACK that acknowledges received data, the cwnd was fully
 utilised, and more data is awaiting transmission than may be sent
 with the current cwnd. The sender is then allowed to use the
 standard method to increase the cwnd. (Note, if the sender succeeds
 in sending these new segments, the updated cwnd and pipeACK variables
 will eventually result in a transition to the validated phase.)

4.4.1. Response to congestion in the non-validated phase

 Reception of congestion feedback while in the non-validated phase is
 interpreted as an indication that it was inappropriate for the sender
 to use the preserved cwnd. The sender is therefore required to
 quickly reduce the rate to avoid further congestion. Since the cwnd

https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires August 27, 2015 [Page 10]

Internet-Draft new-CWV February 2015

 does not have a validated value, a new cwnd value must be selected
 based on the utilised rate.

 A sender that detects a packet-drop MUST record the current
 FlightSize in the variable LossFlightSize and MUST calculate a safe
 cwnd for loss recovery using the method below:

 cwnd = (Max(pipeACK,LossFlightSize))/2.

 The pipeACK value is not updated during loss recoverySection 4.2. If
 there is a valid pipeACK value, the new cwnd is adjusted to reflect
 that a non-validated cwnd may be larger than the actual FlightSize,
 or recently used FlightSize (recorded in pipeACK). The updated cwnd
 therefore prevents overshoot by a sender significantly increasing its
 transmission rate during the recovery period.

 At the end of the recovery phase, the TCP sender MUST reset the cwnd
 using the method below:

 cwnd = (Max(pipeACK,LossFlightSize) - R)/2.

 Where R is the volume of data that was successfully retransmitted
 during the recovery phase. This counts segments retransmitted and
 considered lost by the pipe estimation algorithm at the end of
 recovery. It does not include the additional cost of multiple
 retransmission of the same data.

 The calculated cwnd value MUST NOT be reduced below 1 MSS.

 After completing the loss recovery phase, the sender MUST re-
 initialise the pipeACK variable to the "undefined" value. This
 ensures that standard TCP methods are used immediately after
 completing loss recovery until a new pipeACK value can be determined.

 ssthresh is adjusted using the standard TCP method.

 Note: The adjustment by reducing cwnd by the volume of data not sent
 (R) follows the method proposed for Jump Start [Liu07]. The
 inclusion of the term R makes the adjustment more conservative than
 standard TCP. This is required, since a sender in the non-validated
 state may increase the rate more than a standard TCP would have done
 relative to what was sent in the last RTT (i.e., more than doubled
 the number of segments in flight relative to what it sent in the last
 RTT). The additional reduction after congestion is beneficial when
 the LossFlightSize has significantly overshot the available path
 capacity incurring significant loss (e.g. following a change of path
 characteristics or when additional traffic has taken a larger share

Fairhurst, et al. Expires August 27, 2015 [Page 11]

Internet-Draft new-CWV February 2015

 of the network bottleneck during a period when the sender transmits
 less).

 Note: The pipeACK value is only valid during a non-validated phase,
 and therefore does not exceed cwnd/2. If LossFlightSize and R were
 small, then this can result in the final cwnd after loss recovery
 being 1/4 of the cwnd on detection of congestion. This reduction is
 conservative, and pipeACK is reset to undefined. Subsequent updates
 to cwnd do not therefore reflect pipeACK history before any
 congestion event.

4.4.2. Sender burst control during the non-validated phase

 TCP congestion control allows a sender to accumulate a cwnd that
 would allow it to send a burst of segments with a total size up to
 the difference between the FlightsSize and cwnd. Such bursts can
 impact other flows that share a network bottleneck and/or may induce
 congestion when buffering is limited.

 Various methods have been proposed to control the sender burstiness
 [Hug01], [All05]. For example, TCP can limit the number of new
 segments it sends per received ACK. This is effective when a flow of
 ACKs is received, but can not be used to control a sender that has
 not send appreciable data in the previous RTT [All05].

 This document recommends using a method to avoid line-rate bursts
 after an idle or rate-limited interval when there is less reliable
 information about the capacity of the network path: A TCP sender in
 the non-validated phase SHOULD control the maximum burst size, e.g.
 using a rate-based pacing algorithm in which a sender paces out the
 cwnd over its estimate of the RTT, or some other method, to prevent
 many segments being transmitted contiguously at line-rate. The most
 appropriate method(s) to implement pacing depend on the design of the
 TCP/IP stack, speed of interface and whether hardware support (such
 as TCP Segment Offload, TSO) is used. The present document does not
 recommend any specific method.

4.4.3. Adjustment at the end of the non-validated phase

 An application that remains in the non-validated phase for a period
 greater than the NVP is required to adjust its congestion control
 state. If the sender exits the non-validated phase after this
 period, it MUST update the ssthresh:

 ssthresh = max(ssthresh, 3*cwnd/4).

 (This adjustment of ssthresh ensures that the sender records that it
 has safely sustained the present rate. The change is beneficial to

Fairhurst, et al. Expires August 27, 2015 [Page 12]

Internet-Draft new-CWV February 2015

 rate-limited flows that encounter occasional congestion, and could
 otherwise suffer an unwanted additional delay in recovering the
 sending rate.)

 The sender MUST then update cwnd to be not greater than:

 cwnd = max((1/2)*cwnd, IW).

 Where IW is the appropriate TCP initial window, used by the TCP
 sender (e.g. [RFC5681]).

 Note: This adjustment ensures that the sender responds conservatively
 after remaining in the non-validated phase for more than the non-
 validated period. In this case, it reduces the cwnd by a factor of
 two from the preserved value. This adjustment is helpful when flows
 accumulate but do not use a large cwnd, and seeks to mitigate the
 impact when these flows later resume transmission. This could for
 instance mitigate the impact if multiple high-rate application flows
 were to become idle over an extended period of time and then were
 simultaneously awakened by an external event.

4.5. Examples of Implementation

 This section provides informative examples of implementation methods.
 Implementations may choose to use other methods that comply with the
 normative requirements.

4.5.1. Implementing the pipeACK measurement

 A pipeACK sample may be measured once each RTT. This reduces the
 sender processing burden for calculating after each acknowledgement
 and also reduces storage requirements at the sender.

 Since application behaviour can be bursty using CWV, it may be
 desirable to implement a maximum filter to accumulate the measured
 values so that the pipeACK variable records the largest pipeACK
 sample within the pipeACK Sampling Period. One simple way to
 implement this is to divide the pipeACK Sampling Period into several
 (e.g. 5) equal length measurement periods. The sender then records
 the start time for each measurement period and the highest measured
 pipeACK sample. At the end of the measurement period, any
 measurement(s) that are older than the pipeACK Sampling Period are
 discarded. The pipeACK variable is then assigned the largest of the
 set of the highest measured values.

https://datatracker.ietf.org/doc/html/rfc5681

Fairhurst, et al. Expires August 27, 2015 [Page 13]

Internet-Draft new-CWV February 2015

 +----------+----------+ +----------+---......
 | Sample A | Sample B | No | Sample C | Sample D
 | | | Sample | | | | | |
 | |\ 5 | | | |
 | | | | | | /\ 4 |
 | | | | |\ 3 | | | \ |
 | | \ | | \--- | | / \ | /| 2
 |/ \------| - | | / \------/ \...
 +----------+---------\+----/ /----+/---------+-------------> Time

 <--|
 Sampling Period Current Time

 Figure 1: Example of measuring pipeACK samples

 Figure 1 shows an example of how measurement samples may be
 collected. At the time represented by the figure new samples are
 being accumulated into sample D. Three previous samples also fall
 within the pipeACK Sampling Period: A, B, and C. There was also a
 period of inactivity between samples B and C during which no
 measurements were taken. The current value of the pipeACK variable
 will be 5, the maximum across all samples.

 After one further measurement period, Sample A will be discarded,
 since it then is older than the pipeACK Sampling Period and the
 pipeACK variable will be recalculated, Its value will be the larger
 of Sample C or the final value accumulated in Sample D.

 Note: the pipeACK Sampling Period and the NVP period do not
 necessarily require a new timer to be implemented. An alternative is
 to record a timestamp when the sender enters the NVP. Each time a
 sender transmits a new segment, this timestamp may be used to
 determine if the NVP period has expired. If the period expires, the
 sender may take into account how many units of the NVP period have
 passed and make one reduction (as defined in Section 4.4.3) for each
 NVP period.

4.5.2. Implementing detection of the cwnd-limited condition

 A method is required to detect the cwnd-limited condition (see
Section 4.4. This is used to detect a condition where a sender in

 the non-validated phase receives an ACK, but the size of cwnd
 prevents sending more new data.

 In simple terms this condition is true only when the TCP sender's
 FlightSize is equal to or larger than the cwnd. However, an
 implementation must consider other constraints on the way in which

Fairhurst, et al. Expires August 27, 2015 [Page 14]

Internet-Draft new-CWV February 2015

 cwnd variable is used, for instance the need to support methods such
 as the Nagle Algorithm and TCP Segment Offload (TSO). This can
 result in a sender becoming cwnd-limited when the cwnd is nearly,
 rather than completely, equal to the FlightSize.

5. Determining a safe period to preserve cwnd

 This section documents the rationale for selecting the maximum period
 that cwnd may be preserved, known as the non-validated period, NVP.

 Limiting the period that cwnd may be preserved avoids undesirable
 side effects that would result if the cwnd were to be kept
 unnecessarily high for an arbitrary long period, which was a part of
 the problem that CWV originally attempted to address. The period a
 sender may safely preserve the cwnd, is a function of the period that
 a network path is expected to sustain the capacity reflected by cwnd.
 There is no ideal choice for this time.

 A period of five minutes was chosen for this NVP. This is a
 compromise that was larger than the idle intervals of common
 applications, but not sufficiently larger than the period for which
 the capacity of an Internet path may commonly be regarded as stable.
 The capacity of wired networks is usually relatively stable for
 periods of several minutes and that load stability increases with the
 capacity. This suggests that cwnd may be preserved for at least a
 few minutes.

 There are cases where the TCP throughput exhibits significant
 variability over a time less than five minutes. Examples could
 include wireless topologies, where TCP rate variations may fluctuate
 on the order of a few seconds as a consequence of medium access
 protocol instabilities. Mobility changes may also impact TCP
 performance over short time scales. Senders that observe such rapid
 changes in the path characteristic may also experience increased
 congestion with the new method, however such variation would likely
 also impact TCP's behaviour when supporting interactive and bulk
 applications.

 Routing algorithms may modify the network path, disrupting the RTT
 measurement and changing the capacity available to a TCP connection,
 however such changes do not usually occur within a time frame of a
 few minutes.

 The value of five minutes is therefore expected to be sufficient for
 most current applications. Simulation studies (e.g. [Bis11]) also
 suggest that for many practical applications, the performance using
 this value will not be significantly different to that observed using
 a non-standard method that does not reset the cwnd after idle.

Fairhurst, et al. Expires August 27, 2015 [Page 15]

Internet-Draft new-CWV February 2015

 Finally, other TCP sender mechanisms have used a 5 minute timer, and
 there could be simplifications in some implementations by reusing the
 same interval. TCP defines a default user timeout of 5 minutes
 [RFC0793] i.e. how long transmitted data may remain unacknowledged
 before a connection is forcefully closed.

6. Security Considerations

 General security considerations concerning TCP congestion control are
 discussed in [RFC5681]. This document describes an algorithm that
 updates one aspect of the congestion control procedures, and so the
 considerations described in RFC 5681 also apply to this algorithm.

7. IANA Considerations

 There are no IANA considerations.

8. Acknowledgments

 The authors acknowledge the contributions of Dr I Biswas, Mr Ziaul
 Hossain in supporting the evaluation of CWV and for their help in
 developing the mechanisms proposed in this draft. We also
 acknowledge comments received from the Internet Congestion Control
 Research Group, in particular Yuchung Cheng, Mirja Kuehlewind, Joe
 Touch, and Mark Allman. This work was part-funded by the European
 Community under its Seventh Framework Programme through the Reducing
 Internet Transport Latency (RITE) project (ICT-317700).

9. Author Notes

 RFC-Editor note: please remove this section prior to publication.

9.1. Other related work

 RFC-Editor note: please remove this section prior to publication.

 There are several issues to be discussed more widely:

 o There are potential interactions with the Experimental update in
 [RFC6928] that raises the TCP initial Window to ten segments, do
 these cases need to be elaborated?

 This relates to the Experimental specification for increasing
 the TCP IW defined in RFC 6928.

Fairhurst, et al. Expires August 27, 2015 [Page 16]

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928

Internet-Draft new-CWV February 2015

 The two methods have different functions and different response
 to loss/congestion.

RFC 6928 proposes an experimental update to TCP that would
 increase the IW to ten segments. This would allow faster
 opening of the cwnd, and also a large (same size) restart
 window. This approach is based on the assumption that many
 forward paths can sustain bursts of up to ten segments without
 (appreciable) loss. Such a significant increase in cwnd must
 be matched with an equally large reduction of cwnd if loss/
 congestion is detected, and such a congestion indication is
 likely to require future use of IW=10 to be disabled for this
 path for some time. This guards against the unwanted behaviour
 of a series of short flows continuously flooding a network path
 without network congestion feedback.

 In contrast, this document proposes an update with a rationale
 that relies on recent previous path history to select an
 appropriate cwnd after restart.

 The behaviour differs in three ways:

 1) For applications that send little initially, new-cwv may
 constrain more than RFC 6928, but would not require the
 connection to reset any path information when a restart
 incurred loss. In contrast, new-cwv would allow the TCP
 connection to preserve the cached cwnd, any loss, would impact
 cwnd, but not impact other flows.

 2) For applications that utilise more capacity than provided by
 a cwnd of 10 segments, this method would permit a larger
 restart window compared to a restart using the method in RFC

6928. This is justified by the recent path history.

 3) new-CWV is attended to also be used for rate-limited
 applications, where the application sends, but does not seek to
 fully utilise the cwnd. In this case, new-cwv constrains the
 cwnd to that justified by the recent path history. The
 performance trade-offs are hence different, and it would be
 possible to enable new-cwv when also using the method in RFC

6928, and yield benefits.

 o There is potential overlap with the Laminar proposal (draft-
mathis-tcpm-tcp-laminar)

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-tcp-laminar
https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-tcp-laminar

Fairhurst, et al. Expires August 27, 2015 [Page 17]

Internet-Draft new-CWV February 2015

 The current draft was intended as a standards-track update to
 TCP, rather than a new transport variant. At least, it would
 be good to understand how the two interact and whether there is
 a possibility of a single method.

 o There is potential performance loss in loss of a short burst
 (off list with M Allman)

 A sender can transmit several segments then become idle. If
 the first segments are all ACK'ed the ssthresh collapses to a
 small value (no new data is sent by the idle sender). Loss of
 the later data results in congestion (e.g. maybe a RED drop or
 some other cause, rather than the maximum rate of this flow).
 When the sender performs loss recovery it may have an
 appreciable pipeACK and cwnd, but a very low FlightSize - the
 Standard algorithm results in an unusually low cwnd ((1/2)*
 FlightSize).

 A constant rate flow would have maintained a FlightSize
 appropriate to pipeACK (cwnd if it is a bulk flow).

 This could be fixed by adding a new state variable? It could
 also be argued this is a corner case (e.g. loss of only the
 last segments would have resulted in RTO), the impact could be
 significant.

 o There is potential interaction with TCP Control Block Sharing(M
 Welzl)

 An application that is non-validated can accumulate a cwnd that
 is larger than the actual capacity. Is this a fair value to
 use in TCB sharing?

 We propose that TCB sharing should use the pipeACK in place of
 cwnd when a TCP sender is in the Non-validated phase. This
 value better reflects the capacity that the flow has utilised
 in the network path.

9.2. Revision notes

 RFC-Editor note: please remove this section prior to publication.

 Draft 03 was submitted to ICCRG to receive comments and feedback.

Fairhurst, et al. Expires August 27, 2015 [Page 18]

Internet-Draft new-CWV February 2015

 Draft 04 contained the first set of clarifications after feedback:

 o Changed name to application limited and used the term rate-limited
 in all places.

 o Added justification and many minor changes suggested on the list.

 o Added text to tie-in with more accurate ECN marking.

 o Added ref to Hug01

 Draft 05 contained various updates:

 o New text to redefine how to measure the acknowledged pipe,
 differentiating this from the FlightSize, and hence avoiding
 previous issues with infrequent large bursts of data not being
 validated. A key point new feature is that pipeACK only triggers
 leaving the NVP after the size of the pipe has been acknowledged.
 This removed the need for hysteresis.

 o Reduction values were changed to 1/2, following analysis of
 suggestions from ICCRG. This also sets the "target" cwnd as twice
 the used rate for non-validated case.

 o Introduced a symbolic name (NVP) to denote the 5 minute period.

 Draft 06 contained various updates:

 o Required reset of pipeACK after congestion.

 o Added comment on the effect of congestion after a short burst (M.
 Allman).

 o Correction of minor Typos.

 WG draft 00 contained various updates:

 o Updated initialisation of pipeACK to maximum value.

 o Added note on intended status still to be determined.

 WG draft 01 contained:

 o Added corrections from Richard Scheffenegger.

 o Raffaello Secchi added to the mechanism, based on implementation
 experience.

Fairhurst, et al. Expires August 27, 2015 [Page 19]

Internet-Draft new-CWV February 2015

 o Removed that the requirement for the method to use TCP SACK option

 o Although it may be desirable to use SACK, this is not essential to
 the algorithm.

 o Added the notion of the sampling period to accommodate large rate
 variations and ensure that the method is stable. This algorithm
 to be validated through implementation.

 WG draft 02 contained:

 o Clarified language around pipeACK variable and pipeACK sample -
 Feedback from Aris Angelogiannopoulos.

 WG draft 03 contained:

 o Editorial corrections - Feedback from Anna Brunstrom.

 o An adjustment to the procedure at the start and end of Reoloss
 recovery to align the two equations.

 o Further clarification of the "undefined" value of the pipeACK
 variable.

 WG draft 04 contained:

 o Editorial corrections.

 o Introduced the "cwnd-limited" term.

 o An adjustment to the procedure at the start of a cwnd-limited
 phase - the new text is intended to ensure that new-cwv is not
 unnecessarily more conservative than standard TCP when the flow is
 cwnd-limited. This resolves two issues: first it prevents
 pathologies in which pipeACK increases slowly and erratically. It
 also ensures that performance of bulk applications is not
 significantly impacted when using the method.

 o Clearly identifies that pacing (or equivalent) is requiring during
 the NVP to control burstiness. New section added.

 WG draft 05 contained:

 o Clarification to first two bullets in Section 4.4 describing cwnd-
 limited, to explain these are really alternates to the same case.

 o Section giving implementation examples was restructured to clarify
 there are two methods described.

Fairhurst, et al. Expires August 27, 2015 [Page 20]

Internet-Draft new-CWV February 2015

 o Cross References to sections updated - thanks to comments from
 Martin Winbjoerk and Tim Wicinski.

 WG draft 06 contained:

 o The section giving implementation examples was restructured to
 clarify there are two methods described.

 o Justification of design decisions.

 o Re-organised text to improve clarity of argument.

 WG draft 07 contained:

 o Updated publication date.

 o Text on noting that cwnd shouldn't ever be made negative.

 o Updated text on ECN to clarify the process where R is a reduction
 based on ECN marks.

 WG draft 08 contained:

 o Removed description of how to use Accurate ECN feedback. It is
 not clear that this document should specify a usage of a mechanism
 that has not been fully defined. Accurate ECN may lead to
 different congestion responses and these will need to be defined
 in the CC specifications for using Accurate ECN.

10. References

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

Fairhurst, et al. Expires August 27, 2015 [Page 21]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc5681

Internet-Draft new-CWV February 2015

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP", RFC

6675, August 2012.

10.2. Informative References

 [All05] Allman, M. and E. Blanton, "Notes on burst mitigation for
 transport protocols", March 2005.

 [Bis08] Biswas, I. and G. Fairhurst, "A Practical Evaluation of
 Congestion Window Validation Behaviour, 9th Annual
 Postgraduate Symposium in the Convergence of
 Telecommunications, Networking and Broadcasting (PGNet),
 Liverpool, UK", June 2008.

 [Bis10] Biswas, I., Sathiaseelan, A., Secchi, R., and G.
 Fairhurst, "Analysing TCP for Bursty Traffic, Int'l J. of
 Communications, Network and System Sciences, 7(3)", June
 2010.

 [Bis11] Biswas, I., "PhD Thesis, Internet congestion control for
 variable rate TCP traffic, School of Engineering,
 University of Aberdeen", June 2011.

 [Fai12] Sathiaseelan, A., Secchi, R., Fairhurst, G., and I.
 Biswas, "Enhancing TCP Performance to support Variable-
 Rate Traffic, 2nd Capacity Sharing Workshop, ACM CoNEXT,
 Nice, France, 10th December 2012.", June 2008.

 [Hug01] Hughes, A., Touch, J., and J. Heidemann, "Issues in TCP
 Slow-Start Restart After Idle (Work-in-Progress)",
 December 2001.

 [Liu07] Liu, D., Allman, M., Jiny, S., and L. Wang, "Congestion
 Control without a Startup Phase, 5th International
 Workshop on Protocols for Fast Long-Distance Networks
 (PFLDnet), Los Angeles, California, USA", February 2007.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298, June
 2011.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6298

Fairhurst, et al. Expires August 27, 2015 [Page 22]

Internet-Draft new-CWV February 2015

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928, April 2013.

Authors' Addresses

 Godred Fairhurst
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen, Scotland AB24 3UE
 UK

 Email: gorry@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk

 Arjuna Sathiaseelan
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen, Scotland AB24 3UE
 UK

 Email: arjuna@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk

 Raffaello Secchi
 University of Aberdeen
 School of Engineering
 Fraser Noble Building
 Aberdeen, Scotland AB24 3UE
 UK

 Email: raffaello@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk

Fairhurst, et al. Expires August 27, 2015 [Page 23]

https://datatracker.ietf.org/doc/html/rfc6928
http://www.erg.abdn.ac.uk
http://www.erg.abdn.ac.uk
http://www.erg.abdn.ac.uk

