
Secure Inter-Domain Routing M. Reynolds
Internet-Draft IPSw
Intended status: Standards Track S. Kent
Expires: October 2, 2013 BBN
 M. Lepinski
 BBN
 Apr 5, 2013

Local Trust Anchor Management for the Resource Public Key Infrastructure
 <draft-ietf-sidr-ltamgmt-08.txt>

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on October 2, 2013.

Copyright and License Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Reynolds, et al Expires October 2, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-sidr-ltamgmt-08.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RPKI Local TA Management Apr 5, 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 This document describes a facility to enable a relying party (RP) to
 manage trust anchors (TAs) in the context of the Resource Public Key
 Infrastructure (RPKI). It is common in RP software (not just in the
 RPKI) to allow an RP to import TA material in the form of self-signed
 certificates. However, this approach to incorporating TAs is
 potentially dangerous. (These self-signed certificates rarely
 incorporate any extensions that impose constraints on the scope of
 the imported public keys, and the RP is not able to impose such
 constraints.) The facility described in this document allows an RP to
 impose constraints on such TAs. Because this mechanism is designed to
 operate in the RPKI context, the most important constraints are the
 Internet Number Resources (INRs) expressed via RFC 3779 extensions.
 These extentions bind address spaces and/or autonomous system (AS)
 numbers to entities. The primary motivation for the facility described
 in this document is to enable an RP to ensure that INR information
 that it has acquired via some trusted channel is not overridden by the
 information acquired from the RPKI repository system or by the putative
 TAs that the RP imports. Specifically, the mechanism allows an RP to
 specify a set of overriding bindings between public key identifiers and
 INR data. These bindings take precedence over any conflicting bindings
 acquired by the putative TAs and the certificates downloaded from the
 RPKI repository system. This mechanism is designed for local use by an RP,
 but any entity that is accorded administrative control over a set of RPs
 may use this mechanism to convey its view of the RPKI to RPs within its
 jurisdiction. The means by which this latter use case is effected is
 outside the scope of this document.

Reynolds, et al Expires October 2, 2013 [Page 2]

https://datatracker.ietf.org/doc/html/rfc3779

Internet-Draft RPKI Local TA Management Apr 5, 2013

Table of Contents

1 Introduction . 4
1.1 Terminology . 5

2 Overview of Certificate Processing 5
2.1 Target Certificate Processing 5
2.2 Perforation . 5
2.3 TA Re-parenting . 6
2.4 Paracertificates . 6

3 Format of the constraints file 8
3.1 Relying party subsection 8
3.2 Flags subsection . 8
3.3 Tags subsection . 9
3.3.1 Xvalidity_dates tag 10
3.3.2 Xcrldp tag . 10
3.3.3 Xcp tag . 11
3.3.4 Xaia tag . 11

3.4 Blocks subsection . 12
4 Certificate Processing Algorithm 13
4.1 Proofreading algorithm 14
4.2 TA processing algorithm 15
4.2.1 Preparatory processing (stage 0) 16
4.2.2 Target processing (stage 1) 17
4.2.3 Ancestor processing (stage 2) 18
4.2.4 Tree processing (stage 3) 19
4.2.5 TA re-parenting (stage 4) 20

4.3 Discussion . 21
5 Implications for Path Discovery 21
5.1 Two answers . 21
5.2 One answer . 22
5.3 No answer . 22

6 Implications for Revocation 22
6.1 No state bits set . 23
6.2 ORIGINAL state bit set 23
6.3 PARA state bit set . 23
6.4 Both ORIGINAL and PARA state bits set 24

7 Security Considerations . 24
8 IANA Considerations . 24
9 Acknowledgements . 24
10 References . 24
10.1 Normative References 24
10.2 Informative References 25

 Authors' Addresses . 25
Appendix A: Sample Constraints File 26
Appendix B: Optional Sorting Algorithm for Ancestor Processing . . 27

Reynolds, et al Expires October 2, 2013 [Page 3]

Internet-Draft RPKI Local TA Management Apr 5, 2013

1 Introduction

 The Resource Public Key Infrastructure (RPKI) [RFC6480] is a
 PKI in which certificates are issued to facilitate management of
 Internet Resource Numbers (INRs). Such resources are expressed in
 the form of X.509v3 "resource" certificates with extensions defined
 by RFC 3779 [RFC6487]. Validation of a resource certificate is
 preceded by path discovery. In a PKI path discovery is effected by
 constructing a certificate path between a target certificate and a
 trust anchor (TA). No IETF standards define how to construct a
 certificate path; commonly such paths are based on a bottom-up
 search using Subject/Issuer name matching, but top-down and
 meet-in-the-middle approaches may also be employed [RFC4158]. In
 contrast, path validation is top-down, as defined by [RFC5280].

 In the RPKI, certificates can be acquired in various ways, but the
 default is a top-down tree walk as described in [RFC6481],
 initialized via a Trust Anchor Locator [RFC6490]. Note that the
 process described there is not path discovery per sem but the
 collecting of certificates to populate a local cache. Thus, the
 common, bottom-up path discovery approach is not inconsistent
 with these RFCs. Morevoer, a bottom-up path discovery approach
 is more general, accommodating certificates that might be
 acquired by other means, i.e., not from an RPKI repository. There
 are circumstances under which an RP may wish to override the INR
 specifications obtained through the RPKI distributed repository
 system [RFC6481]. This document describes a mechanism by which
 an RP may override any conflicting information expressed via
 putative TAs and the certificates downloaded from the RPKI
 repository system. Thus the algorithms described in this document
 adopt a bottom-up path discovery approach.

 To effect this local control, this document calls for a relying party
 to specify a set of bindings between public key identifiers and
 INRs through a text file known as a constraints file. The constraints
 expressed in this file then take precedence over any competing claims
 expressed by resource certificates acquired from the distributed
 repository system. (The means by which a relying party acquires the
 key identifier and the RFC 3779 extension data used to populate the
 constraints file is outside the scope of this document.) The relying
 party also may use a local publication point (the root of a local
 directory tree that is made available as if it were a remote
 repository) as a source of certificates and CRLs (and other RPKI
 signed objects, e.g., ROAs and manifests) that do not appear in the
 RPKI repository system.

 In order to allow reuse of existing, standard path validation
 mechanisms, the RP-imposed constraints are realized by having the RP
 itself represented as the only TA known in the local certificate
 validation context. To ensure that all RPKI certificates can be
 validated relative to this TA, this RP TA certificate must contain

https://datatracker.ietf.org/doc/html/rfc6480
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc6487
https://datatracker.ietf.org/doc/html/rfc4158
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6481
https://datatracker.ietf.org/doc/html/rfc6490
https://datatracker.ietf.org/doc/html/rfc6481
https://datatracker.ietf.org/doc/html/rfc3779

 all-encompassing resource allocations, i.e. 0/0 for IPv4, 0::/0 for
 IPv6 and 0-4294967295 for AS numbers. Thus, a conforming
 implementation of this mechanism must be able to cause a self-signed
 certification authority (CA) certificate to be created with a locally
 generated key pair. It also must be able to issue CA certificates
 subordinate to this TA. Finally, a conforming implementation of this

Reynolds, et al Expires October 2, 2013 [Page 4]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 mechanism must process the constraints file and modify certificates
 as needed in order to enforce the constraints asserted in the file.

 The remainder of this document describes in detail the types of
 certificate modification that may occur, the syntax and semantics of
 the constraints file, and the implications of certificate modification
 on path discovery and revocation.

1.1 Terminology

 It is assumed that the reader is familiar with the terms and concepts
 described in "Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile" [RFC5280] and "X.509
 Extensions for IP Addresses and AS Identifiers" [RFC3779].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2 Overview of Certificate Processing

 The fundamental aspect of the facility described in this document is
 one of certificate modification. The constraints file, described in
 more detail in the next section, contains assertions about INRs
 that are to be specially processed. As a result of this processing,
 certificates in the local copy of the RPKI repository are transformed
 into new certificates satisfying the INR constraints so specified.
 This enables the RP to override conflicting assertions about resource
 holdings as acquired from the RPKI repository system. Three forms of
 certificate modification can occur. (Every certificate is digitally
 signed and thus cannot be modified without "breaking" its signature.
 In the context of this document we assume that certificates that are
 modified have been validated previously. Thus the content can be
 modified, locally, without the need to preserve the integrity of the
 signature. These modified certificates are referred to as
 paracertificates (see section 2.4 below).)

2.1 Target Certificate Processing

 If a certificate is acquired from the RPKI repository system and its
 Subject key identifier (SKI) is listed in the constraints file, it
 will be reissued directly under the RP TA certificate, with (possibly)
 modified RFC 3779 extensions. (The SKI is used as a compact reference
 to the public key in a target certificate.) The modified extensions
 will include any RFC 3779 data expressed in the constraints file. Other
 certificate fields may also be modified to maintain consistency. (These
 fields are enumerated in Table 1, and discussed in Section 3.3.) In

Section 4.2, target certificate processing corresponds to stage one of
 the algorithm. (When a target certificate is re-parented, all
 subordinate signed products will still be valid, unless the set of
 INRs in the targeted certificate is reduced.)

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779

2.2 Perforation

 When a target certificate is re-issued directly under the RP's TA, its
 INRs MUST be removed from all of its parent (CA) certificates. (If
 these INRs were not removed, then conflicting assertions about INRs
 could arise and undermine the authority of the RP TA.) Thus, every
 certificate acquired from the RPKI repository MUST be examined to
 determine if it contains an RFC 3779 extension that intersects the
 resource data in the constraints file. If there is an intersection
 the certificate will be reissued directly under the RP TA, with
 modified RFC 3779 extensions. We refer to the process of modifying
 the RFC 3779 extension in an affected certificate as "perforation"
 (because the process will create "holes" in these extensions). The

Reynolds, et al Expires October 2, 2013 [Page 5]

https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779

Internet-Draft RPKI Local TA Management Apr 5, 2013

 modified extensions will exclude any RFC 3779 data expressed in the
 constraints file. In the certificate processing algorithm described
 in Section 4.2, perforation corresponds to stage two of the algorithm
 ("ancestor processing") and also to stage three of the algorithm
 ("tree processing").

2.3 TA Re-parenting

 All valid, self-signed certificates offered as TAs in the public RPKI
 certificate hierarchy, e.g., self-signed certificates issued by IANA
 or RIRs, will be re-issued under the RP TA certificate. This processing
 is done even though all but one of these certificates might not
 intersect any resources specified in the constraints file. We refer to
 this reissuance as "re-parenting" since the issuer (parent) of the
 certificate has been changed. The issuer name is changed from that of
 the certificate subject (this is a self-signed certificate) to that of
 the RP TA. In the certificate processing algorithm described in Section

4.2, TA re-parenting corresponds to stage four of the algorithm. (In
 a more generic PKI context, re-parenting enables an RP to insert
 extensions in these certificates to impose constraings on path
 processing in a fashion consistent with RFC 5280. In this fashion an
 RP can impose name constraints, policy constraints, etc.)

2.4 Paracertificates

 If a certificate is subject to any of the three forms of processing
 just described, that certificate will be referred to as an "original"
 certificate and the processed (output) certificate will be referred
 to as a paracertificate. When an original certificate is transformed
 into a paracertificate all the fields and extensions from the
 original certificate will be retained, except as indicated in Table
 1, below.

https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc5280

Reynolds, et al Expires October 2, 2013 [Page 6]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 Original Certificate Field Action

 Version unchanged
 Serial number created per note A
 Signature replaced if needed
 with RP's signing alg
 Issuer replaced with RP's name
 Validity dates replaced per note B
 Subject unchanged
 Subject public key info unchanged
 Extensions
 Subject key identifier unchanged
 Key usage unchanged
 Basic constraints unchanged
 CRL distribution points replaced per note B
 Certificate policy replaced per note B
 Authority info access replaced per note B
 Authority key ident replaced with RP's
 IP address block modified as described
 AS number block modified as described
 Subject info access unchanged
 All other extensions unchanged
 Signature Algorithm same as above
 Signature value new

 Table 1 Certificate Field Modifications

 Note A. The serial number will be created by concatenating the
 current time (the number of seconds since Jan 1, 1970) with a count
 of the certificates created in the current run. Because all
 paracertificates are issued directly below the RP TA, this algorithm
 ensures serial number uniqueness.

 Note B. These fields are derived (as described in Section 3.3 below)
 from parameters in the constraints file (if present); otherwise, they
 take on values from the certificates from which the paracertificates
 are derived.

Reynolds, et al Expires October 2, 2013 [Page 7]

Internet-Draft RPKI Local TA Management Apr 5, 2013

3 Format of the constraints file

 This section describes the syntax of the constraints file. (The
 syntax has been defined to enable creation and distribution of
 constraint files to a set of RPs, by an authorized third party.)
 The model described below is nominal; implementations need not match
 all details of this model as presented, but the external behavior of
 implementations MUST correspond to the externally observable
 characteristics of this model in order to be compliant. It is
 RECOMMENDED that the syntax described herein be supported, to
 facilitate interoperability between creators and comsumers of
 constraints files.

 The constraints file consists of four logical subsections: the
 replying party subsection, the flags subsection, the tags subsection
 and the blocks subsection. The relying party subsection and the
 blocks subsection are REQUIRED and MUST be present; the flags and
 tags subsections are OPTIONAL. Each subsection is described in more
 detail below. Note that the semicolon (;) character acts as the
 comment character, to enable annotating constraints files. All
 characters from a semicolon to the end of that line are ignored. In
 addition, lines consisting only of whitespace are ignored. The
 subsections MUST occur in the order indicated. An example constraints
 file is given in Appendix A.

3.1 Relying party subsection

 The relying party subsection is a REQUIRED subsection of the
 constraints file. It MUST be the first subsection of the constraints
 file, and it MUST consist of two lines of the form:
 (RECOMMENDED)

 PRIVATEKEYMETHOD value [... value]
 TACERTIFICATE value

 The first line provides a pointer (including an access method) to
 the RP's private key. This line consists of the string literal
 PRIVATEKEYMETHOD, followed by one or more whitespace delimited string
 values. These values are passed to the certificate processing
 algorithm as described below. Note that this entry, as for all
 entries in the constraints file, is case sensitive.

 The second line of this subsection consists of the string literal
 TACERTIFICATE, followed by exactly one string value. This value
 is the name of a file containing the relying party's TA certificate.
 The file name is passed to the certificate processing algorithm as
 described below.

3.2 Flags subsection

 The flags subsection of the constraints file is an OPTIONAL

 subsection. If present it MUST immediately follow the relying party

Reynolds, et al Expires October 2, 2013 [Page 8]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 subsection. The flags subsection consists of one or more lines of the
 form

 CONTROL flagname booleanvalue

 Each such line is referred to as a control line. Each control line
 MUST contain exactly three whitespace delimited strings. The first
 string MUST be the literal CONTROL. The second string MUST be one of
 the following three literals:

 resource_nounion
 intersection_always
 treegrowth

 The third string denotes a Boolean value, and MUST be one of the
 literals TRUE or FALSE. Control flags influence the global operation
 of the certificate processing algorithm; the semantics of the flags
 is described in Section 4.2. Note that each flag has a default value,
 so that if the corresponding CONTROL line does not appear in the
 constraints file, the algorithm flag is considered to take the
 corresponding default value. The default value for each flag is FALSE.
 Thus, if any flag is not named in a control line it takes the value
 FALSE. If the flags subsection is absent, all three flags assume the
 default value FALSE.

3.3 Tags subsection

 The tags subsection is an OPTIONAL subsection in the constraints
 file. If present it MUST immediately follow the relying party
 subsection (if the flags subsection is absent) or the flags
 subsection (if it is present). The tags subsection consists of one or
 more lines of the form

 TAG tagname tagvalue [... tagvalue]

 Each such line is referred to as a tag line. Each tag line MUST
 consist of at least three whitespace delimited string values, the
 first of which must be the literal TAG. The second string value gives
 the name of the tag, and subsequent string(s) give the value(s) of
 the tag. The tag name MUST be one of the following four string
 literals:

 Xvalidity_dates
 Xcrldp
 Xcp
 Xaia

 The purpose of the tag lines is to provide an indication of the means

Reynolds, et al Expires October 2, 2013 [Page 9]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 by which paracertificate fields, specifically those indicated above
 under "Note B", of Table 1are constructed. Each tag has a default, so
 that if the corresponding tag line is not present in the constraints
 file, the default behavior is used when constructing the
 paracertificates. The syntax and semantics of each tag line is
 described next.

 Note that the tag lines are considered to be global; the action of
 each tag line (or the default action, if that tag line is not
 present) applies to all paracertificates that are created as part of
 the certificate processing algorithm.

3.3.1 Xvalidity_dates tag

 This tag line is used to control the value of the notBefore and
 notAfter fields in paracertificates. If this tag line is specified
 and there is a single tagvalue which is the literal string C, the
 paracertificate validity interval is copied from the original
 certificate validity interval from which it is derived. If this tag
 is specified and there is a single tagvalue which is the literal
 string R, the paracertificate validity interval is copied from the
 validity interval of the RP's TA certificate. If this tag is specified
 and the tagvalue is neither of these literals, then exactly two
 tagvalues MUST be specified. Each must be a Generalized Time string
 of the form YYYYMMDDHHMMSSZ. The first tagvalue is assigned to the
 notBefore field and the second tagvalue is assigned to the notAfter
 field. It MUST be the case that the tagvalues can be parsed as valid
 Generalized Time strings such that notBefore is less than notAfter,
 and also such that notAfter represents a time in the future (i.e.,
 the paracertificate has not already expired).

 If this tag line is not present in the constraints file the default
 behavior is to copy the validity interval from the original
 certificate to the corresponding paracertificate.

3.3.2 Xcrldp tag

 This tag line is used to control the value of the CRL distribution
 point extension in paracertificates. If this tag line is specified
 and there is a single tagvalue that is the string literal C, the
 CRLDP of the paracertificate is copied from the CRLDP of the original
 certificate from which it is derived. If this tag line is specified
 and there is a single tagvalue that is the string literal R, the
 CRLDP of the paracertificate is copied from the CRLDP of the RP's TA
 certificate. If this tag line is specified and there is a single
 tagvalue that is not one of these two reserved literals, or if
 there is more than one tagvalue, then each tagvalue is interpreted as
 a URI that will be placed in the CRLDP sequence in the

Reynolds, et al Expires October 2, 2013 [Page 10]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 paracertificate.

 If this tag line is not present in the constraints file the default
 behavior is to copy the CRLDP from the original certificate into the
 corresponding paracertificate.

3.3.3 Xcp tag

 This tag line is used to control the value of the policyQualifierId
 field in paracertificates. If this tag line is specified there MUST
 be exactly one tagvalue. If the tagvalue is the string literal C, the
 paracertificate value is copied from the value in the corresponding
 original certificate. If the tagvalue is the string literal R, the
 paracertificate value is copied from the value in the RP's top level
 TA certificate. If the tagvalue is the string literal D, the
 paracertificate value is set to the default OID. If the tagvalue is
 not one of these reserved string literals, then the tagvalue MUST be
 an OID specified using the standard dotted notation. The value in the
 paracertificate's policyQualifierId field is set to this OID. Note
 the RFC 5280 specifies that only a single policy may be specified in
 a certificate, so only a single tagvalue is permitted in this tag
 line, even though the CertificatePolicy field is an ASN.1 sequence.

 If this tag line is not specified the default behavior is to use the
 default OID in creating the paracertificate.

 This option permits the RP to convert a value of the
 policyQualifierId field in a certificate (that would not be in
 conformance with the RPKI CP) to a conforming value in the
 paracertificate. This conversion enables use of RPKI validation
 software that checks the policy field against that specified in the
 RPKI CP [RFC6484].

3.3.4 Xaia tag

 This tag line is used to control the value of the Authority
 Information Access (AIA) extension in the paracertificate. If this
 tag line is present then it MUST have exactly one tagvalue. If this
 tagvalue is the string literal C, then the AIA field in the
 paracertificate is copied from the AIA field in the original
 certificate from which it is derived. If this tag line is present and
 the tagvalue is not the reserved string literal, then the tagvalue
 MUST be a URI. This URI is set as the AIA extension of the
 paracertificates that are created.

 If this tag line is not specified the default behavior is to use copy
 the AIA field from the original certificate to the AIA field of the
 paracertificate.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6484

Reynolds, et al Expires October 2, 2013 [Page 11]

Internet-Draft RPKI Local TA Management Apr 5, 2013

3.4 Blocks subsection

 The blocks subsection is a REQUIRED subsection of the constraints
 file. If the tags subsection is present, the blocks subsection MUST
 appear immediately after it. This MUST be the last subsection in
 the constraints file. The blocks subsection consists of one or more
 blocks, known as target blocks. A target block is used to specify an
 association between a certificate (identified by an SKI) and a set
 of resource assertions. Each target block contains four regions, an SKI
 region, an IPv4 region, an IPv6 region and an AS number region. All
 regions MUST be present in a target block.

 The SKI region contains a single line beginning with the string
 literal SKI and followed by forty hexadecimal characters giving the
 subject key identifier of a certificate, known as the target
 certificate. The hex character string MAY contain embedded whitespace
 or colon characters (included to improve readability), which are
 ignored. The IPv4 region consists of a line containing only the
 string literal IPv4. This line is followed by zero or more lines
 containing IPv4 prefixes in the format described in RFC 3779. The
 IPv6 region consists of a line containing only the string literal
 IPv6, followed by zero or more lines containing IPv6 prefixes using
 the format described in RFC 3513. (The presence of the IPv4 and IPv6
 literals is to simplify parsing of the constraints file.) Finally,
 the AS number region consists of a line containing only the string
 literal AS#, followed by zero or more lines containing AS numbers
 (one per line). The AS numbers are specified in decimal notation as
 recommended in RFC 5396. A target block is terminated by either the
 end of the constraints file, or by the beginning of the next target
 block, as signaled by its opening SKI region line. An example target
 block is shown below. (The indentation used below is employed to
 improve readability and is not required.) See also the complete
 constraints file example in Appendix A. Note that whitespace, as
 always, is ignored.

 SKI 00:12:33:44:00:BA:BA:DE:EB:EE:00:99:88:77:66:55:44:33:22:11
 IPv4
 10.2.3/24
 10.8/16
 IPv6
 1:2:3:4:5:6/112
 AS#
 123
 567

 The blocks subsection MUST contain at least one target block. Note
 that it is OPTIONAL that the SKI refer to a certificate that is known

Reynolds, et al Expires October 2, 2013 [Page 12]

https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc5396

Internet-Draft RPKI Local TA Management Apr 5, 2013

 or resolvable within the context of the local RPKI repository. Also,
 there is no REQUIRED or implied ordering of target blocks within the
 block subsection. Since blocks may occur in any order, the outcome of
 processing a constraints file may depend on the order in which target
 blocks occur within the constraints file. The next section of this
 document contains a detailed description of the certificate processing
 algorithm.

4 Certificate Processing Algorithm

 The section describes the certificate processing algorithm by which
 paracertificates are created from original certificates in the
 local RPKI repository. For the purposes of describing this algorithm,
 it will be assumed that certificates are persistently associated
 with state (or metadata) information. This state information is
 nominally represented by an array of named bits associated with each
 certificate. No specific implementation of this functionality is
 mandated by this document. Any implementation that provides the
 indicated functionality is acceptable, and need not actually consist
 of a bit field associated with each certificate.

 The following state bits used in certificate processing are

 NOCHAIN
 ORIGINAL
 PARA
 TARGET

 If the NOCHAIN bit is set, this indicates that a full path between
 the given certificate and a TA has not yet been discovered. If the
 ORIGINAL bit is set, this indicates that the certificate in question
 has been processed by some part of the processing algorithm described
 in Section 4.2. If it was processed as part of stage one processing,
 as described in section 4.2.2, the TARGET bit also will be set.
 Finally, every paracertificate will have the PARA bit set.

 At the beginning of algorithm processing each certificate in the
 local RPKI repository has the ORIGINAL, PARA and TARGET bits clear.
 If a certificate has a complete, validated path to a TA, or is itself
 a TA, then that certificate will have the NOCHAIN bit clear,
 otherwise it will have the NOCHAIN bit set. As the certificate
 processing algorithm proceeds, the metadata state of original
 certificates may change. In addition, since the certificate
 processing algorithm may also be creating paracertificates, it is
 responsible for actively setting or clearing the state of these four
 bits on those paracertificates.

 The certificate processing algorithm consists of two sub-algorithms:

Reynolds, et al Expires October 2, 2013 [Page 13]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 "proofreading" and "TA processing". Conceptually, the proofreading
 algorithm performs syntactic checks on the constraints file,
 while the TA processing algorithm performs the actual certificate
 transformation processing. If the proofreading algorithm does not
 succeed in parsing the constraints file, the TA processing-
 algorithm is not executed. Note also that if the constraints file is
 not present, neither algorithm is executed and the local RPKI
 repository is not modified. Each of the constituent algorithms will
 now be described in detail.

4.1 Proofreading algorithm

 The proofreading algorithm checks the constraints file for syntactic
 errors, e.g., missing REQUIRED subsections, or malformed addresses.
 Implementation of this algorithm is OPTIONAL. If it is implemented,
 the following text defines correct operation for the algorithm.
 The proofreading algorithms performs a set of heuristic checks, such
 as checking for prefixes that are too large (e.g., larger than /8).
 The proofreading algorithm also SHOULD examine resource regions (IPv4,
 IPv6 and AS# regions) within the blocks subsection, and reorder such
 resources within a region in ascending numeric order. On encountering
 any error the proofreading algorithm SHOULD provide an error message
 indicating the line on which the error occurred as well as informative
 text that is sufficiently descriptive as to allow the user to identify
 and correct the error. An implementation of the proofreading algorithm
 MUST NOT assume that it has access to the local RPKI repository (even
 read-only access). An implementation of the proofreading algorithm MUST
 NOT alter the local RPKI repository in any way; it also MUST NOT change
 any of the metadata associated with certificates in that repository.
 (Recall that the processing described here is creating a copy of that
 local repository.) For simplicity the remainder of this document
 assumes that the proofreading algorithm produces a transformed output
 file. This file contains the same syntactic information as the text
 version of the constraints file.

 The proofreading algorithm performs the following syntactic checks on
 the constraints file:
 - verifies the presence of the REQUIRED relying party subsection
 and the REQUIRED blocks subsection.
 - verifies the order of the two, three or four subsections as
 stated above.
 - verifies that the relying party subsection conforms to the
 specification given in Section 3.1 above.
 - verifies that, if present, the tags and flags subsections conform
 to the specifications in Sections 3.2 and 3.3 above.

 After these checks have been performed, the proofreading algorithm
 then checks the blocks subsection:
 - splits the blocks subsection into constituent target blocks, as
 delimited by the SKI region line(s)
 - verifies that at least one target block is present

 - verifies that each SKI region line contains exactly forty hexadecimal
 digits and contains no additional characters other than whitespace or
 colon characters.

 For each target the proofreading algorithm:

Reynolds, et al Expires October 2, 2013 [Page 14]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 - verifies the presence of the IPv4, IPv6 and AS# regions, and
 verifies that at least one such resource is present.
 - verifies that, for each IPv4 prefix, IPv6 prefix and autonomous
 system number given, that the indicated resource is syntactically
 valid according to the appropriate RFC definition, as described in

Section 3.4.
 - verifies that no IPv4 resource has a prefix larger than /8.
 - optionally performing reordering within each of the three resource
 regions so that stated resources occur in ascending numerical order.

 (If the proofreading algorithm has performed any reordering of
 information it MAY overwrite the constraints file. If it does so,
 however, it MUST preserve all information contained within the file,
 including information that is not parsed (such as comments). If the
 proofreading algorithm has performed any reordering of information
 but has not overwritten the constraints file, it MAY produce a
 transformed output file, as described above. If the proofreading
 algorithm has performed any reordering of information, but has
 neither overwritten the constraints file nor produced a transformed
 output file, it MUST provide an error message to the user indicating
 what reordering was performed.)

4.2 TA processing algorithm

 The TA processing algorithm acts on the constraints file (as processed
 by the proofreading algorithm) and the contents of the local RPKI
 repository to produce paracertificates for the purpose of enforcing
 the resource allocations as expressed in the constraints file. The
 TA processing algorithm operates in five stages, a preparatory stage
 (stage 0), target processing (stage 1), ancestor processing (stage 2),
 tree processing (state 3) and TA re-parenting (stage 4). Conceptually,
 during the preparatory stage the proofreader output file is read and a
 set of internal RP, tag and flag variables are set based on the contents
 of that file. (If the constraint file has not specified one or more of
 the tags and/or flags, those tags and flags are set to default
 values.) During target processing all certificates specified by a
 target block are processed, and the resources for those certificates
 are (potentially) expanded; for each target found a new
 paracertificate is manufactured with its various fields set, as shown
 in Table 1, using the values of the internal variables set in the
 preparatory stage and also, of course, the fields of the original
 certificate (and, potentially, fields of the RP's TA certificate). In
 stage 2 (ancestor) processing, all ancestors of the each target
 certificate are found, and the claimed resources are then removed
 (perforated). A new paracertificate with these diminished resources
 is crafted, with its fields generated based on internal variable
 settings, original certificate field values, and, potentially, the
 fields of the RP's TA certificate. In tree processing (stage 3), the

Reynolds, et al Expires October 2, 2013 [Page 15]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 entire local RPKI repository is searching for any other certificates
 that have resources that intersect a target resource, and that were
 not otherwise processed during a preceding stage. Perforation is
 again performed for any such intersecting certificates, and
 paracertificates created as in stage 2. In the fourth (last) stage,
 TA re-parenting, any TA certificates in the local RPKI
 repository that have not already been processed are now re-parented
 under the RP's TA certificate. This transformation creates
 paracertificates; however, these paracertificates may have RFC 3779
 resources that were not altered during algorithm processing. The
 final output of algorithm processing will be threefold:
 - the metadata information on some (original) certificates in the
 repository MAY be altered.
 - paracertificates will be created, with the appropriate metadata,
 and entered into the repository.
 - the TA processing algorithm SHOULD produce a human readable
 log of its actions, indicating which paracertificates were created
 and why. The remainder of this section describes the processing
 stages of the algorithm in detail.

4.2.1 Preparatory processing (stage 0)

 During preparatory processing, the output of the proofreader
 algorithm, is read. Internal variables are set corresponding to each tag
 and flag, if present, or to their defaults, if absent. Internal variables
 are set corresponding to the PRIVATEKEYMETHOD value string(s) and the
 TACERTIFICATE string. The TA processing algorithm is queried to
 determine if it supports the indicated private key access
 methodology. This query is performed in an implementation-specific
 manner. In particular, an implementation is free to vacuously return
 success to this query. The TA processing algorithm next uses the
 value string for the TACERTIFICATE to locate this certificate,
 again in an implementation-specific manner. The certificate in
 question may already be present in the local RPKI repository, or it
 may be located elsewhere. The implementation is free to create the
 top level certificate at this time, and then assign to this
 newly-created certificate the name indicated. It is necessary only
 that, at the conclusion of this processing, a valid trust anchor
 certificate for the relying party has been created or otherwise
 obtained.

 Some form of access to the RP's private key and top level certificate
 are required for subsequent correct operation of the algorithm.
 Therefore, stage 0 processing MUST terminate if one or both
 conditions are not satisfied. In the error case, the implementation
 SHOULD provide an error message of sufficient detail that the user
 can correct the error(s). If stage 0 processing does not succeed, no
 further stages of TA processing are executed.

https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires October 2, 2013 [Page 16]

Internet-Draft RPKI Local TA Management Apr 5, 2013

4.2.2 Target processing (stage 1)

 During target processing, the TA processing algorithm reads all
 target blocks in the proofreader output file. It then processes each
 target block in the order specified in the file. In the description
 that follows, except where noted, the operation of the algorithm on
 a single target block will be described. Note, however, that all
 stage 1 processing is executed before any processing in subsequent
 stages is performed.

 The algorithm first obtains the SKI region of the target block. It
 then locates (in an implementation-dependent manner) the certificate
 identified by the SKI. Note that this search is performed only
 against (original) certificates, not against paracertificates.
 If more than one original certificate is found matching this SKI,
 there are two possible scenarios. If a resource holder has two
 certificates issued by the same CA, with overlapping validity
 intervals and the same key, but distinct subject names (typically,
 by virtue of the SerialNumber parts being different), then these
 two certificates are both considered to be (distinct) targets, and
 are both processed. If, however, a resource holder has certificates
 issued by two different CAs, containing different resources, but
 using the same key, there is no unambiguous method to decide which
 of the certificates is intended as the target. In this latter case
 the algorithm MUST issue a warning to that effect, mark the target
 block in question as unavailable for processing by subsequent stages
 and proceed to the next target block. If no certificate is found
 then the algorithm SHOULD issue a warning to that effect and proceed
 to process the next target block.

 If a single (original) certificate is found matching the indicated SKI,
 then the algorithm takes the following actions. First, it sets the
 ORIGINAL state bit for the certificate found. Second, it sets the
 TARGET state bit for the certificate found. Third, it extracts the
 INRs from the certificate. If the global resource_nounion flag is TRUE,
 the algorithm compares the extracted certificate INRs with the INRs
 specified in the constraints file. If the two resource sets are
 different, the algorithm SHOULD issue a warning noting the difference.
 An output resource set is then formed that is identical to the resource
 set extracted from the certificate. If, however, the resource_nounion
 flag is FALSE, then the output resource set is calculated by forming
 the union of the resources extracted from the certificate and the
 resources specified for this target block in the constraints file. A
 paracertificate is then constructed according to Table 1, using fields
 from the original certificate, the tags that had been set during

Reynolds, et al Expires October 2, 2013 [Page 17]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 stage 0, and, if necessary, fields from the RP's TA certificate. The
 INR resources of the paracertificate are equated to the derived output
 resource set. The PARA state bit is set for the newly created
 paracertificate.

4.2.3 Ancestor processing (stage 2)

 The goal of ancestor processing is to discover all ancestors of a
 target certificate and remove from those ancestors the resources
 specified in the target blocks corresponding to the targets being
 processed. Note that it is possible that, for a given chain from a
 target certificate to a trust anchor, another target might be
 encountered. This is handled by removing all the target resources of
 all descendants. The set of all targets that are descendants of the
 given certificate is formed. The union of all the target resources of
 the corresponding target blocks is computed, and this union in then
 removed from the shared ancestor.

 In detail, the algorithm is as follows. First, all (original) target
 certificates processed during stage 1 processing are collected.
 Second, any collected certificates that have the NOCHAIN state bit set
 are eliminated from the collection. (Note that, as a result of
 eliminating such certificates, the resulting collection may be empty,
 in which case this stage of algorithm processing terminates, and
 processing advances to stage 3.) Next, an implementation MAY sort the
 collection. The optional sorting algorithm is described in Appendix

B. Note that all stage 2 processing is completed before any stage 3
 processing.

 Two levels of nested iteration are performed. The outer iteration is
 effected over all certificates in the collection; the inner iteration
 is over all ancestors of the designated certificate being processed.
 The first certificate in the collection is chosen, and a resource set
 R is initialized based on the resources of the target block for that
 certificate (since the certificate is in the collection, it must be a
 target certificate, and thus correspond to a target block). The
 parent of the certificate is then located using ordinary path
 discovery over original certificates only. The ancestor's certificate
 resources A are then extracted. These resources are then perforated
 with respect to R. That is, an output set of resources is created by
 forming the intersection I of A and R, and then taking the set
 difference A - I as the output resources. A paracertificate is then
 created containing resources that are these output resources, and
 containing other fields and extensions from the original certificate
 (and possibly the RP's TA certificate) according to the procedure
 given in Table 1. The PARA state bit is set on this paracertificate
 and the ORIGINAL state bit is set on A. If A is also a target
 certificate, as indicated by its TARGET state bit being set, then

Reynolds, et al Expires October 2, 2013 [Page 18]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 there will already have been a paracertificate created for it. This
 previous paracertificate is destroyed in favor of the newly created
 paracertificate. In this case also, the set R is augmented by adding
 into it the set of resources of the target block for A. The algorithm
 then proceeds to process the parent of A. This inner iteration
 continues until the self-signed certificate at the root of the path
 is encountered and processed. The outer iteration then continues by
 clearing R and proceeding to the next certificate in the target
 collection.

 Note that ancestor processing has the potential for order dependency,
 as mentioned earlier in this document. If sorting is not implemented,
 or if the sorting algorithm fails to completely process the
 collection of target certificates because the allotted maximum number
 of iterations has been realized, it may be the case that an ancestor
 of a certificate logically occurs before that certificate in the
 collection. Whenever an existing paracertificate is replaced by a
 newly created paracertificate during ancestor processing, the
 algorithm SHOULD alert the user, and SHOULD log sufficient detail
 such that the user is able to determine which resources were
 perforated from the original certificate in order to create the (new)
 paracertificate.

 In addition, implementations MUST provide for conflict detection and
 notification during ancestor processing. During ancestor processing
 a certificate may be encountered two or more times and the
 modifications dictated by the ancestor processing algorithm may be
 in conflict. If this situation arises the algorithm MUST refrain
 from processing that certificate. Further, the implementation MUST
 present the user with an error message that contains enough detail
 so that the user can locate those directives in the constraints file
 that are creating the conflict. For example, during one stage of the
 processing algorithm it may be directed that resources R1 be added to
 a certificate C, while during a different stage of the processing
 algorithm it may be directed that resources R2 be removed from
 certificate C. If the resource sets R1 and R2 have a non-empty
 intersection, that is a conflict.

4.2.4 Tree processing (stage 3)

 The goal of tree processing is to locate other certificates
 containing INRs that conflict with the resources allocated to a
 target, by virtue of the INRs specified in the constraints file.
 The certificates processed are not ancestors of any target. The
 algorithm used is described below.

 First, all target certificates are collected. Second, all target
 certificates that have the NOCHAIN state bit set are eliminated
 from this collection. Third, if the intersection_always

Reynolds, et al Expires October 2, 2013 [Page 19]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 global flag is set, target blocks that occur in the constraints
 file, but that did not correspond to a certificate in the local
 repository, are added to the collection. In tree processing,
 unlike ancestor processing, this collection is not sorted. An
 iteration is now performed over each certificate (or set of target
 block resources) in the collection. Note that the collection may be
 empty, in which case this stage of algorithm processing terminates,
 and processing advances to stage 4. Note also that all stage 3
 processing is performed before any stage 4 processing.

 Given a certificate or target resource block, each top level original
 TA certificate is examined. If that TA certificate has an
 intersection with the target block resources, then the certificate is
 perforated with respect to those resources. A paracertificate is
 created based on the contents of the original certificate (and
 possibly the RP's TA certificate, as indicated in Table 1) using the
 perforated resources. The ORIGINAL state bit is set on the original
 certificate processed in this manner, and the PARA state bit is set
 on the paracertificate just created. An inner iteration then begins
 on the descendants of the original certificate just processed. There
 are two ways in which this iteration may proceed. If the treegrowth
 global flag is clear, then examination of the children proceeds until
 all children are exhausted, or until one child is found with
 intersecting resources. If the treegrowth global flag is set, all
 children are examined. If a transfer of resources is in process,
 more than one child may possess intersecting resources. In this case,
 it is RECOMMENDED that the treegrowth flag be set. The inner iteration
 proceeds until all descendants have been examined and no further
 intersecting resources are found. The outer iteration then continues
 with the next certificate or target resource block in the collection.
 Note that unlike ancestor processing, there is no concept of a
 potentially cumulating resource collection R; only the resources
 in the target block are used for perforation.

4.2.5 TA re-parenting (stage 4)

 In the final stage of TA algorithm processing, all TA certificates
 (other than the RP's TA certificate) that have not already been
 processed are now processed. At this stage all unprocessed TA
 certificates have no intersection with any target resource blocks.
 As such, in creating the corresponding paracertificates, the output
 resource set is identical to the input resource set. Other
 transformations as described in Table 1 are performed. The original
 TA certificates have the ORIGINAL state bit set; the newly created
 paracertificates have the PARA state bit set. Note that once stage
 four processing is completely, only a single TA certificate will
 remain in an unprocessed state, namely the relying party's own
 TA certificate.

Reynolds, et al Expires October 2, 2013 [Page 20]

Internet-Draft RPKI Local TA Management Apr 5, 2013

4.3 Discussion

 The algorithm described in this document effectively creates two
 coexisting certificate hierarchies: the original certificate
 hierarchy and the paracertificate hierarchy. Original
 certificates are not removed during any of the processing described
 in the previous section. Some original certificates may move from
 having no state bits set (or only the NOCHAIN state bit set) to
 having one or both of the ORIGINAL and TARGET state bits set. In
 addition, the NOCHAIN state bit will still be set if it was set
 before any processing. The paracertificate hierarchy, however, is
 intended to supersede the original hierarchy for ROA validation.
 The presence of two hierarchies has implications for path
 discovery, and for revocation.

 If one thinks of a certificate as being "named" by its SKI, then
 there can now be two certificates with the same name, an original
 certificate and a paracertificate. The next two sections discuss the
 implications of this duality in detail. Before proceeding, it is
 worth noting that even without the existence of the paracertificate
 hierarchy, cases may exist in which two or more original
 certificates have the same SKI. As noted earlier, in Section

4.2.2, these cases may be subdivided into the case in which such
 certificates are distinguishable by virtue of having different
 subject names, but identical issuers and resource sets, versus all
 other cases. In the distinguishable case, the path discovery
 algorithm treats the original certificates as separate certificates,
 and processes them separately. In all other cases, the original
 certificates should be treated as indistinguishable, and path
 validation should fail.

5 Implications for Path Discovery

 Path discovery proceeds from a child certificate C by asking for a
 parent certificate P such that the AKI of C is equal to the SKI of P.
 With one hierarchy this question would produce at most one answer.
 With two hierarchies, the original certificate hierarchy and the
 paracertificate hierarchy, the question may produce two answers, one
 answer, or no answer. Each of these cases is considered in turn.

5.1 Two answers

 If two paths are discovered, it SHOULD be the case that one of the
 matches is a certificate with the ORIGINAL state bit set and the
 PARA state bit clear, while the other match inversely has the
 ORIGINAL state bit clear and the PARA state bit set. If any other
 combination of ORIGINAL and PARA state bits obtains, the path
 discovery algorithm MUST alert the user. In addition, the path
 discovery algorithm SHOULD refrain from attempting to make a

Reynolds, et al Expires October 2, 2013 [Page 21]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 choice as to which of the two certificates is the putative parent. In
 the no-error case, with the state bits are as indicated, the
 certificate with the PARA state bit set is chosen as the parent P.
 Note this means, in effect, that all children of the original
 certificate have been re-parented under the paracertificate.

5.2 One answer

 If the matching certificate has neither the ORIGINAL state bit set
 nor the PARA state bit set, this certificate is the parent. If the
 matching certificate has the PARA state bit set but the ORIGINAL
 state bit not set, this certificate is the parent. (This situation
 would arise, for example, if the original certificate had been
 revoked by its issuer but the paracertificate had not been revoked by
 the RP.) If the matching certificate has the ORIGINAL state bit set
 but the PARA state bit not set, this is not an error but it is a
 situation in which path discovery MUST be forced to fail. The parent
 P MUST be set to NULL, and the NOCHAIN state bit must be set on C and
 all its descendants; the user SHOULD be warned. Even if the RP has
 revoked the paracertificate, the original certificate MAY persist.
 Forcing path discovery to unsuccessfully terminate is a reflection of
 the RP's preference for path discovery to fail as opposed to using
 the original hierarchy. Finally, if the matching certificate has both
 the ORIGINAL and PARA state bits set, this is an error. The parent P
 MUST be set to NULL, and the user MUST be warned.

5.3 No answer

 This situation occurs when C has no parent in either the original
 hierarchy or the paracertificate hierarchy. In this case the parent P
 is NULL and path discovery terminates unsuccessfully. The NOCHAIN
 state bit must be set on C and all its descendants.

6 Implications for Revocation

 In a standard implementation of revocation in a PKI, a valid CRL
 names a (sibling) certificate by serial number. That certificate is
 revoked and is purged from the local RPKI repository. The original
 certificate hierarchy and the paracertificate hierarchy created by
 applying the algorithms described above are closely related. It
 can thus be asked how revocation is handled in the presence of these
 two hierarchies. In particular do changes in one of the hierarchies
 trigger corresponding changes in the other hierarchy. There are four
 cases based on the state of the ORIGINAL and PARA bits. These are
 discussed in the subsections below. It should be noted that the
 existence of two hierarchies presents a particular challenge with
 respect to revocation. If a CRL arrives and is processed, that

Reynolds, et al Expires October 2, 2013 [Page 22]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 processing can result in the descrution of one of the path chains.
 In the case of a single hierarchy this would mean that certain objects
 would fail to validate. In the presence of two hierarchies, however,
 a CRL revocation may force the preferred path to be destroyed. If
 the RP later determines that the CRL revocation should not have
 occurred, he is faced with an undesirable situation: the deprecated
 path will be discovered. In order to prevent this outcome, an RP
 MUST be able to configure one or more additional repository URIs
 in support of local trust anchor management.

6.1 No state bits set

 If the CRL names a certificate that has neither the ORIGINAL state
 bit set nor the PARA state bit set, revocation proceeds normally. All
 children of the revoked certificate have their state modified so that
 the NOCHAIN state bit is set.

6.2 ORIGINAL state bit set

 If the CRL names a certificate with the ORIGINAL state bit set and
 the PARA state bit clear, then this certificate is revoked as usual.
 If this original certificate also has the TARGET state bit set, then
 the corresponding paracertificate (if it exists) is not revoked; if
 this original certificate has the TARGET state bit clear, then the
 corresponding paracertificate is revoked as well. Note that since all
 the children of the original certificate have been re-parented to be
 children of the corresponding paracertificate, as described above,
 the revocation algorithm MUST NOT set the NOCHAIN state bit on these
 children unless the paracertificate is also revoked. Note also that
 if the original certificate is revoked but the paracertificate is not
 revoked, the paracertificate retains its PARA state bit. This is to
 ensure that path discovery proceeds preferentially through the
 paracertificate hierarchy, as described above.

6.3 PARA state bit set

 If the CRL names a certificate with the PARA state bit set and the
 ORIGINAL state bit clear, this CRL must have been issued, perforce,
 by the RP itself. This is because all the paracertificates are
 children of the RP's TA certificate. (Recall that a TA is not revoked
 via a CRL; it is merely removed from the repository.) The
 paracertificate is revoked and all children of the paracertificate
 have the NOCHAIN state bit set. No action is taken on the
 corresponding original certificate; in particular, its ORIGINAL state
 bit is not cleared.

 Note that the serial numbers of paracertificates are synthesized
 according to the procedure given in Table 1, rather than being
 assigned by an algorithm under the control of the (original) issuer.

Reynolds, et al Expires October 2, 2013 [Page 23]

Internet-Draft RPKI Local TA Management Apr 5, 2013

6.4 Both ORIGINAL and PARA state bits set

 This is an error. The revocation algorithm MUST alert the user and
 take no further action.

 '
7 Security Considerations

 The goal of the algorithm described in this document is to enable an
 RP to impose its own view of the RPKI, which is intrinsically a
 ecurity function. An RP using a constraints file is trusting the
 assertions made in that file. Errors in the constraints file used
 by an RP can undermine the security offered by the RPKI, to that RP.
 In particular, since the paracertificate hierarchy is intended to
 trump the original certificate hierarchy for the purposes of path
 discovery, an improperly constructed paracertificate hierarchy could
 validate ROAs that would otherwise be invalid. It could also
 declare as invalid ROAs that would otherwise be valid. As a result,
 an RP must carefully consider the security implications of the
 constraints file being used, especially if the file is provided by
 a third party.

8 IANA Considerations

 [Note to IANA, to be removed prior to publication: there are no IANA
 considerations stated in this version of the document.]

9 Acknowledgements

 The authors would like to acknowledge the significant contributions
 of Charles Gardiner, who was the original author of an internal
 version of this document, and who contributed significantly to its
 evolution into the current version.

10 References

10.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3513] Hinden, R., and S. Deering, "Internet Protocol Version 6
 (IPv6) Addressing Architecture", RFC 3513, April 2003.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779, June 2004.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires October 2, 2013 [Page 24]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 5280, May 2008.

 [RFC5396] Huston, G., and G. Michaelson, "Textual Representation of
 Autonomous System (AS) Numbers", RFC 5396, December 2008.

 [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, February 2012.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile
 for Resource Certificate Policy Structure", RFC 6481,
 Feburary 2012.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile
 for X.509 PKIX Resource Certificates", RFC 6487, February
 2012.

10.2 Informative References

 None.

Authors' Addresses

 Stephen Kent
 Raytheon BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138

 Email: kent@bbn.com

 Matthew Lepinski
 Raytheon BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138

 Email: mlepinsk@bbn.com

 Mark C. Reynolds
 Island Peak Software
 328 Virginia Road
 Concord, MA 01742

 Email: mcr@islandpeaksoftware.com

Reynolds, et al Expires October 2, 2013 [Page 25]

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5396
https://datatracker.ietf.org/doc/html/rfc6480
https://datatracker.ietf.org/doc/html/rfc6481
https://datatracker.ietf.org/doc/html/rfc6487

Internet-Draft RPKI Local TA Management Apr 5, 2013

Appendix A: Sample Constraints File

 ;
 ; Sample constraints file for TBO LTA Test Corporation.
 ;
 ; TBO manages its own local (10.x.x.x) address space
 ; via the target blocks in this file.
 ;

 ;
 ; Relying party subsection. TBO uses ssh-agent as
 ; a software cryptographic agent.
 ;

 PRIVATEKEYMETHOD OBO(ssh-agent)
 TACERTIFICATE tbomaster.cer

 ;
 ; Flags subsection
 ;
 ; Always use the resources in this file to augment
 ; certificate resources.
 ; Always process resource conflicts in the tree, even
 ; if the target certificate is missing.
 ; Always search the entire tree.
 ;

 CONTROL resource_nounion FALSE
 CONTROL intersection_always TRUE
 CONTROL treegrowth TRUE

 ;
 ; Tags subsection
 ;
 ; Copy the original cert's validity dates.
 ; Use the default policy OID.
 ; Use our own CRLDP.
 ; Use our own AIA.
 ;

 TAG Xvalidity_dates C
 TAG Xcp D
 TAG Xcrldp rsync://tbo_lta_test.com/pub/CRLs
 TAG Xaia rsync://tbo_lta_test.com/pub/repos

 ;
 ; Block subsection
 ;

Reynolds, et al Expires October 2, 2013 [Page 26]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 ;
 ; First block: TBO Corporate
 ;

 ; Resource Holder: TBO Corporation

 SKI 00112233445566778899998877665544332211
 IPv4
 10.2.3/24
 10.8/16
 IPv6
 2001:db8::/32
 AS#
 60123
 5507

 ;
 ; Second block: TBO LTA Test Enforcement Division
 ;

 ; Resource Holder: TBO Corporation

 SKI 653420AF758421CF600029FF857422AA6833299F
 IPv4
 10.2.8/24
 10.47/16
 IPv6
 AS#
 60124

 ;
 ; Third block: TBO LTA Test Acceptance Corporation
 ; Quality financial services since sometime
 ; late yesterday.
 ;

 ; Resource Holder: TBO Acceptance Corporation

 SKI 19:82:34:90:8b:a0:9c:ef:00:af:a0:98:23:09:82:4b:ef:ab:98:09
 IPv4
 10.3.3/24
 IPv6
 AS#
 60125

 ; End of TBO constraints file

Appendix B: Optional Sorting Algorithm for Ancestor Processing

 Sorting is performed in an effort to eliminate any order dependencies
 in ancestor processing, as described in section 4.2.3 of this

Reynolds, et al Expires October 2, 2013 [Page 27]

Internet-Draft RPKI Local TA Management Apr 5, 2013

 document. The sorting algorithm does this by rearranging the
 processing of certificates such that if A is an ancestor of B, B is
 processed before A. The sorting algorithm is an OPTIONAL part of
 ancestor processing. Sorting proceeds as follows. The collection
 created at the beginning of ancestor processing is traversed and any
 certificate in the collection that is visited as a result of path
 discovery is temporarily marked. After the traversal, all unmarked
 certificates are moved to the beginning of the collection. The
 remaining marked certificates are unmarked, and a traversal again
 performed through this sub-collection of previously marked
 certificates. The sorting algorithm proceeds iteratively until all
 certificates have been sorted or until a predetermined fixed number
 of iterations has been performed. (Eight is suggested as a munificent
 value for the upper bound, since the number of sorting steps need not
 be any greater than the maximum depth of the tree.) Finally, the
 ancestor processing algorithm is applied in turn to each certificate
 in the remaining sorted collection. If the sorting algorithm fails to
 converge, that is if the maximum number of iterations has been
 reached and unsorted certificates remain, the implementation SHOULD
 warn the user.

Reynolds, et al Expires October 2, 2013 [Page 28]

