Network Working Group Internet-Draft Intended status: Standards Track Expires: September 6, 2018 E. Rescorla Mozilla J. Peterson Neustar March 5, 2018

STIR Out-of-Band Architecture and Use Cases draft-ietf-stir-oob-02.txt

Abstract

The PASSporT format defines a token that can be carried by signaling protocols, including SIP, to cryptographically attest the identify of callers. Not all telephone calls use Internet signaling protocols, however, and some calls use them for only part of their signaling path. This document describes use cases that require the delivery of PASSporT objects outside of the signaling path, and defines architectures and semantics to provide this functionality.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of <u>BCP 78</u> and <u>BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 6, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (<u>https://trustee.ietf.org/license-info</u>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

Rescorla & Peterson Expires September 6, 2018 [Page 1]

STIR Fallback

include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$. Introduction	<u>2</u>			
<u>2</u> . Terminology	<u>4</u>			
<u>3</u> . Operating Environments	<u>4</u>			
<u>4</u> . Dataflows	5			
<u>5</u> . Use Cases	<u>6</u>			
5.1. Case 1: VoIP to PSTN Call	6			
<u>5.2</u> . Case 2: Two Smart PSTN endpoints	<u>6</u>			
5.3. Case 3: PSTN to VoIP Call	7			
<u>5.4</u> . Case 4: Gateway Out-of-band	7			
<u>6</u> . Storing and Retrieving PASSporTs	<u>8</u>			
<u>6.1</u> . Storage	9			
	10			
	11			
	12			
7.2. Call Flow	12			
7.3. Security Analysis	13			
	13			
8. Authentication and Verification Service Behavior for Out-of-				
	14			
	14			
	16			
	17			
9. HTTPS Interface to the CPS	17			
	19			
-	20			
	21			
-	21			
	21			
— •	21			
	22			

1. Introduction

The STIR problem statement [RFC7340] describes widespread problems enabled by impersonation in the telephone network, including illegal robocalling, voicemail hacking, and swatting. As telephone services are increasingly migrating onto the Internet, and using Voice over IP (VoIP) protocols such as SIP [RFC3261], it is necessary for these protocols to support stronger identity mechanisms to prevent impersonation. For example, [RFC8224] defines an Identity header of SIP requests capable of carrying a PASSporT [RFC8225] object in SIP as a means to cryptographically attest that the originator of a telephone call is authorized to use the calling party number (or, for native SIP cases, SIP URI) associated with the originator of the call. of the request.

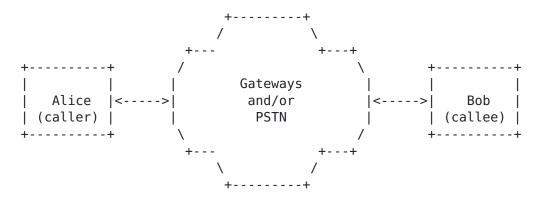
Not all telephone calls use SIP today, however; and even those that do use SIP do not always carry SIP signaling end-to-end. Most calls from telephone numbers still traverse the Public Switched Telephone Network (PSTN) at some point. Broadly, calls fall into one of three categories:

- 1. One or both of the endpoints is actually a PSTN endpoint.
- 2. Both of the endpoints are non-PSTN (SIP, Jingle, ...) but the call transits the PSTN at some point.
- 3. Non-PSTN calls which do not transit the PSTN at all (such as native SIP end-to-end calls).

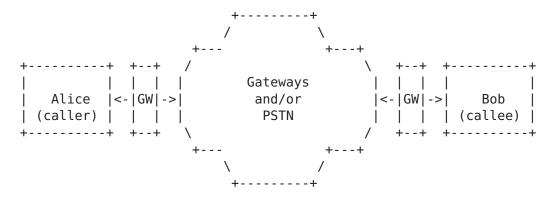
The first two categories represent the majority of telephone calls associated with problems like illegal robocalling: many robocalls today originate on the Internet but terminate at PSTN endpoints. However, the core network elements that operate the PSTN are legacy devices that are unlikely to be upgradable at this point to support an in-band authentication system. As such, those devices largely cannot be modified to pass signatures originating on the Internet--or indeed any inband signaling data--intact. Even if fields for tunneling arbtirary data can be found in traditional PSTN signaling, in some cases legacy elements would strip the signatures from those fields; in others, they might damage them to the point where they cannot be verified. For those first two categories above, any inband authentication scheme does not seem practical in the current environment.

But while the core network of the PSTN remains fixed, the endpoints of the telephone network are becoming increasingly programmable and sophisticated. Landline "plain old telephone service" deployments, especially in the developed world, are shrinking, and increasingly being replaced by three classes of intelligent devices: smart phones, IP PBXs, and terminal adapters. All three are general purpose computers, and typically all three have Internet access as well as access to the PSTN. Additionally, various kinds of gateways increasingly front for legacy equipment. All of this provides a potential avenue for building an authentication system that implements stronger identity while leaving PSTN systems intact.

This capability also provides an ideal transitional technology while in-band STIR adoption is ramping up. It permits early adopters to use the technology even when intervening network elements are not yet STIR-aware, and through various kinds of gateways it may allow providers with a significant PSTN investment to still secure their calls with STIR.


This specification therefore builds on the PASSporT [RFC8225] mechanism and the work of [RFC8224] to define a way that a PASSporT object created in the originating network of a call can reach the terminating network even when it cannot be carried end-to-end in-band in the call signaling. This relies on a new service defined in this document that permits the PASSporT object to be stored during call processing and retrieved for verification purposes.

2. Terminology


The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in <u>RFC</u> 2119 [RFC2119].

<u>3</u>. Operating Environments

This section describes the environments in which the proposed mechanism is intended to operate. In the simplest setting, Alice is calling Bob through some set of gateways and/or the PSTN. Both Alice and Bob have smart devices which can be modified, but they do not have a clear connection between them: Alice cannot inject any data into signaling which Bob can read, with the exception of the asserted destination and origination E.164 numbers. The calling party number might originate from her own device or from the network. These numbers are effectively the only data that can be used for coordination between the endpoints.

In a more complicated setting, Alice and/or Bob may not have a smart or programmable device, but one or both of them are behind a STIRaware gateway that can participate in out-of-band coordination, as shown below:

In such a case, Alice might have an analog connection to her gateway/ switch which is responsible for her identity. Similarly, the gateway would verify Alice's identity, generate the right calling party number information and provide that number to Bob using ordinary POTS mechanisms.

4. Dataflows

Because in these operating environments endpoints cannot pass cryptographic information to one another directly through signaling, any solution must involve some rendezvous mechanism to allow endpoints to communicate. We call this rendezvous service a "call placement service" (CPS), a service where a record of call placement, in this case a PASSporT, can be stored for future retrieval. In principle this service could communicate any information, but minimally we expect it to include a full-form PASSporT that attests the caller, callee, and the time of the call. The callee can use the existence of a PASSporT for a given incoming call as rough validation of the asserted origin of that call. (See <u>Section 11</u> for limitations of this design.)

There are roughly two plausible dataflow architectures for the CPS:

The callee registers with the CPS. When the caller wishes to place a call to the callee, it sends the PASSporT to the CPS, which immediately forwards it to the callee.

The caller stores the PASSporT with the CPS at the time of call placement. When the callee receives the call, it contacts the CPS and retrieves the PASSporT.

While the first architecture is roughly isomorphic to current VoIP protocols, it shares their drawbacks. Specifically, the callee must maintain a full-time connection to the CPS to serve as a notification channel. This comes with the usual networking costs to the callee and is especially problematic for mobile endpoints. Indeed, if the

endpoints had the capabilities to implement such an architecture, they could surely just use SIP or some other protocol to set up a secure session; even if the media were going through the traditional PSTN, a "shadow" SIP session could convey the PASSporT. Thus, we focus on the second architecture in which the PSTN incoming call serves as the notification channel and the callee can then contact the CPS to retrieve the PASSporT.

5. Use Cases

The following are the motivating use cases for this mechanism. Bear in mind that just as in [RFC8224] there may be multiple Identity headers in a single SIP INVITE, so there may be multiple PASSporTs in this out-of-band mechanism associated with a single call. For example, a SIP user agent might create a PASSporT for a call with an end user credential, and as the call exits the originating administrative domain the network authentication service might create its own PASSporT for the same call. As such, these use cases may overlap in the processing of a single call.

5.1. Case 1: VoIP to PSTN Call

A call originates in the SIP world in a STIR-aware administrative domain. The local authentication service for that administrative domain creates a PASSporT which is carried in band in the call per [RFC8224]. The call is routed out of the originating administrative domain and reaches a gateway to the PSTN. Eventually, the call will terminate on a mobile smartphone that supports this out-of-band mechanism.

In this use case, the originating authentication service can store the PASSporT with the appropriate CPS for the target telephone number as a fallback in case SIP signaling will not reach end-to-end. When the destination mobile smartphone receives the call over the PSTN, it consults the CPS and discovers a PASSporT from the originating telephone number waiting for it. It uses this PASSporT to verify the calling party number.

<u>5.2</u>. Case 2: Two Smart PSTN endpoints

A call originates with an enterprise PBX that has both Internet access and a built-in gateway to the PSTN. It will immediately drop its call to the PSTN, but before it does, it provisions a PASSporT on the CPS associated with the target telephone number.

After normal PSTN routing, the call lands on a smart mobile handset that supports the STIR out-of-band mechanism. It queries the appropriate CPS over the Internet to determine if a call has been placed to it by a STIR-aware device. It finds the PASSporT provisioned by the enterprise PBX and uses it to verify the calling party number.

5.3. Case 3: PSTN to VoIP Call

A call originates with an enterprise PBX that has both Internet access and a built-in gateway to the PSTN. It will immediate drop the call to the PSTN, but before it does, it provisions a PASSporT with the CPS associated with the target telephone number. However, it turns out that the call will eventually route through the PSTN to an Internet gateway, which will translate this into a SIP call and deliver it to an administrative domain with a STIR verification service.

In this case, there are two subcases for how the PASSporT might be retrieved. In subcase 1, the Internet gateway that receives the call from the PSTN could query the appropriate CPS to determine if the original caller created and provisioned a PASSporT for this call. If so, it can retrieve the PASSporT and, when it creates a SIP INVITE for this call, add a corresponding Identity header per [RFC8224]. When the SIP INVITE reaches the destination administrative domain, it will be able to verify the PASSporT normally. Note that to avoid discrepancies with the Date header field value, only full-form PASSporT should be used for this purpose. In subcase 2, the gateway does not retrieve the PASSporT itself, but instead the verification service at the destination administrative domain does so. Subcase 1 would perhaps be valuable for deployments where the destination administrative domain supports in-band STIR but not out-of-band STIR.

5.4. Case 4: Gateway Out-of-band

A call originates in the SIP world in a STIR-aware administrative domain. The local authentication service for that administrative domain creates a PASSporT which is carried in band in the call per [<u>RFC8224</u>]. The call is routed out of the originating administrative domain and eventually reaches a gateway to the PSTN.

In this case, the originating authentication service does not support the out-of-band mechanism, so instead the gateway to the PSTN extracts the PASSporT from the SIP request and provisions it to the CPS. (When the call reaches the gateway to the PSTN, the gateway might first check the CPS to see if a PASSporT object had already been provisioned for this call, and only provision a PASSporT if none is present).

Ultimately, the call may terminate on the PSTN, or be routed back to the IP world. In the former case, perhaps the destination endpoints

queries the CPS to retrieve the PASSporT provisioned by the first gateway. Or if the call ultimately returns to the IP world, it might be the gateway from the PSTN back to the Internet that retrieves the PASSporT from the CPS and attaches it to the new SIP INVITE it creates, or it might be the terminating administrative domain's verification service that checks the CPS when an INVITE arrives with no Identity header field. Either way the PASSporT can survive the gap in SIP coverage caused by the PSTN leg of the call.

<u>6</u>. Storing and Retrieving PASSporTs

The use cases show a variety of entities accessing the CPS to store and retrieve PASSporTs. The question of how the CPS authorizes the storage and retrieval of PASSporT is thus a key design decision in the architecture. Broadly, the architecture described here is one focused on permitting any entity to store encrypted PASSporTs at the CPS, indexed under the caller number. PASSporTs will be encrypted with associated with the called number, so these PASSporTs may also be retrieved by any entity, as only holders of the corresponding private key will be able to decrypt the PASSporT. This also prevents the CPS itself from learning the contents of PASSporTs, and thus metadata about calls in progress, which would make the CPS a less attractive target for pervasive monitoring (see [RFC7258]). Ho bolster the privacy story, prevent denial-of-service flooding of the CPS, and to complicate traffic analysis, a few additional mechanisms are also recommended.

The STIR architecture assumes that service providers and in some cases end user devices will have credentials suitable for attesting authority over telephone numbers per [RFC8226]. These credentials provide the most obvious way that a CPS can authorize the storage and retrieval of PASSporTs. However, as use cases 3 and 4 in <u>Section 5</u> show, it may sometimes make sense for the entity storing or retrieving PASSporTs to be an intermediary rather than a device associated with either the originating or terminating side of a call, and those intermediaries often would not have access to STIR credentials covering the telephone numbers in question. Requiring authorization based on a credential to store PASSporTs is therefore undesirable, though potentially acceptible if sufficient steps are taken to mitigate the privacy risk as described in the next section.

Furthermore, it is an explicit design goal of this mechanism to minimize the potential privacy exposure of using a CPS. Ideally, the out-of-band mechanism should not result in a worse privacy situation than in-band [RFC8224] STIR: for in-band, we might say that a SIP entity is authorized to receive a PASSporT if it is an intermediate or final target of the routing of a SIP request. As the originator of a call cannot necessarily predict the routing path a call will

STIR Fallback

follow, an out-of-band mechanism could conceivably even improve on the privacy story. As a first step, transport-level security can provide confidentiality from eavesdroppers for both the storage and retrieval of PASSporTs.

6.1. Storage

For authorizing the storage of PASSporTs, the architecture can permit some flexibility. Note that in this architecture a CPS has no way to tell if a PASSporT is valid; it simply conveys encrypted blocks that it cannot access itself. In that architecture, it does not matter whether the CPS received a PASSporT from the authentication service that created it or from an intermediary gateway downstream in the routing path as in case 4.

Note that this architecture requires clients that stores PASSporTs to have access to a public key associated with the intended called party to be used to encrypt the PASSporT. Discovering this key requires some new service that does not exist today; depending on how the CPS is architected, however, some kind of key store or repository could be implemented adjacent to it, and perhaps even incorporated into its operation. Key discovery is made more complicated by the fact that there can potentially be multiple entities that have authority over a telephone number: a carrier, a reseller, an enterprise, and an end user might all have credentials permitting them to attest that they are allowed to originate calls from a number, say. PASSporTs therefore might need to be encrypted with multiple keys in the hopes that one will be decipherable by the relying party.

However, if literally anyone can store PASSporTs in the CPS, an attacker could easily flood the CPS with millions of bogus PASSporTs indexed under a target number, and thereby prevent that called party from finding a valid PASSporT for an incoming call buried in a haystack of fake entries. A CPS must therefore implement some sort of traffic control system to prevent flooding. Preferably, this should not require authenticating the source, as this will reveal to the CPS both ths source and destination of traffic.

In order to do this, we propose the use of "blind signatures". A sender will initially authenticate to the CPS, and acquire a signed token for the CPS that will be presented later when storing a PASSporT. The flow looks as follows:

CPS

Sender

Authenticate to CPS ----->
Blinded(K_temp) ----->
<----->
Sign(K_cps, Blinded(K_temp))
[Disconnect]

Sign(K_cps, K_temp))
Sign(K_temp, E(K_receiver, PASSporT)) --->

At an initial time when no call is yet in progress, a potential client connects to the CPS, authenticates, and sends a blinded version of a freshly generated public key. The CPS returns a signed version of that blinded key. The sender can then unblind the key and gets a signature on K_temp from the CPS

Then later, when a client wants to store a PASSporT, it connects to the CPS anonymously (preferably over a network connection that cannot be correlated with the token acquisition) and sends both the signed K_temp and its own signature over the encrypted PASSporT. The CPS verifies both signatures and if they verify, stores the encrypted passport (discarding the signatures).

This design lets the CPS rate limit how many PASSporTs a given sender can store just by counting how many times K_temp appears; perhaps CPS policy might reject storage attempts and require acqusition of a new K_temp after storing more than a certain number of PASSporTs indexed under the same destination number in a short interval. This does not of course allow the CPS to tell when bogus data is being provisioned by an attacker, simply the rate at which data is being provisioned. Potentially, feedback mechanisms could be developed that would allow the called parties to tell the CPS when they are receiving unusual or bogus PASSporTs.

This architecture also assumes that the CPS will age out PASSporTs. A CPS SHOULD NOT keep any stored PASSporT for more than sixty seconds. Any reduction in this window makes substitution attacks (see <u>Section 7.4</u>) harder to mount, but making the window too small might conceivably age PASSporTs out while a heavily redirected call is still alerting. harder to mount

6.2. Retrieval

For retrieval of PASSporTs, this architecture assumes that clients contact the CPS to send requests of the form:

Are there any current PASSporTs for calls destined to 2.222.2222?

As all PASSporTs stored at the CPS are encrypted with a key belonging to the intended destination, then potentially the CPS could allow anyone to download PASSporTs for a called number without much fear of compromising private information about calls in progress - provided that the CPS always provides at least one encrypted blob in response to a request, even if there was no call in progress. Otherwise, entities could poll the CPS constantly, or eavesdrop on traffic, to learn whether or not calls were in progress. The CPS MUST generate at least one unique and plausible encrypted response to all retrieval requests, and these dummy encrypted PASSporTs MUST NOT be repeated for later calls.

Because the entity placing a call may discover multiple keys associated with the called party number, multiple valid PASSporTs may be stored in the CPS. A particular called party who retrieves PASSporTs from the CPS may have access to only one of those keys. Thus, the presence of one or more PASSporTs that the called party cannot decrypt - which would be indistinguishable from the "dummy" PASSporTS created by the CPS when no calls are in progress - does not entail that there is no call in progress. A retriever likely will need decrypt all PASSporTs retrieved from the CPS, and may find only one that is valid.

Note that in call forwarding cases, the difficulties in managing the relationship between PASSporTs with the diversion extension [I-D.ietf-stir-passport-divert] become more serious. The originating authentication service would encrypt the PASSporT with the public key of the intended destination, but when a call is forwarded, it may go to a destination that does not possess the corresponding private key. This requires special behavior on the part of the retargeting entity, and probably the CPS as well, to accommodate encrypted PASSporTs that show a secure chain of diversion. A storer could for example notify the CPS that the divert PASSporT it is storing relates to a specific PASSporT already in the CPS, but in so doing, the storer will inevitably reveal more metadata to the CPS.

7. Solution Architecture

In this section, we discuss a strawman architecture for providing the service described in the previous sections. This discussion is deliberately sketchy, focusing on broad concepts and skipping over details. The intent here is merely to provide an overall architecture, not an implementable specification.

STIR Fallback

7.1. Credentials and Phone Numbers

We start from the premise of the STIR problem statement [RFC7340] that phone numbers can be associated with credentials which can be used to attest ownership of numbers. For purposes of exposition, we will assume that ownership is associated with the endpoint (e.g., a smartphone) but it might well be associated with a provider or gateway acting for the endpoint instead. It might be the case that multiple entities are able to act for a given number, provided that they have the appropriate authority. [RFC8226] describes a credentials system suitable for this purpose; the question of how an entity is determined to have control of a given number is out of scope for the current document.

7.2. Call Flow

An overview of the basic calling and verification process is shown below. In this diagram, we assume that Alice has the number +1.111.111.1111 and Bob has the number +2.222.2222.

Alice	Call Placement Service	Bob

Store PASSporT for 2.222.222.222-->

Call from 1.111.111.1111 ----->

Encrypted PASSporT -(2.222.222.2222,1.111.111.111)-->

> [Ring phone with callerid = 1.111.111.111]

When Alice wishes to make a call to Bob, she contacts the CPS and stores an encrypted PASSporT on the CPS indexed under Bob's number. The CPS then awaits retrievals for that number.

Once Alice has stored the PASSporT, she then places the call to Bob as usual. At this point, Bob's phone would usually ring and display Alice's number (+1.111.111.111), which is informed by the existing PSTN mechanisms for relying a calling party number (i.e., the CIN field of the IAM). Instead, Bob's phone transparently contacts the CPS and requests any current PASSporTs for calls to his number. The CPS responds with any such PASSporTs (assuming they exist). If such a PASSpoRT exists, and the verification service in Bob's phone decrypts it using his private key, validates it, then Bob's phone can then present the calling party number information as valid. Otherwise, the call is unverifiable. Note that this does not necessarily mean that the call is bogus; because we expect incremental deployment many legitimate calls will be unverifiable.

7.3. Security Analysis

The primary attack we seek to prevent is an attacker convincing the callee that a given call is from some other caller C. There are two scenarios to be concerned with:

The attacker wishes to impersonate a target when no call from that target is in progress.

The attacker wishes to substitute himself for an existing call setup as described in Section 7.4.

If an attacker can inject fake PASSporT into the CPS or in the communication from the CPS to the callee, he can mount either attack. As PASSporTs should be digitally signed by an appropriate authority for the number and verified by the callee (see Section 7.1), this should not arise in ordinary operations. For privacy and robustness reasons, using TLS on the originating side when storing the PASSporT at the CPS is recommended.

The entire system depends on the security of the credential infrastructure. If the authentication credentials for a given number are compromised, then an attacker can impersonate calls from that number. However, that is no different from in-band [<u>RFC8224</u>] STIR.

7.4. Substitution Attacks

All that receipt of the PASSporT from the CPS proves to the called party is that Alice is trying to call Bob (or at least was as of very recently) - it does not prove that any particular incoming call is from Alice. Consider the scenario in which we have a service which provides an automatic callback to a user-provided number. In that case, the attacker can try to arrange for a false caller-id value, as shown below:
 Attacker
 Callback Service
 CPS
 Bob

 Place call to Bob
 Store PASSporT for
CS:Bob
 Store PASSporT for
CS:Bob
 Store PASSporT for
CS:Bob

 Call from CS (forged caller-id info)
 Call from CS
 Store PASSporT
Call from CS

 Call from CS
 Call from CS
 X

 <----- Retrieve PASSporT
for CS:Bob
 PASSporT for CS:Bob

[Ring phone with callerid = CS]

In order to mount this attack, the attacker contacts the Callback Service (CS) and provides it with Bob's number. This causes the CS to initiate a call to Bob. As before, the CS contacts the CPS to insert an appropriate PASSporT and then initiates a call to Bob. Because it is a valid CS injecting the PASSporT, none of the security checks mentioned above help. However, the attacker simultaneously initiates a call to Bob using forged caller-id information corresponding to the CS. If he wins the race with the CS, then Bob's phone will attempt to verify the attacker's call (and succeed since they are indistinguishable) and the CS's call will go to busy/voice mail/call waiting. Note: in a SIP environment, the callee might notice that there were multiple INVITEs and thus detect this attack.

8. Authentication and Verification Service Behavior for Out-of-Band

[RFC8224] defines an authentication service and a verification service as functions that act in the context of SIP requests and responses. This specification thus provides a more generic description of authentication service and verification service behavior that might or might not involve any SIP transactions, but depends only on placing a request for communications from an originating identity to one or more destination identities.

8.1. Authentication Service

Out-of-band authentication services perform steps similar to those defined in [<u>RFC8224</u>] with some exceptions:

Step 1: The authentication service MUST determine whether it is authoritative for the identity of the originator of the request, that is, the identity it will populate in the "orig" claim of the PASSporT. It can do so only if it possesses the private key of one or more credentials that can be used to sign for that identity, be it a domain or a telephone number or something other identifier. For example, the authentication service could hold the private key associated with a STIR certificate [<u>RFC8225</u>].

Step 2: The authentication service MUST determine that the originator of communications can claim the originating identity. This is a policy decision made by the authentication service that depends on its relationship to the originator. For an out-of-band application built in to the calling device, for example, this is the same check performed in Step 1: does the calling device have a private key, such one corresponding to a STIR certificate, that can sign for the originating identity?

Step 3: The authentication service MUST acquire the public key of the destination, which will be used to encrypt the PASSporT. It must also discover (see Section 10) the CPS associated with the destination. The authentication service may already have the key and destination CPS cached, or may need to query a service to acquire the key. Note that per Section 6.1 the authentication service may also need to acquire a token for PASSporT storage from the CPS upon CPS discovery. It is anticipated that the discovery mechanism (see Section 10) used to find the appropriate CPS will also find the proper key server for the public key of the destination. In some cases, a destination may have multiple public keys associated with it. In that case, the authentication service MUST collect all of those keys.

Step 4: The authentication service MUST create the PASSporT object. This includes acquiring the system time to populate the "iat" claim, and populating the "orig" and "dest" claims as described in [RFC8225]. The authentication service MUST then encrypt the PASSporT. If in Step 3 the authentication service discovered multiple public keys for the destination, it MUST create one encrypted copy for each public key it discovered.

Finally, the authentication service stores the encrypted PASSporT(s) at the CPS discovered in Step 3. Only after that is completed should any call initiated. Note that a call might be initiated over SIP, and the authentication service would place the same PASSporT in the Identity header field value of the SIP request - though SIP would carry cleartext version rather than an encrypted version sent to the CPS. In that case, out-of-band would serve as a fallback mechanism in case the request was not conveyed over SIP end-to-end. Also, note

that the authentication service MAY use a compact form of the PASSporT for a SIP request, whereas the version stored at the CPS MUST always be a full form PASSporT.

8.2. Verification Service

When a call arrives, an out-of-band verification service performs steps similar to those defined in [<u>RFC8224</u>] with some exceptions:

Step 1: The verification service contacts the CPS and requests all current PASSporTs for its destination number. The verification service MUST then decrypt all PASSporTs using its private key. Some PASSporTs may not be decryptable for any number of reasons: they may be intended for a different verification service, or they may be "dummy" values inserted by the CPS for privacy purposes. The next few steps will narrow down the set of PASSporTs that the verification service will examine from that initial decryptable set.

Step 2: The verification service MUST determine if any "ppt" extensions in the PASSporTs are unsupported. It takes only the set of supported PASSporTs and applies the next step to them.

Step 3: The verification service MUST determine if there is an overlap between the called party number number presented in call signaling and the "orig" field of any decrypted PASSporTs. It takes the set of matching PASSporTs and applies the next step to them.

Step 4: The verification service MUST determine if the credentials that signed each PASSporT are valid, and if the verification service trusts the CA that issued the credentials. It takes the set of trusted PASSporTs to the next step.

Step 5: The verification service MUST check the freshness of the "iat" claim of each PASSporT. The exact interval of time that determines freshness is left to local policy. It takes the set of fresh PASSporTs to the next step.

Step 6: The verification service MUST check the validity of the signature over each PASSporT, as described in described in [<u>RFC8225</u>].

Finally, the verification service will end up with one or more valid PASSporTs corresponding to the call it has received. This document does not prescribe any particular treatment of calls that have valid PASSporTs associated with them. The handling of the message after the verification process depends on how the verification service is implemented and on local policy. However, it is anticipated that local policies could involve making different forwarding decisions in intermediary implementations, or changing how the user is alerted or how identity is rendered in UA implementations.

<u>8.3</u>. Gateway Placement Services

The out-of-band mechanism also supports the presence of gateway placement services, which do not create PASSporTs themselves, but instead take PASSporTs out of signaling protocols and store them at a CPS before gatewaying to a protocol that cannot carry PASSporTs itself. For example, a SIP gateway that sends calls to the PSTN could receive a call with an Identity header, extract a PASSporT from the Identity header, and store that PASSporT at a CPS.

To place a PASSporT at a CPS, a gateway MUST perform Step 3 of <u>Section 8.1</u> above: that is, it must discover the CPS and public key associated with the destination of the call, and may need to acquire a PASSporT storage token (see <u>Section 6.1</u>). Per Step 3 this may entail discovering several keys. The gateway then collects the inband PASSporT(s) from the in-band signaling, encrypts the PASSporT(s), and stores them at the CPS.

A similar service could be performed by a gateway that retrieves PASSporTs from a CPS and inserts them into signaling protocols that support carrying PASSporTS in-band. This behavior may be defined by future specifications.

9. HTTPS Interface to the CPS

The default Call Placement Service implementation uses a REST API to store and retrieve objects at the CPS. The calling party stores the PASSporT at the CPS prior to initiating the call; the PASSporT is stored at a location at the CPS that corresponds to the called number. Note that it is possible for multiple parties to be calling a number at the same time, and that for called numbers such as large call centers, many PASSporTs could legitimately be stored simultaneously, and it might prove difficult to correlate these with incoming calls.

Assume that an authentication service has created the following PASSporT for a call to the telephone number 2.222.222.2222: [TBD these are currently dummy values, will mock up real examples later]

eyJhbGci0iJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwieDV1Ij0iaHR0cHM6Ly9j ZXJ0LmV4YW1wbGUub3JnL3Bhc3Nwb3J0LmNlciJ9.eyJkZXN0Ijp7InVyaSI6WyJz aXA6YWxpY2VAZXhhbXBsZS5jb20iXX0sImlhdCI6IjE0NDMyMDgzNDUiLCJvcmlnI jp7InRuIj0iMTIxNTU1NTEyMTIifX0.rq3pjT1hoRwakEGjHCnWSwUnshd0-zJ6F1 V0gFWSjHBr8Qjpjlk-cpFYpFYs0jNCpTz03QfP0lckGaS6hEck7w Through some out-of-band mechanism (see <u>Section 10</u>) the authentication service discovers the network location of a web service that acts as the CPS for 2.222.222.2222. Through the same mechanism, we will say that it has also discovered one public key for that destination. It uses that public key to encrypt the PASSporT, resulting in the encrypted PASSporT:

rlWuoTpvBvWSHmV1AvVfVaE5pPV6Va0up3Ajo3W0VvjvrQI1VwbvnUE0pUZ6Yl9w MKW0YzI4LJ1joTHho3WaY30up3Ajo3W0YzAypvW9rlWxMKA0Vwc7VaIlnFV6JlWm nKN6LJkcL2INMKuuoK0fMF5wo20vKK0fVzyuqPV6VwR0AQZlZQtmAQHvYPWipzyaV wc7VaEhVwbvZGVkAGH1AGRlZGVvsK0ed3cwG1ubEjnxRTwUPaJFjHafuq0-mW6S1 IBtSJFwU0e8Dwcwyx-pcSLcSLfbwAPcGmB3DsCBypxTnF6uRpx7j

Having concluded the numbered steps in <u>Section 8.1</u>, including acquiring any token (per <u>Section 6.1</u>) needed to store the PASSporT at the CPS, the authentication service then stores the encrypted PASSporT:

POST /cps/2.222.222.222/ppts HTTP/1.1
Host: cps.example.com
Content-Type: application/passport

rlWuoTpvBvWSHmV1AvVfVaE5pPV6Va0up3Ajo3W0VvjvrQI1VwbvnUE0pUZ6Yl9w MKW0YzI4LJ1joTHho3WaY30up3Ajo3W0YzAypvW9rlWxMKA0Vwc7VaIlnFV6JlWm nKN6LJkcL2INMKuuoK0fMF5wo20vKK0fVzyuqPV6VwR0AQZlZQtmAQHvYPWipzyaV wc7VaEhVwbvZGVkAGH1AGRlZGVvsK0ed3cwG1ubEjnxRTwUPaJFjHafuq0-mW6S1 IBtSJFwU0e8Dwcwyx-pcSLcSLfbwAPcGmB3DsCBypxTnF6uRpx7j

The web service assigns a new location for this encrypted PASSporT in the collection, returning a 201 OK with the location of /cps/2.222.222.222/ppts/ppt1. Now the authentication service can place the call, which may be signaled by various protocols. Once the call arrives at the terminating side, a verification service interrogates its CPS to ask for the set of incoming calls for its telephone number (2.222.222.222).

GET /cps/2.222.222.222/ppts Host: cps.example.com

This returns to the verification service a list of the PASSporTs currently in the collection, which currently consists of only /cps/2.222.222.222/ppts/ppt1. The verification service then sends a new GET for /cps/2.222.222.222.222/ppts/ppt1/ which yields:

HTTP/1.1 200 OK Content-Type: application/passport Link: <https://cps.example.com/cps/2.222.222.222/ppts>

rlWuoTpvBvWSHmV1AvVfVaE5pPV6Va0up3Ajo3W0VvjvrQI1VwbvnUE0pUZ6Yl9w MKW0YzI4LJ1joTHho3WaY30up3Ajo3W0YzAypvW9rlWxMKA0Vwc7VaIlnFV6JlWm nKN6LJkcL2INMKuuoK0fMF5wo20vKK0fVzyuqPV6VwR0AQZlZQtmAQHvYPWipzyaV wc7VaEhVwbvZGVkAGH1AGRlZGVvsK0ed3cwG1ubEjnxRTwUPaJFjHafuq0-mW6S1 IBtSJFwU0e8Dwcwyx-pcSLcSLfbwAPcGmB3DsCBypxTnF6uRpx7j

That concludes Step 1 of <u>Section 8.2</u>; the verification service then goes on to the next step, processing that PASSporT through its various checks.

10. CPS Discovery

In order for the two ends of the out-of-band dataflow to coordinate, they must agree on a way to discover a CPS and retrieve PASSporT objects from it based solely on the rendezvous information available: the calling party number and the called number. Because the storage of PASSporTs in this architecture is indexed by the called party number, it makes sense to discover a CPS based on the called party number as well. There are a number of potential service discovery mechanisms that could be used for this purpose. The means of service discovery may vary by use case.

Although the discussion above is written in terms of a single CPS, having a significant fraction of all telephone calls result in storing and retrieving PASSporTs at a single monolithic CPS has obvious scaling problems, and would as well allow the CPS to gather metadata about a very wide set of callers and callees. These issues can be alleviated by operational models with a federated CPS; any service discovery mechanism for out-of-band STIR should enable federation of the CPS function.

Some service discovery possibilities under consideration include the following:

If a credential lookup service is already available (see <u>Section 11</u>), the CPS location can also be recorded in the callee's credentials; an extension to [<u>RFC8226</u>] could for example provide a link to the location of the CPS where PASSporTs should be stored for a destination.

There exist a number of common directory systems that might be used to translate telephone numbers into the URIs of a CPS. ENUM [<u>RFC6116</u>] is commonly implemented, though no "golden root" central ENUM administration exists that could be easily reused today to help the endpoints discover a common CPS. Other protocols associated with queries for telephone numbers, such as the TeRI [<u>I-D.peterson-modern-teri</u>] protocol, could also serve for this application.

Another possibility is to use a single distributed service for this function. VIPR [I-D.rosenberg-dispatch-vipr-overview] proposed a RELOAD [RFC6940] usage for telephone numbers to help direct calls to enterprises on the Internet. It would be possible to describe a similar RELOAD usage to identify the CPS where calls for a particular telephone number should be stored. One advantage that the STIR architecture has over VIPR is that it assumes a credential system that proves authority over telephone numbers; those credentials could be used to determine whether or not a CPS could legitimately claim to be the proper store for a given telephone number.

Future versions of this specification will identify suitable service discovery mechanisms for out-of-band STIR.

<u>11</u>. Credential Lookup

In order to encrypt a PASSporT (see <u>Section 6.1</u>), the caller needs access to the callee's credentials (specifically their public key). This requires some sort of directory/lookup system. This document does not specify any particular scheme, but a list of requirements would be something like:

Obviously, if there is a single central database and the caller and callee each contact it in real time to determine the other's credentials, then this represents a real privacy risk, as the central database learns about each call. A number of mechanisms are potentially available to mitigate this:

Have endpoints pre-fetch credentials for potential counterparties (e.g., their address book or the entire database).

Have caching servers in the user's network that proxy their fetches and thus conceal the relationship between the user and the credentials they are fetching.

Clearly, there is a privacy/timeliness tradeoff in that getting upto-date knowledge about credential validity requires contacting the credential directory in real-time (e.g., via OCSP). This is somewhat mitigated for the caller's credentials in that he can get short-term credentials right before placing a call which only reveals his calling rate, but not who he is calling. Alternately, the CPS can verify the caller's credentials via OCSP, though of course this STIR Fallback

requires the callee to trust the CPS's verification. This approach does not work as well for the callee's credentials, but the risk there is more modest since an attacker would need to both have the callee's credentials and regularly poll the database for every potential caller.

We consider the exact best point in the tradeoff space to be an open issue.

<u>12</u>. Acknowledgments

The ideas in this document come out of discussions with Richard Barnes and Cullen Jennings. We'd also like to thank Robert Sparks for helpful suggestions.

<u>13</u>. IANA Considerations

This memo includes no request to IANA.

<u>14</u>. Security Considerations

This entire document is about security, but the detailed security properties depend on having a single concrete scheme to analyze.

<u>15</u>. Informative References

[I-D.ietf-stir-passport-divert]

Peterson, J., "PASSporT Extension for Diverted Calls", <u>draft-ietf-stir-passport-divert-01</u> (work in progress), October 2017.

[I-D.peterson-modern-teri]

Peterson, J., "An Architecture and Information Model for Telephone-Related Information (TeRI)", <u>draft-peterson-</u> <u>modern-teri-03</u> (work in progress), July 2017.

[I-D.rosenberg-dispatch-vipr-overview]

Rosenberg, J., Jennings, C., and M. Petit-Huguenin, "Verification Involving PSTN Reachability: Requirements and Architecture Overview", <u>draft-rosenberg-dispatch-vipr-</u> <u>overview-04</u> (work in progress), October 2010.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, DOI 10.17487/RFC2119, March 1997, <<u>https://www.rfc-editor.org/info/rfc2119</u>>.

- [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", <u>RFC 3261</u>, DOI 10.17487/RFC3261, June 2002, <https://www.rfc-editor.org/info/rfc3261>.
- [RFC6116] Bradner, S., Conroy, L., and K. Fujiwara, "The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM)", <u>RFC 6116</u>, DOI 10.17487/RFC6116, March 2011, <<u>https://www.rfc-editor.org/info/rfc6116</u>>.
- [RFC6940] Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S., and H. Schulzrinne, "REsource LOcation And Discovery (RELOAD) Base Protocol", <u>RFC 6940</u>, DOI 10.17487/RFC6940, January 2014, <<u>https://www.rfc-editor.org/info/rfc6940</u>>.
- [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an Attack", <u>BCP 188</u>, <u>RFC 7258</u>, DOI 10.17487/RFC7258, May 2014, <<u>https://www.rfc-editor.org/info/rfc7258</u>>.
- [RFC7340] Peterson, J., Schulzrinne, H., and H. Tschofenig, "Secure Telephone Identity Problem Statement and Requirements", <u>RFC 7340</u>, DOI 10.17487/RFC7340, September 2014, <<u>https://www.rfc-editor.org/info/rfc7340</u>>.
- [RFC8224] Peterson, J., Jennings, C., Rescorla, E., and C. Wendt, "Authenticated Identity Management in the Session Initiation Protocol (SIP)", <u>RFC 8224</u>, DOI 10.17487/RFC8224, February 2018, <<u>https://www.rfc-editor.org/info/rfc8224</u>>.
- [RFC8225] Wendt, C. and J. Peterson, "PASSporT: Personal Assertion Token", <u>RFC 8225</u>, DOI 10.17487/RFC8225, February 2018, <<u>https://www.rfc-editor.org/info/rfc8225</u>>.
- [RFC8226] Peterson, J. and S. Turner, "Secure Telephone Identity Credentials: Certificates", <u>RFC 8226</u>, DOI 10.17487/RFC8226, February 2018, <<u>https://www.rfc-editor.org/info/rfc8226</u>>.

Authors' Addresses

Eric Rescorla Mozilla

Email: ekr@rtfm.com

[Page 23]

Jon Peterson Neustar, Inc. 1800 Sutter St Suite 570 Concord, CA 94520 US

Internet-Draft

Email: jon.peterson@neustar.biz